Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How fast ions mitigate turbulence and enhance confinement in tokamak fusion plasmas

Abstract

Along with high temperature and density, magnetic fusion requires good confinement and a degree of transport control for thermal plasmas. Meanwhile, fast ions are generated by the external heating used to raise plasma temperature and by the fusion reactions. As a result, the fusion plasmas are effectively rendered into systems with two coexisting populations of main interest — namely, the fast ions and the thermal plasma. Interestingly, several recent experiments indicate that the fast-ion population can improve the confinement of the thermal plasmas by mitigating turbulence. In this Review, we describe the physical mechanisms that underpin the improved confinement and discuss recent experimental results in terms of these mechanisms.

Key points

  • Recent tokamak experiments have shown that fast ions, generated both by external heating used to raise plasma temperature and by fusion reactions, can enhance the confinement of thermal plasmas by mitigating turbulence.

  • Fast ions can modify the magnetic field structure, thereby reducing turbulence by decreasing the drive for curvature-type microinstabilities and increasing the E × B flow shear. Confinement improvements observed in hybrid modes in JET (Joint European Torus) and KSTAR (Korea Superconducting Tokamak Advanced Research) are examples of this mechanism.

  • Fast ions can lead to thermal ion dilution and changes in the thermal ion density gradient, which have a stabilizing effect on microinstabilities by changing the nonlinear saturation level of microinstabilities and by enhancing zonal flow generation. This mechanism could explain internal transport barrier experiments in KSTAR (FIRE (fast-ion-regulated enhancement) mode), HL-2A (Huan Liuqi-2A), and ASDEX (Axially Symmetric Divertor Experiment) Upgrade with neutral beam injection.

  • Fast ions can interact with microinstabilities through wave–particle resonant interactions, extracting energy from the instabilities and, thereby, weakening their linear drive. The internal transport barrier formation in ASDEX Upgrade (F-ATB (fast-ion-induced anomalous transport barrier)) with ion cyclotron resonance heating can be understood through this mechanism.

  • Furthermore, fast ions can generate fast-ion-driven instabilities that interact with microturbulence via zonal flows, phase-space coherent structures, and nonlinear mode coupling, leading to turbulence mitigation. This mechanism could explain internal transport barrier formation in DIII-D (Doublet III-D) and EAST (Experimental Advanced Superconducting Tokamak), wherein fast-ion-driven instabilities are present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of dilution by fast ions on the drift wave turbulence–zonal flow system.
Fig. 2: Interplay between wave–particle resonant interactions and ion-scale plasma instabilities.
Fig. 3: Nonlinear simulation results on zonal flows (ZFs) for cases with and without fast ions in FIRE mode on KSTAR.
Fig. 4: Simulations of the poloidal cross section showing fluctuations in the electrostatic field ϕ1 for the F-ATB (fast-ion-induced anomalous transport barrier) discharge in ASDEX Upgrade6, comparing cases with and without fast ions.
Fig. 5: Interacting reversed-shear Alfvén eigenmode (RSAE) and ion temperature gradient (ITG) turbulences.
Fig. 6: Core confinement feedback loops.

Similar content being viewed by others

References

  1. Garcia, J. et al. Electromagnetic and fast ions effects as a key mechanism for turbulent transport suppression at JET. Plasma Phys. Control. Fusion 64, 104002 (2022).

    Article  ADS  MATH  Google Scholar 

  2. Citrin, J. & Mantica, P. Overview of tokamak turbulence stabilization by fast ions. Plasma Phys. Control. Fusion 65, 033001 (2023).

    Article  ADS  MATH  Google Scholar 

  3. Han, H. et al. A sustained high-temperature fusion plasma regime facilitated by fast ions. Nature 609, 269–275 (2022).

    Article  ADS  MATH  Google Scholar 

  4. Han, H. et al. Criterion for long sustained highly peaked ion temperature in diverted configuration of KSTAR tokamak. Phys. Plasmas 31, 032506 (2024).

    Article  ADS  Google Scholar 

  5. Tardini, G. et al. Thermal ions dilution and ITG suppression in ASDEX Upgrade ion ITBs. Nucl. Fusion 47, 280 (2007).

    Article  ADS  MATH  Google Scholar 

  6. Di Siena, A. et al. New high-confinement regime with fast ions in the core of fusion plasmas. Phys. Rev. Lett. 127, 025002 (2021).

    Article  ADS  MATH  Google Scholar 

  7. Liu, P. et al. Regulation of Alfvén eigenmodes by microturbulence in fusion plasmas. Phys. Rev. Lett. 128, 185001 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brochard, G. et al. Saturation of fishbone instability by self-generated zonal flows in tokamak plasmas. Phys. Rev. Lett. 132, 175101 (2024).

    Article  MATH  Google Scholar 

  9. Liu, Z. X. et al. Experimental observation and simulation analysis of the relationship between the fishbone and ITB formation on EAST tokamak. Nucl. Fusion 60, 122001 (2020).

    Article  ADS  MATH  Google Scholar 

  10. Lin, W. H. et al. A self-sustaining mechanism for internal transport barrier formation in HL-2A tokamak plasmas. Nucl. Fusion 63, 126048 (2023).

    Article  ADS  MATH  Google Scholar 

  11. Romanelli, M., Zocco, A., Crisanti, F. & JET-EFDA Contributors Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation. Plasma Phys. Control. Fusion 52, 045007 (2010).

    Article  ADS  Google Scholar 

  12. Mantica, P. et al. Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the JET tokamak. Phys. Rev. Lett. 102, 175002 (2009).

    Article  ADS  MATH  Google Scholar 

  13. Mantica, P. et al. A key to improved ion core confinement in the JET tokamak: ion stiffness mitigation due to combined plasma rotation and low magnetic shear. Phys. Rev. Lett. 107, 135004 (2011).

    Article  ADS  MATH  Google Scholar 

  14. Garcia, J., Giruzzi, G. & JET EFDA Contributors On the different physical mechanisms for accessing hybrid scenarios on JET. Nucl. Fusion 53, 043023 (2013).

    Article  ADS  Google Scholar 

  15. Mazzi, S. et al. Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. Nat. Phys. 18, 776 (2022).

    Article  MATH  Google Scholar 

  16. Hobirk, J. et al. The JET hybrid scenario in deuterium, tritium and deuterium-tritium. Nucl. Fusion 63, 112001 (2023).

    Article  ADS  MATH  Google Scholar 

  17. Na, Y.-S. et al. On hybrid scenarios in KSTAR. Nucl. Fusion 60, 086006 (2020).

    Article  ADS  MATH  Google Scholar 

  18. Lee, Y. et al. Effect of coherent edge-localized mode on transition to high-performance hybrid scenarios in KSTAR. Nucl. Fusion 63, 126032 (2023).

    Article  ADS  MATH  Google Scholar 

  19. Kim, B. et al. Investigation of performance enhancement by balanced double-null shaping in KSTAR. Nucl. Fusion 63, 126013 (2023).

    Article  ADS  MATH  Google Scholar 

  20. Bourdelle, C. et al. Impact of the α parameter on the microstability of internal transport barriers. Nucl. Fusion 45, 110 (2005).

    Article  ADS  Google Scholar 

  21. Kotschenreuther, M. T. et al. Regimes of weak ITG/TEM modes for transport barriers without velocity shear (UP10.00020). In 61st Annual Meeting of the APS Division of Plasma Physics (American Physical Society, 2019).

  22. Biglari, H., Diamond, P. H. & Terry, P. W. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2, 1–4 (1990).

  23. Burrell, K. H. Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. Phys. Plasmas 4, 1499 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Hahm, T. S. et al. Turbulence and transport in enhanced confinement regimes of tokamaks: simulation and theory. In International Atomic Energy Agency (IAEA) International Conference on Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, 1996).

  25. Hahm, T. S. & Burrell, K. H. Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma. Phys. Plasmas 2, 1648 (1995).

    Article  ADS  MATH  Google Scholar 

  26. Citrin, J. et al. Electromagnetic stabilization of tokamak microturbulence in a high-β regime. Plasma Phys. Control. Fusion 57, 014032 (2015).

    Article  ADS  MATH  Google Scholar 

  27. Garcia, J. et al. Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nucl. Fusion 55, 053007 (2015).

    Article  ADS  MATH  Google Scholar 

  28. Doerk, H. et al. Gyrokinetic study of turbulence suppression in a JET-ILW power scan. Plasma Phys. Control. Fusion 58, 115005 (2016).

    Article  ADS  MATH  Google Scholar 

  29. Doerk, H. et al. Turbulence in high-beta ASDEX Upgrade advanced scenarios. Nucl. Fusion 58, 016044 (2018).

    Article  ADS  MATH  Google Scholar 

  30. Wilkie, G. J., Pusztai, I., Abel, I., Dorland, W. & Fülöp, T. Global anomalous transport of ICRH- and NBI-heated fast ions. Plasma Phys. Control. Fusion 59, 044007 (2017).

    Article  ADS  Google Scholar 

  31. Hahm, T. S. & Tang, W. M. Properties of ion temperature gradient drift instabilities in H‐mode plasmas. Phys. Fluids B 1, 1185 (1989).

    Article  ADS  MATH  Google Scholar 

  32. Hahm, T. S. & Tang, W. M. Weak turbulence theory of ion temperature gradient modes for inverted density plasmas. Phys. Fluids B 2, 1815 (1990).

    Article  ADS  MATH  Google Scholar 

  33. Kim, D. et al. Turbulence stabilization in tokamak plasmas with high population of fast ions. Nucl. Fusion 63, 124001 (2023).

    Article  ADS  MATH  Google Scholar 

  34. Kim, D. et al. Investigation of fast ion effects on core turbulence in FIRE mode plasmas. Nucl. Fusion 64, 066013 (2024).

    Article  ADS  Google Scholar 

  35. Diamond, P. H., Itoh, S.-I., Itoh, K. & Hahm, T. S. Zonal flows in plasma — a review. Plasma Phys. Control. Fusion 47, R35 (2005).

    Article  MATH  Google Scholar 

  36. Yang, S. M. et al. Gyrokinetic study of slowing-down α particles transport due to trapped electron mode turbulence. Phys. Plasmas 25, 122305 (2018).

    Article  ADS  Google Scholar 

  37. Garcia, J. et al. Isotope and fast ions turbulence suppression effects: consequences for high-β ITER plasmas. Phys. Plasmas 25, 055902 (2018).

    Article  ADS  MATH  Google Scholar 

  38. Hahm, T. S., Choi, G. J., Park, S. J. & Na, Y.-S. Fast ion effects on zonal flow generation: a simple model. Phys. Plasmas 30, 072501 (2023).

    Article  ADS  MATH  Google Scholar 

  39. Hasegawa, A. & Mima, K. Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21, 87 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Diamond, P. H., Liang, Y.-M., Carreras, B. A. & Terry, P. W. Self-regulating shear flow turbulence: a paradigm for the L to H transition. Phys. Rev. Lett. 72, 2565 (1994).

    Article  ADS  MATH  Google Scholar 

  41. Diamond, P. H. et al. Drift wave-zonal flow turbulence: the physics behind the color view graphs. In 17th International Atomic Energy Agency (IAEA) Fusion Energy Conference (International Atomic Energy Agency, 1998).

  42. Chen, L., Lin, Z. & White, R. B. Excitation of zonal flow by drift waves in toroidal plasmas. Phys. Plasmas 7, 3129 (2000).

    Article  ADS  MATH  Google Scholar 

  43. Hussain, M. S., Guo, W. & Wang, L. Effects of alpha particles on the CTEM driven zonal flow in deuterium–tritium tokamak plasmas. Nucl. Fusion 62, 056013 (2022).

    Article  ADS  Google Scholar 

  44. Choi, G. J., Diamond, P. H. & Hahm, T. S. On how fast ions enhance the regulation of drift wave turbulence by zonal flows. Nucl. Fusion 64, 016029 (2024).

    Article  ADS  MATH  Google Scholar 

  45. Di Siena, A. et al. Fast-ion stabilization of tokamak plasma turbulence. Nucl. Fusion 58, 054002 (2018).

    Article  ADS  MATH  Google Scholar 

  46. Angioni, C. et al. Off-diagonal particle and toroidal momentum transport: a survey of experimental, theoretical and modelling aspects. Nucl. Fusion 52, 114003 (2012).

    Article  ADS  MATH  Google Scholar 

  47. Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. Electron temperature gradient driven turbulence. Phys. Plasmas 7, 1904 (2000).

    Article  ADS  MATH  Google Scholar 

  48. Goerler, T. et al. The global version of the gyrokinetic turbulence code GENE. J. Comput. Phys. 230, 7053 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Di Siena, A. et al. Resonant interaction of energetic ions with bulk-ion plasma micro-turbulence. Phys. Plasmas 26, 052504 (2019).

    Article  ADS  MATH  Google Scholar 

  50. Di Siena, A. et al. Electromagnetic turbulence suppression by energetic particle driven modes. Nucl. Fusion 59, 124001 (2019).

    Article  ADS  MATH  Google Scholar 

  51. Chen, L. & Zonca, F. Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88, 015008 (2016).

    Article  ADS  MATH  Google Scholar 

  52. Taimourzadeh, S. et al. Verification and validation of integrated simulation of energetic particles in fusion plasmas. Nucl. Fusion 59, 066006 (2019).

    Article  ADS  Google Scholar 

  53. Lin, Z., Hahm, T. S., Lee, W. W., Tang, W. M. & White, R. B. Turbulent transport reduction by zonal flows: massively parallel simulations. Science 281, 1835 (1998).

    Article  ADS  Google Scholar 

  54. Berk, H. L., Breizman, B. N. & Petviashvili, N. V. Spontaneous hole-clump pair creation in weakly unstable plasmas. Phys. Lett. A 234, 213–218 (1997).

    Article  ADS  Google Scholar 

  55. Chen, L., Lin, Z., White, R. B. & Zonca, F. Non-linear zonal dynamics of drift and drift-Alfvén turbulence in tokamak plasmas. Nucl. Fusion 41, 747 (2001).

    Article  ADS  MATH  Google Scholar 

  56. Cho, Y. W. & Hahm, T. S. Residual zonal flows in tokamaks in the presence of energetic ions. Nucl. Fusion 59, 066026 (2019).

    Article  ADS  MATH  Google Scholar 

  57. Lu, Z. et al. Effects of anisotropic energetic particles on zonal flow residual level. Nucl. Fusion 61, 086022 (2021).

    Article  ADS  Google Scholar 

  58. Bass, E. M. & Waltz, R. E. Gyrokinetic simulations of mesoscale energetic particle-driven Alfvénic turbulent transport embedded in microturbulence. Phys. Plasmas 17, 112319 (2010).

    Article  ADS  Google Scholar 

  59. Spong, D. A., Carreras, B. A. & Hedrick, C. L. Nonlinear evolution of the toroidal Alfvén instability using a gyrofluid model. Phys. Plasmas 1, 1503 (1994).

    Article  ADS  Google Scholar 

  60. Todo, Y., Berk, H. & Breizman, B. Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation. Nucl. Fusion 50, 084016 (2010).

    Article  ADS  MATH  Google Scholar 

  61. Chen, L. & Zonca, F. Nonlinear excitations of zonal structures by toroidal Alfvén eigenmodes. Phys. Rev. Lett. 109, 145002 (2012).

    Article  ADS  MATH  Google Scholar 

  62. Qiu, Z., Chen, L. & Zonca, F. Effects of energetic particles on zonal flow generation by toroidal Alfvén eigenmode. Phys. Plasmas 23, 090702 (2016).

    Article  ADS  Google Scholar 

  63. Qiu, Z., Chen, L. & Zonca, F. Nonlinear excitation of finite-radial-scale zonal structures by toroidal Alfvén eigenmode. Nucl. Fusion 57, 056017 (2017).

    Article  ADS  MATH  Google Scholar 

  64. Chen, Y., Fu, G. Y., Collins, C., Taimourzadeh, S. & Parker, S. E. Zonal structure effect on the nonlinear saturation of reverse shear Alfvén eigenmodes. Phys. Plasmas 25, 032304 (2018).

    Article  ADS  Google Scholar 

  65. Liu, P. et al. Nonlinear gyrokinetic simulations of reversed shear Alfvén eigenmodes in DIII-D tokamak. Rev. Mod. Plasma Phys. 7, 15 (2023).

    Article  ADS  MATH  Google Scholar 

  66. Zhang, H. S. & Lin, Z. Nonlinear generation of zonal fields by the beta-induced Alfvén eigenmode in tokamak. Plasma Sci. Technol. 15, 969 (2013).

    Article  ADS  MATH  Google Scholar 

  67. Biancalani, A. et al. Gyrokinetic investigation of Alfvén instabilities in the presence of turbulence. Plasma Phys. Control. Fusion 63, 065009 (2021).

    Article  ADS  MATH  Google Scholar 

  68. Liu, P. et al. Cross-scale interaction between microturbulence and meso-scale reversed shear Alfvén eigenmodes in DIII-D plasmas. Nucl. Fusion 64, 076007 (2024).

    Article  ADS  Google Scholar 

  69. Lin, Z. Effects of collisional zonal flow damping on turbulent transport. Phys. Rev. Lett. 83, 3645 (1999).

    Article  ADS  MATH  Google Scholar 

  70. Zhang, H. S., Lin, Z. & Holod, I. Nonlinear frequency oscillation of Alfvén eigenmodes in fusion plasmas. Phys. Rev. Lett. 109, 025001 (2012).

    Article  ADS  MATH  Google Scholar 

  71. Zhang, W., Lin, Z. & Chen, L. Transport of energetic particles by microturbulence in magnetized plasmas. Phys. Rev. Lett. 101, 095001 (2008).

    Article  ADS  MATH  Google Scholar 

  72. Chen, L., Qiu, Z. & Zonca, F. On scattering and damping of toroidal Alfvén eigenmode by drift wave turbulence. Nucl. Fusion 62, 094001 (2022).

    Article  ADS  MATH  Google Scholar 

  73. Chen, L., Qiu, Z. & Zonca, F. On nonlinear scattering of drift wave by toroidal Alfvén eigenmode in tokamak plasmas. Nucl. Fusion 63, 106016 (2023).

    Article  ADS  Google Scholar 

  74. Ishizawa, A. et al. Multi-scale interactions between turbulence and magnetohydrodynamic instability driven by energetic particles. Nucl. Fusion 61, 114002 (2021).

    Article  ADS  MATH  Google Scholar 

  75. Hahm, T. S. & Chen, L. Nonlinear saturation of toroidal Alfvén eigenmodes via ion Compton scattering. Phys. Rev. Lett. 74, 266 (1995).

    Article  ADS  MATH  Google Scholar 

  76. Marchenko, V. Inverse Compton scattering of the ITG turbulence by energetic ions. Phys. Plasmas 29, 030702 (2022).

    Article  ADS  MATH  Google Scholar 

  77. Di Siena, A. et al. Predictions of improved confinement in SPARC via energetic particle turbulence stabilization. Nucl. Fusion 63, 036003 (2023).

    Article  ADS  MATH  Google Scholar 

  78. Pueschel, M. J. & Jenko, F. Transport properties of finite-β microturbulence. Phy. Plasmas 17, 062307 (2010).

    Article  ADS  MATH  Google Scholar 

  79. Whelan, G., Pueschel, M. & Terry, P. Nonlinear electromagnetic stabilization of plasma microturbulence. Phys. Rev. Lett. 120, 175002 (2018).

    Article  ADS  MATH  Google Scholar 

  80. Lin, Z. et al. Prediction of energetic particle confinement in ITER operation scenarios. In Proc. 29th International Conference on Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, 2023).

  81. Bonanomi, N. et al. Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas. Nucl. Fusion 58, 056025 (2018).

    Article  ADS  Google Scholar 

  82. Di Siena, A. et al. Non-Maxwellian fast particle effects in gyrokinetic GENE simulations. Phys. Plasmas 25, 042304 (2018).

    Article  ADS  MATH  Google Scholar 

  83. Pankin, A., McCune, D., Andre, R., Bateman, G. & Kritz, A. The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration Library. Comput. Phys. Commun. 159, 157 (2004).

    Article  ADS  MATH  Google Scholar 

  84. Ge, W., Wang, Z.-X., Wang, F., Liu, Z. & Xu, L. Multiple interactions between fishbone instabilities and internal transport barriers in EAST plasmas. Nucl. Fusion 63, 016007 (2022).

    Article  ADS  MATH  Google Scholar 

  85. Wang, S., Cai, H., Chen, X. & Li, D. The internal transport barrier formation on EAST tokamak during the fishbone instability. Plasma Phys. Control. Fusion 65, 055018 (2023).

    Article  ADS  MATH  Google Scholar 

  86. Di Siena, A. et al. Impact of supra-thermal particles on plasma performance at ASDEX Upgrade with GENE-Tango simulations. Nucl. Fusion 64, 066020 (2024).

    Article  ADS  MATH  Google Scholar 

  87. Garcia, J. et al. Stable deuterium-tritium plasmas with improved confinement in the presence of energetic-ion instabilities. Nat. Commun. 15, 7846 (2024).

    Article  MATH  Google Scholar 

  88. Fisch, N. J. & Rax, J. M. Interaction of alpha-particles with intense lower hybrid waves. Phys. Rev. Lett. 69, 612 (1992).

    Article  ADS  MATH  Google Scholar 

  89. Falessi, M. V., Chen, L., Qiu, Z. & Zonca, F. Nonlinear equilibria and transport processes in burning plasmas. N. J. Phys. 25, 123035 (2023).

    Article  MathSciNet  Google Scholar 

  90. Zonca, F., Chen, L., Falessi, M. V. & Qiu, Z. On the nonlinear dynamics of fishbones and energetic particle modes. In 29th IAEA Fusion Energy Conference (International Atomic Energy Agency, 2023).

  91. Choi, M. J. et al. Mesoscopic transport in KSTAR plasmas: avalanches and the E × B staircase. Plasma Phys. Control. Fusion 66, 065013 (2024).

    Article  ADS  MATH  Google Scholar 

  92. Field, A. R., MAST Team,et al. Plasma rotation and transport in MAST spherical tokamak. Nucl. Fusion 51, 063006 (2011).

    Article  ADS  MATH  Google Scholar 

  93. McNamara, S. A. M. et al. Achievement of ion temperatures in excess of 100 million degrees Kelvin in the compact high-field spherical tokamak ST40. Nucl. Fusion 63, 054002 (2023).

    Article  ADS  MATH  Google Scholar 

  94. Di Siena, A., Navarro, A. B. & Jenko, F. Turbulence suppression by energetic particle effects in modern optimized stellarators. Phys. Rev. Lett. 125, 105002 (2020).

    Article  ADS  MATH  Google Scholar 

  95. Romba, T. et al. Suppression of anomalous impurity transport in NBI-heated W7-X plasmas. Nucl. Fusion 63, 076023 (2023).

    Article  ADS  Google Scholar 

  96. Zocco, A. et al. Nonlinear drift-wave and energetic particle long-time behaviour in stellarators: solution of the kinetic problem. J. Plasma Phys. 89, 905890307 (2023).

    Article  Google Scholar 

  97. Magee, R. et al. Direct observation of ion acceleration from a beam-driven wave in a magnetic fusion experiment. Nat. Phys. 15, 281 (2019).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank G. Choi (KAIST), A. Ishizawa (Kyoto Univ.), S. Park (Seoul Nat. Univ.) and J. Lee (Seoul Nat. Univ.) for the fruitful discussions. This work was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Korea government (Ministry of Science and ICT) (NRF-2021M1A7A4091135). P.H. Diamond supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award No. DE-FG02-04ER54738 and Award No. DE-SC0024651. Z. Lin acknowledges support by US DOE SciDAC and INCITE. This work has been partially carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement nos. 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. The authors also gratefully acknowledge The Research Institute of Energy and Resources and The Institute of Engineering Research at Seoul National University.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the article as first authors. Y.-S.N. formulated the overall structure of the article, invited co-authors, and coordinated the entire writing activities. Y.-S.N. primarily contributed to ‘Introduction’, ‘Outlook’, and the section of ‘Experimental observations’. T.S.H. contributed to organizing the structure of the article and primarily contributed to the sections ‘Thermal ion dilution and change in the thermal ion density gradient’ and ‘Interaction between microturbulence and fast-ion-driven instabilities’. P.H.D. mainly contributed to the ‘Introduction’, ‘Outlook’ and ‘Thermal ion dilution and change in the thermal ion density gradient’ sections. A.D.S. primarily contributed to the ‘Introduction’ and ‘Resonant interaction between fast ions and microturbulence’ sections. J.G. mainly contributed to the sections ‘Change of magnetic field structure by fast ions’ and ‘Experimental observations’. Z.L. primarily contributed to the section ‘Interaction between microturbulence and fast-ion-driven instabilities’. All authors equally contributed to the compilation and review of the manuscript.

Corresponding authors

Correspondence to Yong-Su Na, T. S. Hahm, P. H. Diamond, A. Di Siena, J. Garcia or Z. Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Donald Spong and Michele Romanelli for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Drift waves

A universally occurring type of collective excitation, driven by a pressure gradient in magnetized plasmas. Differences between ion and electron motion can destabilize it, known as drift wave instability.

Fishbone

An instability characterized by a rapid burst of magnetohydrodynamic activity owing to interaction between fast ions and internal kink instability with the shape of a fishbone when plotted as a function of time from diagnostics, sometimes observed when neutral beam injection is used in tokamaks.

Gyrokinetics

A theoretical framework to study plasma nonlinear behaviour on perpendicular spatial scales comparable to the Larmor radius and frequencies much lower than the particle cyclotron frequencies.

H-mode

A high-confinement regime develops when a tokamak plasma is heated above a characteristic power threshold, which increases with density, magnetic field and machine size. It is characterized by a sharp pressure gradient near the plasma edge, the so-called edge transport barrier (ETB), resulting in an edge ‘pedestal’.

Hybrid mode

A high-performance, long-duration plasma confinement mode that have favourable fusion and neutron fluence characteristics for ITER. It is characterized by low magnetic shear or flat q-profile in the central region of the plasma.

Internal transport barriers

Radially localized plasma regions in which energy and/or particle transport is reduced and driven mainly by collisional transport owing to suppression of turbulence.

Ion cyclotron resonance heating

A method to heat up a plasma confined in a magnetic fusion device using electromagnetic radio frequency waves with frequencies about 20–50 MHz, matching the frequency at which ions gyrate around the magnetic field lines, ion cyclotron frequency, is used. The ions in the plasma absorb the electromagnetic radiation and, as a result, increase in kinetic energy.

Long-lived mode

A type of magnetohydrodynamic instability that persists for a significantly long duration within the plasma, often characterized by a steady-state oscillation with a helical structure, unlike other rapidly fluctuating instabilities. It is primarily driven by the interaction between fast ions and the plasma, occurring in conditions of low magnetic shear and substantial plasma rotation.

Modulational instability

A process whereby a test large-scale, slow perturbation on an ensemble of waves or modes grows by triggering a flow of energy which reinforces the original perturbation. Classic examples of modulational instability are self-focusing of a beam and amplification of test shears by drift wave turbulence. Modulational instability can be computed using either wave kinetics (that is, quasi-particle method) or the envelope formalism.

Neutral beam injection

A method to heat up a plasma confined in a fusion device with a beam of high-energy neutral particles injected into the plasma. These neutral particles are ionized by collision with the confined plasma particles and become fast ions. They transfer their energy to plasma particles mainly by collisions.

Tokamaks

Magnetic confinement devices in which magnetic fields are generated both by external coils and by currents flowing in the plasma to confine plasma in the shape of an axially symmetrical torus. The magnetic field generated in the toroidal direction, following a large circular ring around the torus encircling the central void, by external coils wound along the torus is called the toroidal field. The magnetic field generated in the poloidal direction, following a small circular ring around the surface, by currents flowing in the plasma is called the poloidal field.

Transport bifurcation

An abrupt change in the plasma transport when a critical value of a control parameter is exceeded. Typically, the control parameter is external heating power.

Zonal flows

Azimuthally symmetric band-like shear flows; an ubiquitous phenomenon in nature and the laboratory. In plasma physics, a zonal flow is a plasma flow within a magnetic surface primarily in the poloidal direction arising via a self-organization phenomenon driven by low-frequency drift-type modes, in which energy is transferred to longer wavelengths by modulational instability or turbulent inverse cascade.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, YS., Hahm, T.S., Diamond, P.H. et al. How fast ions mitigate turbulence and enhance confinement in tokamak fusion plasmas. Nat Rev Phys 7, 190–202 (2025). https://doi.org/10.1038/s42254-025-00814-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00814-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing