Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adipose tissue as a linchpin of organismal ageing

Abstract

Ageing is a conserved biological process, modulated by intrinsic and extrinsic factors, that leads to changes in life expectancy. In humans, ageing is characterized by greatly increased prevalence of cardiometabolic disease, type 2 diabetes and disorders associated with impaired immune surveillance. Adipose tissue displays species-conserved, temporal changes with ageing, including redistribution from peripheral to central depots, loss of thermogenic capacity and expansion within the bone marrow. Adipose tissue is localized to discrete depots, and also diffusely distributed within multiple organs and tissues in direct proximity to specialized cells. Thus, through their potent endocrine properties, adipocytes are capable of modulating tissue and organ function throughout the body. In addition to adipocytes, multipotent progenitor/stem cells in adipose tissue play a crucial role in maintenance and repair of tissues throughout the lifetime. Adipose tissue may therefore be a central driver for organismal ageing and age-associated diseases. Here we review the features of adipose tissue during ageing, and discuss potential mechanisms by which these changes affect whole-body metabolism, immunity and longevity. We also explore the potential of adipose tissue-targeted therapies to ameliorate age-associated disease burdens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of ageing on human adipose tissues, and species in which similar changes have been reported.
Fig. 2: Changes in cellular composition of adipose tissue with ageing.
Fig. 3: Gene expression changes in stromal progenitor cells with ageing.
Fig. 4: Differential gene expression analysis in young and aged adipose tissue.
Fig. 5: Systemic consequences of adipose tissue ageing.

Similar content being viewed by others

References

  1. Reynolds, C. A. et al. A decade of epigenetic change in aging twins: genetic and environmental contributions to longitudinal DNA methylation. Aging Cell 19, e13197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brooks-Wilson, A. R. Genetics of healthy aging and longevity. Hum. Genet. 132, 1323–1338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mirisola, M. G. & Longo, V. D. Yeast Chronological lifespan: longevity regulatory genes and mechanisms. Cells https://doi.org/10.3390/cells11101714 (2022).

  4. Roux, A. E. et al. Individual cell types in C. elegans age differently and activate distinct cell-protective responses. Cell Rep. 42, 112902 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Riera, C. E., Merkwirth, C., De Magalhaes Filho, C. D. & Dillin, A. Signaling networks determining life span. Annu. Rev. Biochem. 85, 35–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Kamminga, L. M. et al. Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells 23, 82–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Sethe, S., Scutt, A. & Stolzing, A. Aging of mesenchymal stem cells. Aging Res. Rev. 5, 91–116 (2006).

    Article  CAS  Google Scholar 

  8. Korstanje, R., Peters, L. L., Robinson, L. L., Krasinski, S. D. & Churchill, G. A. The Jackson Laboratory Nathan Shock Center: impact of genetic diversity on aging. Geroscience 43, 2129–2137 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhou, W. et al. High-resolution aging niche of human adipose tissues. Signal Transduct. Target. Ther. 8, 105 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sparks, L. et al. A single nuclei atlas of aging human abdominal subcutaneous white adipose tissue. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3097605/v1 (2023).

  11. Tabula Muris, C. A single-cell transcriptomic atlas characterizes aging tissues in the mouse. Nature 583, 590–595 (2020).

    Article  Google Scholar 

  12. Schaum, N. et al. Aging hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palovics, R. et al. Molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature 603, 309–314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bluher, M. Fat tissue and long life. Obes. Facts 1, 176–182 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gavalda-Navarro, A., Villarroya, J., Cereijo, R., Giralt, M. & Villarroya, F. The endocrine role of brown adipose tissue: an update on actors and actions. Rev. Endocr. Metab. Disord. 23, 31–41 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Cinti, S. The endocrine adipose organ. Rev. Endocr. Metab. Disord. 23, 1–4 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Massier, L. et al. An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat. Commun. 14, 1438 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maniyadath, B., Zhang, Q., Gupta, R. K. & Mandrup, S. Adipose tissue at single-cell resolution. Cell Metab. 35, 386–413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science https://doi.org/10.1126/science.aav2501 (2019).

  21. Min, S. Y. et al. Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc. Natl Acad. Sci. USA 116, 17970–17979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Traktuev, D. O. et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ. Res. 104, 1410–1420 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lima, J. G. et al. Causes of death in patients with Berardinelli-Seip congenital generalized lipodystrophy. PLoS ONE 13, e0199052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Slawik, M. & Vidal-Puig, A. J. Lipotoxicity, overnutrition and energy metabolism in aging. Aging Res. Rev. 5, 144–164 (2006).

    Article  CAS  Google Scholar 

  27. Porter, J. W. et al. Age, sex, and depot-specific differences in adipose-tissue estrogen receptors in individuals with obesity. Obesity 28, 1698–1707 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Z. et al. SPATA4 improves aging-induced metabolic dysfunction through promotion of preadipocyte differentiation and adipose tissue expansion. Aging Cell 20, e13282 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Turner, R. B. S., Tyrrell, D., Hepworth, G., Dunshea, F. R. & Mansfield, C. S. Compartmental fat distribution in the abdomen of dogs relative to overall body fat composition. BMC Vet. Res. 16, 104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McKenzie, B. A. Comparative veterinary geroscience: mechanism of molecular, cellular, and tissue aging in humans, laboratory animal models, and companion dogs and cats. Am. J. Vet. Res. https://doi.org/10.2460/ajvr.22.02.0027 (2022).

  31. Mansoor, A. et al. Echocardiographic determination of epicardial adipose tissue in healthy bonnet macaques. Echocardiography 27, 180–185 (2010).

    Article  PubMed  Google Scholar 

  32. Cefalu, W. T. et al. Caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): metabolic, physiologic, and atherosclerotic measures from a 4-year intervention trial. J. Gerontol. A Biol. Sci. Med. Sci. 59, 1007–1014 (2004).

    Article  PubMed  Google Scholar 

  33. Colman, R. J. et al. Body fat distribution with long-term dietary restriction in adult male rhesus macaques. J. Gerontol. A Biol. Sci. Med Sci. 54, B283–B290 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Yan, Y. et al. HDAC6 suppresses age-dependent ectopic fat accumulation by maintaining the proteostasis of PLIN2 in Drosophila. Dev. Cell 43, 99–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki, T. et al. Status and physiological significance of circulating adiponectin in the very old and centenarians: an observational study. Elife https://doi.org/10.7554/eLife.86309 (2023).

  36. Li, N. et al. Adiponectin preserves metabolic fitness during aging. Elife https://doi.org/10.7554/eLife.65108 (2021).

  37. Di Nicola, V. Omentum a powerful biological source in regenerative surgery. Regen. Ther. 11, 182–191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meza-Perez, S. & Randall, T. D. Immunological functions of the omentum. Trends Immunol. 38, 526–536 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao, E. et al. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nat. Metab. 3, 1175–1188 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Macdougall, C. E. et al. Visceral adipose tissue immune homeostasis is regulated by the crosstalk between adipocytes and dendritic cell subsets. Cell Metab. 27, 588–601 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meek, S. E., Nair, K. S. & Jensen, M. D. Insulin regulation of regional free fatty acid metabolism. Diabetes 48, 10–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Madsen, S. et al. Deep proteome profiling of white adipose tissue reveals marked conservation and distinct features between different anatomical depots. Mol. Cell Proteomics 22, 100508 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hruska, P. et al. Unraveling adipose tissue proteomic landscapes in severe obesity: insights into metabolic complications and potential biomarkers. Am. J. Physiol. Endocrinol. Metab. 325, E562–E580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khan, S., Chan, Y. T., Revelo, X. S. & Winer, D. A. The immune landscape of visceral adipose tissue during obesity and aging. Front. Endocrinol. 11, 267 (2020).

    Article  Google Scholar 

  46. Lumeng, C. N. et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol. 187, 6208–6216 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Verboven, K. et al. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 8, 4677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoffstedt, J., Arner, P., Hellers, G. & Lonnqvist, F. Variation in adrenergic regulation of lipolysis between omental and subcutaneous adipocytes from obese and non-obese men. J. Lipid Res. 38, 795–804 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Blondin, D. P. Human thermogenic adipose tissue. Curr. Opin. Genet. Dev. 80, 102054 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pfannenberg, C. et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59, 1789–1793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rogers, N. H., Landa, A., Park, S. & Smith, R. G. Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue. Aging Cell 11, 1074–1083 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. McDonald, R. B. & Horwitz, B. A. Brown adipose tissue thermogenesis during aging and senescence. J. Bioenerg. Biomembr. 31, 507–516 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Ashwell, M., Stirling, D., Freeman, S. & Holloway, B. R. Immunological, histological and biochemical assessment of brown adipose tissue activity in neonatal, control and beta-stimulant-treated adult dogs. Int. J. Obes. 11, 357–365 (1987).

    CAS  PubMed  Google Scholar 

  56. Du, K. et al. De novo reconstruction of transcriptome identified long non-coding RNA regulator of aging-related brown adipose tissue whitening in rabbits. Biology https://doi.org/10.3390/biology10111176 (2021).

  57. Huang, Z. et al. Brown adipose tissue involution associated with progressive restriction in progenitor competence. Cell Rep. 39, 110575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garside, J. C., Kavanagh, K., Block, M. R., Williams, A. G. & Branca, R. T. Xenon-enhanced computed tomography assessment of brown adipose tissue distribution and perfusion in lean, obese, and diabetic primates. Obes. 30, 1831–1841 (2022).

    Article  CAS  Google Scholar 

  59. Burkhardt, R. et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8, 157–164 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Rosen, C. J. & Horowitz, M. C. Nutrient regulation of bone marrow adipose tissue: skeletal implications of weight loss. Nat. Rev. Endocrinol. 19, 626–638 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pachon-Pena, G. & Bredella, M. A. Bone marrow adipose tissue in metabolic health. Trends Endocrinol. Metab. 33, 401–408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beekman, K. M. et al. Gender- and age-associated differences in bone marrow adipose tissue and bone marrow fat unsaturation throughout the skeleton, quantified using chemical shift encoding-based water-fat MRI. Front. Endocrinol. 13, 815835 (2022).

    Article  Google Scholar 

  63. Al Saedi, A. et al. Age-related increases in marrow fat volumes have regional impacts on bone cell numbers and structure. Calcif. Tissue Int. 107, 126–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Ricci, C. et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177, 83–88 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Bigelow, C. L. & Tavassoli, M. Fatty involution of bone marrow in rabbits. Acta Anat. 118, 60–64 (1984).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, L. F., Shen, W. J., Ueno, M., Patel, S. & Kraemer, F. B. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics 12, 212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Duque, G. et al. Differential effects of long-term caloric restriction and dietary protein source on bone and marrow fat of the aging rat. J. Gerontol. A Biol. Sci. Med. Sci. 75, 2031–2036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miggitsch, C. et al. Human bone marrow adipocytes display distinct immune regulatory properties. EBioMedicine 46, 387–398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mattiucci, D. et al. Bone marrow adipocytes support hematopoietic stem cell survival. J. Cell. Physiol. 233, 1500–1511 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Tratwal, J. et al. Raman microspectroscopy reveals unsaturation heterogeneity at the lipid droplet level and validates an in vitro model of bone marrow adipocyte subtypes. Front. Endocrinol. 13, 1001210 (2022).

    Article  Google Scholar 

  71. Suchacki, K. J. et al. The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent. Elife https://doi.org/10.7554/eLife.88080 (2023).

  72. Li, Z. et al. Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight https://doi.org/10.1172/jci.insight.160915 (2022).

  73. Zhang, X. et al. A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. Elife https://doi.org/10.7554/eLife.66275 (2021).

  74. Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, B. O. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schraut, N. B. et al. What protects certain nerves from stretch injury? Anat. Rec. 299, 111–117 (2016).

    Article  Google Scholar 

  78. Ahmed, A., Bibi, A., Valoti, M. & Fusi, F. Perivascular adipose tissue and vascular smooth muscle tone: friends or foes? Cells https://doi.org/10.3390/cells12081196 (2023).

  79. Hillock-Watling, C. & Gotlieb, A. I. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall. Cardiovasc. Pathol. 61, 107459 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Iacobellis, G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 19, 593–606 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Favaretto, F., Bettini, S., Busetto, L., Milan, G. & Vettor, R. Adipogenic progenitors in different organs: pathophysiological implications. Rev. Endocr. Metab. Disord. 23, 71–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 2237–2238 (2014).

    Article  PubMed  Google Scholar 

  83. Hausman, G. J., Basu, U., Du, M., Fernyhough-Culver, M. & Dodson, M. V. Intermuscular and intramuscular adipose tissues: bad vs. good adipose tissues. Adipocyte 3, 242–255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Biltz, N. K. et al. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J. Physiol. 598, 2669–2683 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Pouliopoulos, J. et al. Intramyocardial adiposity after myocardial infarction: new implications of a substrate for ventricular tachycardia. Circulation 128, 2296–2308 (2013).

    Article  PubMed  Google Scholar 

  86. Burton, J. S., Sletten, A. C., Marsh, E., Wood, M. D. & Sacks, J. M. Adipose tissue in lymphedema: a central feature of pathology and target for pharmacologic therapy. Lymphat. Res. Biol. 21, 2–7 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Landgraf, K. et al. Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC Physiol. 17, 4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Palikaras, K. et al. Ectopic fat deposition contributes to age-associated pathology in Caenorhabditis elegans. J. Lipid Res. 58, 72–80 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Corvera, S. Cellular heterogeneity in adipose tissues. Annu. Rev. Physiol. 83, 257–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang Loureiro, Z. et al. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat. Metab. 5, 1014–1028 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matacchione, G. et al. Senescent macrophages in the human adipose tissue as a source of inflammaging. Geroscience 44, 1941–1960 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Arner, E. et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59, 105–109 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Craig, B. W., Garthwaite, S. M. & Holloszy, J. O. Adipocyte insulin resistance: effects of aging, obesity, exercise, and food restriction. J. Appl. Physiol. 62, 95–100 (1987).

    Article  CAS  PubMed  Google Scholar 

  95. Cruz-Garcia, L. et al. Changes in adipocyte cell size, gene expression of lipid metabolism markers, and lipolytic responses induced by dietary fish oil replacement in gilthead sea bream (Sparus aurata L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158, 391–399 (2011).

    Article  PubMed  Google Scholar 

  96. Kim, S. M. et al. Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab. 20, 1049–1058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Varlamov, O. et al. Combined androgen excess and Western-style diet accelerates adipose tissue dysfunction in young adult, female nonhuman primates. Hum. Reprod. 32, 1892–1902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goncalves, L. F. et al. Aging is associated with brown adipose tissue remodelling and loss of white fat browning in female C57BL/6 mice. Int. J. Exp. Pathol. 98, 100–108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kirkland, J. L., Hollenberg, C. H., Kindler, S. & Gillon, W. S. Effects of age and anatomic site on preadipocyte number in rat fat depots. J. Gerontol. 49, B31–B35 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, H. T. et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J. Cell. Mol. Med. 16, 582–593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu, M. et al. The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J. Tissue Eng. Regen. Med. 3, 290–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Alt, E. U. et al. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8, 215–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Van Harmelen, V., Rohrig, K. & Hauner, H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53, 632–637 (2004).

    Article  PubMed  Google Scholar 

  104. Caso, G. et al. Peripheral fat loss and decline in adipogenesis in older humans. Metabolism 62, 337–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Le Pelletier, L. et al. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. Elife https://doi.org/10.7554/eLife.62635 (2021).

  106. Karagiannides, I. et al. Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1772–R1780 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Hotta, K. et al. Age-related adipose tissue mRNA expression of ADD1/SREBP1, PPARgamma, lipoprotein lipase, and GLUT4 glucose transporter in rhesus monkeys. J. Gerontol. A Biol. Sci. Med Sci. 54, B183–B188 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Liu, Q. et al. Convergent alteration of the mesenchymal stem cell heterogeneity in adipose tissue during aging. FASEB J. 37, e23114 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Nguyen, H. P. et al. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev. Cell 56, 1437–1451 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Holman, C. D. et al. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. eLife 12, RP87756 (2023).

    Article  Google Scholar 

  111. Palani, N. P. et al. Adipogenic and SWAT cells separate from a common progenitor in human brown and white adipose depots. Nat. Metab. 5, 996–1013 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Donato, A. J. et al. The impact of aging on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. J. Physiol. 592, 4083–4096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Camell, C. D. et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 30, 1024–1039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brigger, D. et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat. Metab. 2, 688–702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chavakis, T., Alexaki, V. I. & Ferrante, A. W. Jr. Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat. Immunol. 24, 757–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Subramanian, M., Ozcan, L., Ghorpade, D. S., Ferrante, A. W. Jr. & Tabas, I. Suppression of adaptive immune cell activation does not alter innate immune adipose inflammation or insulin resistance in obesity. PLoS ONE 10, e0135842 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Song, J. et al. Age-associated adipose tissue inflammation promotes monocyte chemotaxis and enhances atherosclerosis. Aging Cell 22, e13783 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during aging. Nature 550, 119–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feng, X. et al. Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging. Nat. Commun. 14, 3208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Abdullahi, A. et al. Adipose browning response to burn trauma is impaired with aging. JCI Insight https://doi.org/10.1172/jci.insight.143451 (2021).

  123. Fabbiano, S. et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 24, 434–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Fulop, T. et al. Immunology of aging: the birth of inflammaging. Clin. Rev. Allergy Immunol. 64, 109–122 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Islam, M. T. et al. Aging differentially impacts vasodilation and angiogenesis in arteries from the white and brown adipose tissues. Exp. Gerontol. 142, 111126 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Corvera, S., Solivan-Rivera, J. & Yang Loureiro, Z. Angiogenesis in adipose tissue and obesity. Angiogenesis 25, 439–453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Honek, J. et al. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues. Proc. Natl Acad. Sci. USA 111, 14906–14911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Willows, J. W. et al. Age-related changes to adipose tissue and peripheral neuropathy in genetically diverse HET3 mice differ by sex and are not mitigated by rapamycin longevity treatment. Aging Cell 22, e13784 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Blaszkiewicz, M. et al. Neuropathy and neural plasticity in the subcutaneous white adipose depot. PLoS ONE 14, e0221766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cristante, E. et al. Late neuroprogenitors contribute to normal retinal vascular development in a Hif2a-dependent manner. Development https://doi.org/10.1242/dev.157511 (2018).

  131. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  132. Steinert, S., White, D. M., Zou, Y., Shay, J. W. & Wright, W. E. Telomere biology and cellular aging in nonhuman primate cells. Exp. Cell. Res. 272, 146–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Andriani, G. A. et al. Whole chromosome instability induces senescence and promotes SASP. Sci. Rep. 6, 35218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wright, W. E. & Shay, J. W. Historical claims and current interpretations of replicative aging. Nat. Biotechnol. 20, 682–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays aging-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, Y. W., Harris, R. A., Hatahet, Z. & Chou, K. M. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities. Proc. Natl Acad. Sci. USA 112, E4556–E4564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15, 1082–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Gurkar, A. U. et al. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat. Aging 3, 776–790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cohn, R. L., Gasek, N. S., Kuchel, G. A. & Xu, M. The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol. 33, 9–17 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Li, K. et al. Age-related alteration in characteristics, function, and transcription features of ADSCs. Stem Cell Res. Ther. 12, 473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, B. et al. Transplanting cells from old but not young donors causes physical dysfunction in older recipients. Aging Cell 19, e13106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gustafson, B., Nerstedt, A. & Smith, U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat. Commun. 10, 2757 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kavanagh, K. et al. Biomarkers of senescence in non-human primate adipose depots relate to aging. Geroscience 43, 343–352 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Smith, C. D. et al. Genetically increasing flux through beta-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance. Am. J. Physiol. Endocrinol. Metab. 320, E938–E950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Koves, T. R. et al. Pyruvate-supported flux through medium-chain ketothiolase promotes mitochondrial lipid tolerance in cardiac and skeletal muscles. Cell Metab. 35, 1038–1056 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Nowak, C. et al. Glucose challenge metabolomics implicates medium-chain acylcarnitines in insulin resistance. Sci. Rep. 8, 8691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lytrivi, M., Castell, A. L., Poitout, V. & Cnop, M. Recent insights into mechanisms of beta-cell lipo- and glucolipotoxicity in type 2 diabetes. J. Mol. Biol. 432, 1514–1534 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Cheng, X. et al. Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell Metab. 32, 229–242 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, X. et al. Peroxisome proliferator-activated receptor gamma is essential for stress adaptation by maintaining lipid homeostasis in female fish. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1867, 159162 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Meyer, L. K., Ciaraldi, T. P., Henry, R. R., Wittgrove, A. C. & Phillips, S. A. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2, 217–226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cohen, K. E., Katunaric, B., SenthilKumar, G., McIntosh, J. J. & Freed, J. K. Vascular endothelial adiponectin signaling across the life span. Am. J. Physiol. Heart Circ. Physiol. 322, H57–H65 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Bik, W. & Baranowska, B. Adiponectin—a predictor of higher mortality in cardiovascular disease or a factor contributing to longer life? Neuro Endocrinol. Lett. 30, 180–184 (2009).

    CAS  PubMed  Google Scholar 

  154. Gabriely, I., Ma, X. H., Yang, X. M., Rossetti, L. & Barzilai, N. Leptin resistance during aging is independent of fat mass. Diabetes 51, 1016–1021 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Martin, M. G. & Dotti, C. G. Plasma membrane and brain dysfunction of the old: do we age from our membranes? Front. Cell Dev. Biol. 10, 1031007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Frank, S. M., Raja, S. N., Bulcao, C. & Goldstein, D. S. Age-related thermoregulatory differences during core cooling in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R349–R354 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Bornstein, M. R. et al. Comprehensive quantification of metabolic flux during acute cold stress in mice. Cell Metab. 35, 2077–2092 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Ma, X., Xu, L., Gavrilova, O. & Mueller, E. Role of forkhead box protein A3 in age-associated metabolic decline. Proc. Natl Acad. Sci. USA 111, 14289–14294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vatner, D. E., Oydanich, M., Zhang, J., Campbell, S. C. & Vatner, S. F. Exercise enhancement by RGS14 disruption is mediated by brown adipose tissue. Aging Cell 22, e13791 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tavassoli, M. & Crosby, W. H. Bone marrow histogenesis: a comparison of fatty and red marrow. Science 169, 291–293 (1970).

    Article  CAS  PubMed  Google Scholar 

  161. Li, Z. et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. Elife https://doi.org/10.7554/eLife.78496 (2022).

  162. Chandra, R. K. & Au, B. Spleen hemolytic plaque-forming cell response and generation of cytotoxic cells in genetically obese (C57Bl/6J ob/ob) mice. Int. Arch. Allergy Appl. Immunol. 62, 94–98 (1980).

    Article  CAS  PubMed  Google Scholar 

  163. Kara, N. et al. Endothelial and leptin receptor+ cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Dev. Cell 58, 348–360 e346 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Trinh, T. & Broxmeyer, H. E. Role for leptin and leptin receptors in stem cells during health and diseases. Stem Cell Rev. Rep. 17, 511–522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. de Candia, P. et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. https://doi.org/10.1084/jem.20191593 (2021).

  166. Wang, L. & Shan, T. Factors inducing transdifferentiation of myoblasts into adipocytes. J. Cell. Physiol. 236, 2276–2289 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Venz, R., Pekec, T., Katic, I., Ciosk, R. & Ewald, C. Y. End-of-life targeted degradation of DAF-2 insulin/IGF-1 receptor promotes longevity free from growth-related pathologies. Elife https://doi.org/10.7554/eLife.71335 (2021).

  168. Green, C. L., Lamming, D. W. & Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 23, 56–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu, S. et al. The health-promoting effects and the mechanism of intermittent fasting. J. Diabetes Res. 2023, 4038546 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ravussin, E. et al. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1097–1104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zietara, P., Dziewiecka, M. & Augustyniak, M. Why is longevity still a scientific mystery? Sirtuins—past, present and future. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24010728 (2022).

  174. Boutant, M. et al. SIRT1 gain of function does not mimic or enhance the adaptations to intermittent fasting. Cell Rep. 14, 2068–2075 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Solivan-Rivera, J. et al. A neurogenic signature involving monoamine oxidase-a controls human thermogenic adipose tissue development. Elife https://doi.org/10.7554/eLife.78945 (2022).

  176. Bannister, C. A. et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes. Metab. 16, 1165–1173 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Kulkarni, A. S. et al. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell https://doi.org/10.1111/acel.12723 (2018).

  178. Xu, L. et al. PPARγ agonists delay age-associated metabolic disease and extend longevity. Aging Cell 19, e13267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gealekman, O. et al. Effect of rosiglitazone on capillary density and angiogenesis in adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia 55, 2794–2799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Nakamura, T. et al. Thiazolidinedione derivative improves fat distribution and multiple risk factors in subjects with visceral fat accumulation–double-blind placebo-controlled trial. Diabetes Res. Clin. Pract. 54, 181–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Sulston, R. J. et al. Increased circulating adiponectin in response to thiazolidinediones: investigating the role of bone marrow adipose tissue. Front. Endocrinol. 7, 128 (2016).

    Article  Google Scholar 

  183. Hidayat, K., Du, X., Wu, M. J. & Shi, B. M. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: systematic review and meta-analysis of observational studies. Obes. Rev. 20, 1494–1503 (2019).

    Article  PubMed  Google Scholar 

  184. Liu, C. et al. Fibroblast growth factor 6 promotes adipocyte progenitor cell proliferation for adipose tissue homeostasis. Diabetes 72, 467–482 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Mandl, M. et al. Sprouty1 prevents cellular senescence maintaining proliferation and differentiation capacity of human adipose stem/progenitor cells. J. Gerontol. A Biol. Sci. Med. Sci. 75, 2308–2319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tang, W., Zeve, D., Seo, J., Jo, A. Y. & Graff, J. M. Thiazolidinediones regulate adipose lineage dynamics. Cell Metab. 14, 116–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Okada-Iwabu, M. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Evans, D. S. et al. Proteomic analysis of the senescence associated secretory phenotype (SASP): GDF-15, IGFBP-2, and cystatin-C are associated with multiple aging traits. J. Gerontol. A Biol. Sci. Med. Sci. 79, glad265 (2023).

  189. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wang, B. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat. Aging 1, 962–973 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Wang, L. et al. Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab. 34, 75–89 (2022).

    Article  Google Scholar 

  192. Power, H., Valtchev, P., Dehghani, F. & Schindeler, A. Strategies for senolytic drug discovery. Aging Cell 22, e13948 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gonzales, M. M. et al. Senolytic therapy in mild Alzheimer’s disease: a phase 1 feasibility trial. Nat. Med. 29, 2481–2488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Murakami, T., Inagaki, N. & Kondoh, H. Cellular senescence in diabetes mellitus: distinct senotherapeutic strategies for adipose tissue and pancreatic beta cells. Front. Endocrinol. 13, 869414 (2022).

    Article  Google Scholar 

  196. Salaami, O. et al. Antidiabetic effects of the senolytic agent dasatinib. Mayo Clin. Proc. 96, 3021–3029 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Islam, M. T. et al. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell 22, e13767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ruggiero, A. D. et al. Long-term dasatinib plus quercetin effects on aging outcomes and inflammation in nonhuman primates: implications for senolytic clinical trial design. Geroscience https://doi.org/10.1007/s11357-023-00830-5 (2023).

  200. Hernandez-Silva, D. et al. Senescence-independent anti-inflammatory activity of the senolytic drugs dasatinib, navitoclax, and venetoclax in zebrafish models of chronic inflammation. Int. J. Mol. Sci. https://doi.org/10.3390/ijms231810468 (2022).

  201. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.T.N. and S.C. contributed to manuscript concept and writing, and analysis of publicly available datasets.

Corresponding author

Correspondence to Silvia Corvera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Ming Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Corvera, S. Adipose tissue as a linchpin of organismal ageing. Nat Metab 6, 793–807 (2024). https://doi.org/10.1038/s42255-024-01046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-024-01046-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing