Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity-induced inflammation: connecting the periphery to the brain

Abstract

Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood–brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer’s disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Periphery–brain interactions and immune responses in obesity.
Fig. 2: Brain ‘frontiers’.
Fig. 3: Obesity and hypothalamic dysfunction.
Fig. 4: Timeline of key discoveries in the body–brain (hypothalamus) interactions and obesity-related inflammation.

Similar content being viewed by others

References

  1. Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A. & Abed, Y. Obesity and inflammation: the linking mechanism and the complications. Arch. Med Sci. 13, 851–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Ugalde-Muniz, P., Fetter-Pruneda, I., Navarro, L., Garcia, E. & Chavarria, A. Chronic systemic inflammation exacerbates neurotoxicity in a Parkinson’s disease model. Oxid. Med. Cell Longev. 2020, 4807179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guillemot-Legris, O. & Muccioli, G. G. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 40, 237–253 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Jais, A. & Bruning, J. C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 127, 24–32 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gomez-Apo, E., Mondragon-Maya, A., Ferrari-Diaz, M. & Silva-Pereyra, J. Structural brain changes associated with overweight and obesity. J. Obes. 2021, 6613385 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xie, J., Van Hoecke, L. & Vandenbroucke, R. E. The impact of systemic inflammation on Alzheimer’s disease pathology. Front. Immunol. 12, 796867 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. de Oliveira, J. et al. Inflammatory cascade in Alzheimer’s disease pathogenesis: a review of experimental findings. Cells 10, 2581 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Banks, W. A. The blood–brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Rhea, E. M. et al. Blood–brain barriers in obesity. AAPS J. 19, 921–930 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Dror, E. et al. Postprandial macrophage-derived IL-1beta stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 18, 283–292 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Friedman, J. M. Leptin and the endocrine control of energy balance. Nat. Metab. 1, 754–764 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Li, M. et al. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 7, 216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Butterworth, R. F. The liver–brain axis in liver failure: neuroinflammation and encephalopathy. Nat. Rev. Gastroenterol. Hepatol. 10, 522–528, (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, B. et al. Central FGF21 production regulates memory but not peripheral metabolism. Cell Rep. 40, 111239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fisher, F. M. et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59, 2781–2789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Owen, B. M. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pena-Leon, V. et al. Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21. Nat. Metab. 4, 901–917 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meex, R. C. R. & Watt, M. J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 13, 509–520 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Godoy-Matos, A. F., Silva Junior, W. S. & Valerio, C. M. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 12, 60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakagami, H. Mechanisms underlying the bidirectional association between nonalcoholic fatty liver disease and hypertension. Hypertens. Res. 46, 539–541 (2023).

    Article  PubMed  Google Scholar 

  23. Weinstein, G. et al. Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the Framingham study. JAMA Neurol. 75, 97–104 (2018).

    Article  PubMed  Google Scholar 

  24. Fabbrini, E. et al. Metabolically normal obese people are protected from adverse effects following weight gain. J. Clin. Invest. 125, 787–795 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Richards, P., Thornberry, N. A. & Pinto, S. The gut–brain axis: identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol. Metab. 46, 101175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clemmensen, C. et al. Gut–brain cross-talk in metabolic control. Cell 168, 758–774 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gruber, T. et al. High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-brain satiation pathway via kappa-opioid signaling. Cell Rep. 42, 113305 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Febbraio, M. A. & Karin, M. Sweet death: fructose as a metabolic toxin that targets the gut–liver axis. Cell Metab. 33, 2316–2328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohm, T. V. et al. Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity. Commun. Biol. 5, 370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pavlov, V. A. & Tracey, K. J. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754, (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Pavlov, V. A. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol. Ther. 222, 107794 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, E. H., Chavan, S. S. & Pavlov, V. A. Cholinergic control of inflammation, metabolic dysfunction, and cognitive impairment in obesity-associated disorders: mechanisms and novel therapeutic opportunities. Front. Neurosci. 13, 263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banks, W. A. Brain meets body: the blood–brain barrier as an endocrine interface. Endocrinology 153, 4111–4119, (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Dyken, P. & Lacoste, B. Impact of metabolic syndrome on neuroinflammation and the blood–brain barrier. Front. Neurosci. 12, 930 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Peng, W. et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 93, 215–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mollgard, K. et al. A mesothelium divides the subarachnoid space into functional compartments. Science 379, 84–88 (2023).

    Article  PubMed  Google Scholar 

  41. Hablitz, L. M. & Nedergaard, M. The glymphatic system: a novel component of fundamental neurobiology. J. Neurosci. 41, 7698–7711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shechter, R. et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38, 555–569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baruch, K. et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwartz, M. & Baruch, K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 33, 7–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Delle, C. et al. Long-term high-fat diet increases glymphatic activity in the hypothalamus in mice. Sci. Rep. 13, 4137 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andica, C. et al. Neuroimaging findings related to glymphatic system alterations in older adults with metabolic syndrome. Neurobiol. Dis. 177, 105990 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Banks, W. A. et al. Triglycerides cross the blood-brain barrier and induce central leptin and insulin receptor resistance. Int J. Obes. 42, 391–397 (2018).

    Article  CAS  Google Scholar 

  48. Yi, C. X. et al. High calorie diet triggers hypothalamic angiopathy. Mol. Metab. 1, 95–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gruber, T. et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 33, 1155–1170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yulyaningsih, E. et al. Acute lesioning and rapid repair of hypothalamic neurons outside the blood–brain barrier. Cell Rep. 19, 2257–2271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cai, D. & Khor, S. "Hypothalamic microinflammation" paradigm in aging and metabolic diseases. Cell Metab. 30, 19–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKβ)/NF-κB pathway. J. Biol. Chem. 286, 32324–32332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaushik, S. et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14, 173–183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moraes, J. C. et al. High-fat diet induces apoptosis of hypothalamic neurons. PLoS ONE 4, e5045 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li, J., Tang, Y. & Cai, D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat. Cell Biol. 14, 999–1012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Yi, C. X. et al. TNFα drives mitochondrial stress in POMC neurons in obesity. Nat. Commun. 8, 15143 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Quarta, C. et al. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat. Metab. 3, 299–308 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Saucisse, N. et al. Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Rep. 37, 109800 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Lutomska, L. M. et al. Diet triggers specific responses of hypothalamic astrocytes in time and region dependent manner. Glia 70, 2062–2078 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Garcia-Caceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Gonzalez-Garcia, I. & Garcia-Caceres, C. Hypothalamic astrocytes as a specialized and responsive cell population in obesity. Int. J. Mol. Sci. 22, 6176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Douglass, J. D., Dorfman, M. D., Fasnacht, R., Shaffer, L. D. & Thaler, J. P. Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol. Metab. 6, 366–373 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kwon, Y. H. et al. Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Lett. 591, 1742–1751 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Patani, R., Hardingham, G. E. & Liddelow, S. A. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat. Rev. Neurol. 19, 395–409 (2023).

  67. Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Caceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seguella, L., Capuano, R., Sarnelli, G. & Esposito, G. Play in advance against neurodegeneration: exploring enteric glial cells in gut–brain axis during neurodegenerative diseases. Expert Rev. Clin. Pharmacol. 12, 555–564 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Bush, T. G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Nampoothiri, S., Nogueiras, R., Schwaninger, M. & Prevot, V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat. Metab. 4, 813–825 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Langlet, F. et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Porniece Kumar, M. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat. Metab. 3, 1662–1679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bottcher, M. et al. NF-κB signaling in tanycytes mediates inflammation-induced anorexia. Mol. Metab. 39, 101022 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Xu, Y. et al. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp. Neurol. 192, 251–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, D. A. et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci. 15, 700–702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Füger, P. et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat. Neurosci. 20, 1371–1376 (2017).

    Article  PubMed  Google Scholar 

  80. Milanova, I. V., Correa-da-Silva, F., Kalsbeek, A. & Yi, C. X. Mapping of microglial brain region, sex and age heterogeneity in obesity. Int. J. Mol. Sci. 22, 3141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yi, C. X., Tschop, M. H., Woods, S. C. & Hofmann, S. M. High-fat-diet exposure induces IgG accumulation in hypothalamic microglia. Dis. Model Mech. 5, 686–690, (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gao, Y. et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62, 17–25 (2014).

    Article  PubMed  Google Scholar 

  83. Wang, Z. et al. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br. J. Nutr. 107, 229–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Valdearcos, M. et al. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab. 26, 185–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Valdearcos, M. et al. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124–2138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Douglass, J. D. et al. Obesity-associated microglial inflammatory activation paradoxically improves glucose tolerance. Cell Metab. 35, 1613–1629 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Delahanty, L. M. et al. Effects of weight loss, weight cycling, and weight loss maintenance on diabetes incidence and change in cardiometabolic traits in the Diabetes Prevention Program. Diabetes Care 37, 2738–2745 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tschop, M. H. et al. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab. 24, 51–62 (2016).

    Article  PubMed  Google Scholar 

  89. Rosenstock, J. et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 402, 529–544 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity—a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Sethi, J. K. & Hotamisligil, G. S. Metabolic messengers: tumour necrosis factor. Nat. Metab. 3, 1302–1312 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, Y. et al. TNF-alpha antagonizes the effect of leptin on insulin secretion through FOXO1-dependent transcriptional suppression of LepRb in INS-1 cells. Oxid. Med. Cell. Longev. 2022, 9142798 (2022).

    PubMed  PubMed Central  Google Scholar 

  93. Yang, J. et al. New insight into neurological degeneration: inflammatory cytokines and blood–brain barrier. Front. Mol. Neurosci. 15, 1013933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kwon, H. S. & Koh, S. H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9, 42 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu, X. & Quan, N. Microglia and CNS interleukin-1: beyond immunological concepts. Front. Neurol. 9, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Romanatto, T. et al. TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient–effects on leptin and insulin signaling pathways. Peptides 28, 1050–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Jager, J., Gremeaux, T., Cormont, M., Le Marchand-Brustel, Y. & Tanti, J. F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148, 241–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Negrin, K. A. et al. IL-1 signaling in obesity-induced hepatic lipogenesis and steatosis. PLoS ONE 9, e107265 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Americo-Da-Silva, L. et al. Activation of the NLRP3 Inflammasome Increases the IL-1beta level and decreases GLUT4 translocation in skeletal muscle during insulin resistance. Int. J. Mol. Sci. 22, 10212 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Donath, M. Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov. 13, 465–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Y. et al. Interleukin-1beta induces blood–brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS ONE 9, e110024 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mendiola, A. S. & Cardona, A. E. The IL-1β phenomena in neuroinflammatory diseases. J. Neural Transm. 125, 781–795 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Rizzo, F. R. et al. Tumor necrosis factor and interleukin-1β modulate synaptic plasticity during neuroinflammation. Neural Plast. 2018, 8430123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. El-Kadre, L. J. & Tinoco, A. C. Interleukin-6 and obesity: the crosstalk between intestine, pancreas and liver. Curr. Opin. Clin. Nutr. Metab. Care 16, 564–568 (2013).

    CAS  PubMed  Google Scholar 

  105. Sun, B. & Karin, M. Obesity, inflammation, and liver cancer. J. Hepatol. 56, 704–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Mauer, J., Denson, J. L. & Bruning, J. C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 36, 92–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Bobbo, V. C. et al. Interleukin-6 actions in the hypothalamus protects against obesity and is involved in the regulation of neurogenesis. J. Neuroinflammation 18, 192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Timper, K. et al. IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. Cell Rep. 19, 267–280 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Balschun, D. et al. Interleukin-6: a cytokine to forget. FASEB J. 18, 1788–1790 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Sukoff Rizzo, S. J. et al. Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes. Transl. Psychiatry 2, e199 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tan, C. K., Chong, H. C., Tan, E. H. & Tan, N. S. Getting ‘Smad’ about obesity and diabetes. Nutr. Diabetes 2, e29 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Makwana, M. et al. Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J. Neurosci. 27, 11201–11213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, Y. S. & Olefsky, J. Chronic tissue inflammation and metabolic disease. Genes Dev. 35, 307–328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kawano, Y. et al. Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner. Cell Metab. 24, 295–310 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Rakotoarivelo, V., Variya, B., Langlois, M. F. & Ramanathan, S. Chemokines in human obesity. Cytokine 127, 154953 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Stamatovic, S. M. et al. Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J. Cereb. Blood Flow. Metab. 25, 593–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Wojcieszak, J., Kuczynska, K. & Zawilska, J. B. Role of chemokines in the development and progression of Alzheimer’s disease. J. Mol. Neurosci. 72, 1929–1951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Roberts, T. K. et al. CCL2 disrupts the adherens junction: implications for neuroinflammation. Lab Invest. 92, 1213–1233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L. & Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415, (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668, (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Fried, S. K., Bunkin, D. A. & Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850 (1998).

    CAS  PubMed  Google Scholar 

  125. Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 282, 2131–2135 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, X., Dong, F., Ren, J., Driscoll, M. J. & Culver, B. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp. Neurol. 191, 318–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. De Souza, C. T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199 (2005).

    Article  PubMed  Google Scholar 

  128. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Posey, K. A. et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 296, E1003–E1012 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Milanski, M. et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J. Neurosci. 29, 359–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kleinridders, A. et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 10, 249–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Soukas, A., Cohen, P., Socci, N. D. & Friedman, J. M. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 14, 963–980 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Clement, K. et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 18, 1657–1669 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  PubMed  Google Scholar 

  139. Arkan, M. C. et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281, 26602–26614 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Ito, A. et al. Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J. Biol. Chem. 283, 35715–35723 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Ohmura, K. et al. Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arterioscler Thromb. Vasc. Biol. 30, 193–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Horvath, T. L. et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl Acad. Sci. USA 107, 14875–14880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kanoski, S. E., Zhang, Y., Zheng, W. & Davidson, T. L. The effects of a high-energy diet on hippocampal function and blood–brain barrier integrity in the rat. J. Alzheimers Dis. 21, 207–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Morselli, E. et al. Hypothalamic PGC-1α protects against high-fat diet exposure by regulating ERα. Cell Rep. 9, 633–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Quarta, C. et al. Molecular integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity. Cell Metab. 26, 620–632 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Kim, J. D., Yoon, N. A., Jin, S. & Diano, S. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab. 30, 952–962 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wong, C. K. et al. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 36, 130–143 (2024).

    Article  CAS  PubMed  Google Scholar 

  152. Lenharo, M. Obesity drugs have another superpower: taming inflammation. Nature 626, 246 (2024).

    Article  CAS  PubMed  Google Scholar 

  153. Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Cai, R. et al. Whole-mouse clearing and imaging at the cellular level with vDISCO. Nat. Protoc. 18, 1197–1242 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. 42, 617–627 (2023).

  157. Pan, C. et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell 179, 1661–1676 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Formozov, A., Dieter, A. & Wiegert, J. S. A flexible and versatile system for multi-color fiber photometry and optogenetic manipulation. Cell Rep. Methods 3, 100418 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sahasrabudhe, A. et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. 42, 892–904 (2023).

  160. Nota, M. H. C. et al. Obesity affects brain structure and function—rescue by bariatric surgery? Neurosci. Biobehav. Rev. 108, 646–657 (2020).

    Article  PubMed  Google Scholar 

  161. Cheke, L. G., Bonnici, H. M., Clayton, N. S. & Simons, J. S. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain. Neuropsychologia 96, 137–149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chuang, Y. F. et al. Midlife adiposity predicts earlier onset of Alzheimer’s dementia, neuropathology and presymptomatic cerebral amyloid accumulation. Mol. Psychiatry 21, 910–915 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Alford, S., Patel, D., Perakakis, N. & Mantzoros, C. S. Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes. Rev. 19, 269–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Li, J., Liu, C., Ang, T. F. A. & Au, R. BMI decline patterns and relation to dementia risk across four decades of follow-up in the Framingham Study. Alzheimers Dement. 19, 2520–2527 (2023).

    Article  PubMed  Google Scholar 

  165. Xu, L. et al. The effects of exercise for cognitive function in older adults: a systematic review and meta-analysis of randomized controlled trials. Int J. Environ. Res. Public Health 20, 1088 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Morys, F. et al. Obesity-associated neurodegeneration pattern mimics alzheimer’s disease in an observational cohort study. J. Alzheimers Dis. 91, 1059–1071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Willette, A. A. et al. Insulin resistance, brain atrophy, and cognitive performance in late middle-aged adults. Diabetes Care 36, 443–449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sedzikowska, A. & Szablewski, L. Insulin and insulin resistance in Alzheimer’s disease. Int. J. Mol. Sci. 22, 9987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Woo, A., Botta, A., Shi, S. S. W., Paus, T. & Pausova, Z. Obesity-related neuroinflammation: magnetic resonance and microscopy imaging of the brain. Int. J. Mol. Sci. 23, 8790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lloret, A., Monllor, P., Esteve, D., Cervera-Ferri, A. & Lloret, M. A. Obesity as a risk factor for Alzheimer’s disease: implication of leptin and glutamate. Front. Neurosci. 13, 508 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Yin, F. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J. 290, 1420–1453 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Kellar, D. & Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19, 758–766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Holleman for comments. This research is supported by funding from the DZD, the German Research Foundation DFG under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy – ID 390857198), and Helmholtz Association - Initiative and Networking Fund. The funders had no role in decision to publish or prepare this work.

Author information

Authors and Affiliations

Authors

Contributions

O.L.T. and C.G.-C. conceptualized the content, wrote, edited and revised the original draft. Both authors have reviewed and approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Cristina García-Cáceres.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Vincent Prevot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alfredo Giménez-Cassina, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Thuc, O., García-Cáceres, C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 6, 1237–1252 (2024). https://doi.org/10.1038/s42255-024-01079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-024-01079-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing