Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring pancreatic beta-cell subgroups and their connectivity

A Publisher Correction to this article was published on 23 October 2024

This article has been updated

Abstract

Functional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential “controlling” beta-cell populations. We focus on methodologies, including comparisons of different cell preparations as well as in vitro and in vivo approaches to imaging and controlling the activity of human and rodent islet preparations. We also discuss the analytical approaches that can be applied to live-cell data to identify and study critical subgroups of cells with a disproportionate role in control Ca2+ dynamics and thus insulin secretion (such as “first responders”, “leaders” and “hubs”, as defined by Ca2+ responses to glucose stimulation). Possible mechanisms by which this hierarchy is achieved, its physiological relevance and how its loss may contribute to islet failure in diabetes mellitus are also considered. A glossary of terms and links to computational resources are provided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vitro and in vivo systems used to study beta-cell heterogeneity.
Fig. 2: Beta-cell heterogeneity revealed with cellular markers or scRNA-seq.
Fig. 3: Optical perturbation of beta-cell function.
Fig. 4: Functional examination of beta-cell subpopulations and connectivity.

Similar content being viewed by others

Change history

References

  1. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    PubMed  PubMed Central  Google Scholar 

  2. Steiner, D. J., Kim, A., Miller, K. & Hara, M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2, 135–145 (2010).

    PubMed  Google Scholar 

  3. Eisenbarth, G. S. Banting Lecture 2009: An unfinished journey: molecular pathogenesis to prevention of type 1A diabetes. Diabetes 59, 759–774 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kahn, S. E., Zraika, S., Utzschneider, K. M. & Hull, R. L. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52, 1003–1012 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Federation, I. D. https://idf.org/news/diabetes-now-affects-one-in-10-adults-worldwide/ (2023).

  6. Kaestner, K. H. et al. What is a β cell? - Chapter I in the Human Islet Research Network (HIRN) review series. Mol. Metab. 53, 101323 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rutter, G. A., Sidarala, V., Kaufman, B. A. & Soleimanpour, S. A. Mitochondrial metabolism and dynamics in pancreatic beta cell glucose sensing. Biochem J. 480, 773–789 (2023).

    CAS  PubMed  Google Scholar 

  8. Hellerstrom, C., Petersson, B. & Hellman, B. Some properties of the B cells in the islet of Langerhans studied with regard to the position of the cells. Acta Endocrinol. (Copenh) 34, 449–456 (1960).

    CAS  PubMed  Google Scholar 

  9. Saloman, D. & Meda, P. Heterogeneity and contact-dependent regulation of hormone secretion by individual B-cells. Exp. Cell Res. 162, 507–520 (1986).

    Google Scholar 

  10. Pipeleers, D. G. Heterogeneity in pancreatic ɑ-cell population. Diabetes 41, 777–781 (1992).

    CAS  PubMed  Google Scholar 

  11. Van Schravendijk, C. F., Kiekens, R. & Pipeleers, D. G. Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. J. Biol. Chem. 267, 21344–21348 (1992).

    PubMed  Google Scholar 

  12. Xin, Y. et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proc. Natl Acad. Sci. USA 113, 3293–3298 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mawla, A. M. & Huising, M. O. Navigating the depths and avoiding the shallows of pancreatic islet cell transcriptomes. Diabetes 68, 1380–1393 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bader, E. et al. Identification of proliferative and mature beta-cells in the islets of Langerhans. Nature 535, 430–434 (2016).

    CAS  PubMed  Google Scholar 

  16. Cox, A. R. et al. Extreme obesity induces massive beta cell expansion in mice through self-renewal and does not alter the beta cell lineage. Diabetologia 59, 1231–1241 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Salinno, C. et al. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol. Metab. 49, 101188 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rubio-Navarro, A. et al. A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nat. Cell Biol. 25, 565–578 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chu, C. M. J. et al. Dynamic Ins2 gene activity defines β-cell maturity states. Diabetes 71, 2612–2631 (2022).

    CAS  PubMed  Google Scholar 

  20. Karaca, M. et al. Exploring functional beta-cell heterogeneity in vivo using PSA-NCAM as a specific marker. PLoS One 4, e5555 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Rodnoi, P. et al. Neuropeptide Y expression marks partially differentiated β cells in mice and humans. JCI Insight 2, e94005 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Dorrell, C. et al. Human islets contain four distinct subtypes of beta cells. Nat. Commun. 7, 11756 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Dror, E. et al. Epigenetic dosage identifies two major and functionally distinct β cell subtypes. Cell Metab. 35, 821–836 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kone, M. et al. LKB1 and AMPK differentially regulate pancreatic beta-cell identity. FASEB J. 28, 4972–4985 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Katsuta, H. et al. Single pancreatic beta cells co-express multiple islet hormone genes in mice. Diabetologia 53, 128–138 (2010).

    CAS  PubMed  Google Scholar 

  26. Camunas-Soler, J. et al. Patch-seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab. 31, 1017–1031 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu, et al. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. Diabetologia 67, 1079–1094 (2024).

  28. Millership, S. J. et al. Neuronatin regulates pancreatic β cell insulin content and secretion. J. Clin. Invest 128, 3369–3381 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Lee, S. et al. Virgin β-cells at the neogenic niche proliferate normally and mature slowly. Diabetes 70, 1070–1083 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Parveen, N. et al. DNA methylation-dependent restriction of tyrosine hydroxylase contributes to pancreatic β-cell heterogeneity. Diabetes 72, 575–589 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Beamish, C. A., Strutt, B. J., Arany, E. J. & Hill, D. J. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters. Islets 8, 65–82 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Beamish, C. A. et al. Decrease in Ins+Glut2LO β-cells with advancing age in mouse and human pancreas. J. Endocrinol. 233, 229–241 (2017).

    CAS  PubMed  Google Scholar 

  33. Walker, J. T., Saunders, D. C., Brissova, M. & Powers, A. C. The human islet: mini-organ with mega-impact. Endocr. Rev. 42, 605–657 (2021).

    PubMed  PubMed Central  Google Scholar 

  34. Cohrs, C. M., Chen, C., Atkinson, M. A., Drotar, D. M. & Speier, S. Bridging the gap: pancreas tissue slices from organ and tissue donors for the study of diabetes pathogenesis. Diabetes 73, 11–22 (2024).

    CAS  PubMed  Google Scholar 

  35. Speier, S. et al. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat. Med. 14, 574–578 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Salem, V. et al. Leader beta cells coordinate Ca2+ dynamics across pancreatic islets in vivo. Nat. Metab. 1, 615–629 (2019).

    CAS  PubMed  Google Scholar 

  37. Akalestou, E. et al. Intravital imaging of islet Ca2+ dynamics reveals enhanced ×ý cell connectivity after bariatric surgery in mice. Nat. Commun. 12, 5165 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Delgadillo-Silva, L. F. et al. Simultaneous calcium imaging and glucose stimulation in living zebrafish to investigate in vivo β-cell function. J. Vis. Exp. 21, 175 (2021).

    Google Scholar 

  39. Reissaus, C. A. et al. A versatile, portable intravital microscopy platform for studying beta-cell biology in vivo. Sci. Rep. 9, 8449 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Adams, M. T. et al. Reduced synchroneity of intra-islet Ca2+ oscillations in vivo in Robo-deficient β cells. Elife 10, e61308 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gilon, P., Chae, H. Y., Rutter, G. A. & Ravier, M. A. Calcium signaling in pancreatic beta-cells in health and in type 2 diabetes. Cell Calcium 56, 21, https://doi.org/10.1016/j.ceca.2014.09.001 (2014).

    Article  CAS  Google Scholar 

  42. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stozer, A. et al. Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLoS Comput. Biol. 9, e1002923 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnston, N. R. et al. Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab. 24, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Westacott, M. J., Ludin, N. W. F. & Benninger, R. K. P. Spatially organized beta-cell subpopulations control electrical dynamics across islets of Langerhans. Biophys. J. 113, 1093–1108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kravets, V. et al. Functional architecture of pancreatic islets identifies a population of first responder cells that drive the first-phase calcium response. PLoS Biol. 20, e3001761 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lou, S. et al. Genetically targeted all-optical electrophysiology with a transgenic Cre-dependent Optopatch mouse. J. Neurosci. 36, 11059–11073 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Satin, L. S., Zhang, Q. & Rorsman, P. Take me to your leader”: an electrophysiological appraisal of the role of hub cells in pancreatic islets. Diabetes 69, 830–836 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Raoux, M. et al. Non-invasive long-term and real-time analysis of endocrine cells on micro-electrode arrays. J. Physiol. 590, 1085–1091 (2012).

    CAS  PubMed  Google Scholar 

  51. Gresch, A. et al. Resolving spatiotemporal electrical signaling within the islet via CMOS microelectrode arrays. Preprint at bioRxiv, https://doi.org/10.1101/2023.10.24.563843 (2023).

  52. Dolenšek, J., Stožer, A., Skelin Klemen, M., Miller, E. W. & Slak Rupnik, M. The relationship between membrane potential and calcium dynamics in glucose-stimulated beta cell syncytium in acute mouse pancreas tissue slices. PLoS One 8, e82374 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).

    CAS  PubMed  Google Scholar 

  54. Tsuboi, T. & Rutter, G. A. Multiple forms of kiss and run exocytosis revealed by evanescent wave microscopy. Curr. Biol. 13, 563–567 (2003).

    CAS  PubMed  Google Scholar 

  55. Makhmutova, M. et al. Confocal imaging of neuropeptide Y-pHluorin: a technique to visualize insulin granule exocytosis in intact murine and human islets. J. Vis. Exp. (127), 56089 (2017).

    Google Scholar 

  56. Li, D. et al. Imaging dynamic insulin release using a fluorescent zinc probe, ZIMIR. Proc. Natl Acad. Sci. USA 108, 21063–21068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghazvini Zadeh, E. H. et al. ZIGIR, a granule-specific Zn2+ indicator, reveals human islet α cell heterogeneity. Cell Rep. 32, 107904 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Peng, X. et al. Readily releasable β cells with tight Ca2+-exocytosis coupling dictate biphasic glucose-stimulated insulin secretion. Nat. Metab. 6, 238–253 (2024).

    CAS  PubMed  Google Scholar 

  59. Low, J. T. et al. Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature. Diabetologia 57, 1655–1663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chabosseau, P. et al. Molecular phenotyping of single pancreatic islet leader beta cells by “Flash-Seq. Life Sci. 316, 121436 (2023).

    CAS  PubMed  Google Scholar 

  61. Fontaine, A. K. et al. Optogenetic stimulation of cholinergic fibers for the modulation of insulin and glycemia. Sci. Rep. 11, 3670 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mehta, Z. B. et al. Remote control of glucose homeostasis in vivo using photopharmacology. Sci. Rep. 7, 291–00397 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Loppini, A. & Chiodo, L. Biophysical modeling of β-cells networks: realistic architectures and heterogeneity effects. Biophys. Chem. 254, 106247 (2019).

    CAS  PubMed  Google Scholar 

  64. Lei, C. L. et al. Beta-cell hubs maintain Ca2+ oscillations in human and mouse islet simulations. Islets 10, 151–167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dwulet, J. M., Briggs, J. K. & Benninger, R. K. P. Small subpopulations of β-cells do not drive islet oscillatory [Ca2+] dynamics via gap junction communication. PLoS Comput. Biol. 17, e1008948 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hogan, J. P. & Peercy, B. E. Flipping the switch on the hub cell: islet desynchronization through cell silencing. PLoS One 16, e0248974 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cha, C. Y., Santos, E., Amano, A., Shimayoshi, T. & Noma, A. Time-dependent changes in membrane excitability during glucose-induced bursting activity in pancreatic β cells. J. Gen. Physiol. 138, 39–47 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Marinelli, I., Vo, T., Gerardo-Giorda, L. & Bertram, R. Transitions between bursting modes in the integrated oscillator model for pancreatic β-cells. J. Theor. Biol. 454, 310–319 (2018).

    PubMed  Google Scholar 

  69. Briggs, J. K. et al. Beta-cell intrinsic dynamics rather than gap junction structure dictates subpopulations in the islet functional network. Elife 12, e83147 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Silva, J. R., Cooper, P. & Nichols, C. G. Modeling K,ATP–dependent excitability in pancreatic islets. Biophys. J. 107, 2016–2026 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hraha, T. H. et al. Phase transitions in the multi-cellular regulatory behavior of pancreatic islet excitability. PLoS Comput. Biol. 10, e1003819 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Marinelli, I. et al. Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells. Biophys. J. 121, 1449–1464 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Marinelli, I. et al. Slow oscillations persist in pancreatic beta cells lacking phosphofructokinase M. Biophys. J. 121, 692–704 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bertram, R., Marinelli, I., Fletcher, P. A., Satin, L. S. & Sherman, A. S. Deconstructing the integrated oscillator model for pancreatic β-cells. Math. Biosci. 365, 109085 (2023).

    PubMed  PubMed Central  Google Scholar 

  75. Watts, M., Ha, J., Kimchi, O. & Sherman, A. Paracrine regulation of glucagon secretion: the β/α/δ model. Am. J. Physiol. Endocrinol. Metab. 310, E597–E611 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Riz, M., Braun, M. & Pedersen, M. G. Mathematical modeling of heterogeneous electrophysiological responses in human β-cells. PloS Comput. Biol. 10, e1003389 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Gosak, M., Yan-Do, R., Lin, H., MacDonald, P. E. & Stožer, A. Ca2+ oscillations, waves, and networks in islets from human donors with and without type 2 diabetes. Diabetes 71, 2584–2596 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Benninger, R. K., Zhang, M., Head, W. S., Satin, L. S. & Piston, D. W. Gap junction coupling and calcium waves in the pancreatic islet. Biophys. J. 95, 5048–5061 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ravier, M. A. et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54, 1798–1807 (2005).

    CAS  PubMed  Google Scholar 

  80. Hodson, D. J. et al. Lipotoxicity disrupts incretin-regulated human beta cell connectivity. J. Clin. Invest. 123, 4182–4194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gosak, M. et al. The relationship between node degree and dissipation rate in networks of diffusively coupled oscillators and its significance for pancreatic beta cells. Chaos 25, 073115 (2015).

    PubMed  Google Scholar 

  82. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    CAS  PubMed  Google Scholar 

  83. Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    CAS  PubMed  Google Scholar 

  84. Gosak, M. et al. Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018).

    PubMed  Google Scholar 

  85. Yu, V. et al. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. Diabetologia 67, 1079–1094 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jaafar, R. et al. mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes. J. Clin. Invest 129, 4124–4137 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. Lickert, H., et al. A multimodal cross-species comparison of pancreas development. Preprint at Research Square, https://doi.org/10.21203/rs.3.rs-4151759/v1 (2024).

  88. Cnop, M. et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 53, 321–330 (2010).

    CAS  PubMed  Google Scholar 

  89. Avrahami, D. et al. Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved beta cell runction. Cell Metab. 22, 619–632 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Aguayo-Mazzucato, C. et al. β cell aging markers have heterogeneous distribution and are induced by insulin resistance. Cell Metab. 25, 898–910 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Thompson, P. J. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 29, 1045–1060 (2019).

    CAS  PubMed  Google Scholar 

  92. Lu, T. T. et al. The Polycomb-dependent epigenome controls beta cell dysfunction, dedifferentiation, and diabetes. Cell Metab. 27, 1294–1308 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chabosseau, P. L. et al. Repetitive Ca2+ waves emanate from a stable leader cell in mouse islets. Diabetes 70, 124-OR (2021).

    Google Scholar 

  94. Silva, L. F. D. et al. “Leader” β-cells within the pancreatic islet are a functionally stable subpopulation in vitro and in vivo. Diabetes 72, 1767-P (2023).

    Google Scholar 

  95. Katsuta, H. et al. Subpopulations of GFP-marked mouse pancreatic beta-cells differ in size, granularity, and insulin secretion. Endocrinology 153, 5180–5187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Benninger, R. K. P. & Kravets, V. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat. Rev. Endocrinol. 18, 9–22 (2022).

    CAS  PubMed  Google Scholar 

  97. Peercy, B. E. & Sherman, A. S. Do oscillations in pancreatic islets require pacemaker cells? J. Biosci. 47, 14 (2022).

    PubMed  Google Scholar 

  98. Avrahami, D., Klochendler, A., Dor, Y. & Glaser, B. Beta cell heterogeneity: an evolving concept. Diabetologia 60, 1363–1369 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Benninger, R. K. P. & Hodson, D. J. New understanding of β-cell heterogeneity and in situ islet function. Diabetes 67, 537–547 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chabosseau, P., Rutter, G. A. & Millership, S. J. Importance of both imprinted genes and functional heterogeneity in pancreatic beta cells: is there a link? Int. J. Mol. Sci. 22, 1000 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Farack, L. et al. Transcriptional heterogeneity of beta cells in the intact pancreas. Dev. Cell 48, 115–125.e114 (2019).

    CAS  PubMed  Google Scholar 

  102. Flisher, M. F., Shin, D. & Huising, M. O. Urocortin3: local inducer of somatostatin release and bellwether of beta cell maturity. Peptides 151, 170748 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Salinno, C. et al. β-cell maturation and identity in health and disease. Int. J. Mol. Sci. 20, 5417 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Katsumoto, K. et al. Wnt4 is heterogeneously activated in maturing β-cells to control calcium signaling, metabolism and function. Nat. Commun. 13, 6255 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Olaniru, O. E. et al. Single-cell transcriptomic and spatial landscapes of the developing human pancreas. Cell Metab. 35, 184–199 (2023).

    CAS  PubMed  Google Scholar 

  106. Lehrstrand, J. et al. Illuminating the complete ß-cell mass of the human pancreas - signifying a new view on the islets of Langerhans. Nat. Commun. 15, 3318 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Singh, S. P. et al. A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development 149, dev199853 (2022).

    CAS  PubMed  Google Scholar 

  108. Emfinger, C. H. et al. Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets. Physiol. Rep. 7, e14101 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vuolo, L., Herrera, A., Torroba, B., Menendez, A. & Pons, S. Ciliary adenylyl cyclases control the Hedgehog pathway. J. Cell Sci. 128, 2928–2937 (2015).

    CAS  PubMed  Google Scholar 

  111. Nasteska, D. et al. PDX1(LOW) MAFA(LOW) β-cells contribute to islet function and insulin release. Nat. Commun. 12, 674 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sherman, A., Xu, L. & Stokes, C. L. Estimating and eliminating junctional current in coupled cell populations by leak subtraction. A computational study. J. Membr. Biol. 143, 79–87 (1995).

    CAS  PubMed  Google Scholar 

  113. Rutter, G. A., Ninov, N., Salem, V. & Hodson, D. J. Comment on Satin et al. “Take me to your leader”: an electrophysiological appraisal of the role of hub cells in pancreatic islets. Diabetes 2020;69:830-836. Diabetes 69, e10–e11 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dwulet, J. M. et al. How heterogeneity in glucokinase and gap-junction coupling determines the Islet [Ca(2+] response. Biophys. J. 117, 2188–2203 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Marchetti, P. et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55, 3262–3272 (2012).

    CAS  PubMed  Google Scholar 

  116. McLean, B. A. et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocr. Rev. 42, 101–132 (2021).

    PubMed  Google Scholar 

  117. Huising, M. O. Paracrine regulation of insulin secretion. Diabetologia 63, 2057–2063 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kravets, V. et al. To which degree do alpha cells shape the role of the beta cells first responders? Diabetes 72, 195-OR (2023).

    Google Scholar 

  119. Yamada, K. et al. Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic beta-cells. J. Biol. Chem. 275, 22278–22283 (2000).

    CAS  PubMed  Google Scholar 

  120. Pralong, W. F., Bartley, C. & Wollheim, C. B. Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca 2+ and secretion. EMBO J. 9, 53–60 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rocheleau, J. V., Walker, G. M., Head, W. S., McGuinness, O. P. & Piston, D. W. Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proc. Natl Acad. Sci. USA 101, 12899–12903 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bennett, B. D., Jetton, T. L., Ying, G., Magnuson, M. A. & Piston, D. W. Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J. Biol. Chem. 271, 3647–3651 (1996).

    CAS  PubMed  Google Scholar 

  123. Benninger, R. K. et al. Intrinsic islet heterogeneity and gap junction coupling determine spatiotemporal Ca2+ wave dynamics. Biophys. J. 107, 2723–2733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nyman, L. R. et al. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J. Clin. Invest 118, 3790–3797 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Almaça, J., Weitz, J., Rodriguez-Diaz, R., Pereira, E. & Caicedo, A. The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab. 27, 630–644 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Nikolova, G. et al. The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev. Cell 10, 397–405 (2006).

    CAS  PubMed  Google Scholar 

  127. Hogan, M. F. & Hull, R. L. The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60, 952–959 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Arrojo, E. D. R. et al. Structural basis for delta cell paracrine regulation in pancreatic islets. Nat. Commun. 10, 3700 (2019).

    Google Scholar 

  129. Yang, Y. H. C. et al. Innervation modulates the functional connectivity between pancreatic endocrine cells. Elife 4, e64526 (2022).

    Google Scholar 

  130. Wang, G. et al. Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes. Nat. Genet 55, 984–994 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Thompson, P. J., Pipella, J., Rutter, G. A., Gaisano, H. Y. & Santamaria, P. Islet autoimmunity in human type 1 diabetes: initiation and progression from the perspective of the beta cell. Diabetologia 66, 1971–1982 (2023).

    PubMed  PubMed Central  Google Scholar 

  132. Helman, A. et al. Effects of ageing and senescence on pancreatic beta-cell function. Diabetes Obes. Metab. 18, 58–62 (2016).

    CAS  PubMed  Google Scholar 

  133. Ravier, M. A., Sehlin, J. & Henquin, J. C. Disorganization of cytoplasmic Ca2+ oscillations and pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 45, 1154–1163 (2002).

    CAS  PubMed  Google Scholar 

  134. Farnsworth, N. L., Walter, R. L., Hemmati, A., Westacott, M. J. & Benninger, R. K. Low level pro-inflammatory cytokines secrease Connexin36 gap junction coupling in mouse and human islets through nitric oxide-mediated protein kinase Cδ. J. Biol. Chem. 291, 3184–3196 (2016).

    CAS  PubMed  Google Scholar 

  135. Corezola do Amaral, M. E. et al. Caloric restriction recovers impaired β-cell-β-cell gap junction coupling, calcium oscillation coordination, and insulin secretion in prediabetic mice. Am. J. Physiol. Endocrinol. Metab. 319, E709–E720 (2020).

    PubMed  PubMed Central  Google Scholar 

  136. Westacott, M. J. et al. Age-dependent decline in the coordinated [Ca2+] and insulin secretory dynamics in human pancreatic islets. Diabetes 66, 2436–2445 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mitchell, R. K. et al. Selective disruption of Tcf7l2 in the pancreatic beta cell impairs secretory function and lowers beta cell mass. Hum. Mol. Genet. 24, 1390–1399 (2015).

    CAS  PubMed  Google Scholar 

  138. Carrat, G. R. et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am. J. Hum. Genet. 100, 238–256 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mitchell, R. K. et al. Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance. Mol. Endocrinol. 30, 77–91 (2016).

    CAS  PubMed  Google Scholar 

  140. Oram, R. A. et al. Most people with long-duration type 1 diabetes in a large population-based study are insulin microsecretors. Diabetes Care 38, 323–328 (2015).

    CAS  PubMed  Google Scholar 

  141. Panzer, J. K., Cohrs, C. M. & Speier, S. Using pancreas tissue slices for the study of islet physiology. Methods Mol. Biol. 2128, 301–312 (2020).

    CAS  PubMed  Google Scholar 

  142. Mateus Gonçalves, L. et al. Pericyte dysfunction and impaired vasomotion are hallmarks of islets during the pathogenesis of type 1 diabetes. Cell Rep. 42, 112913 (2023).

    PubMed  Google Scholar 

  143. Cohrs, C. M. et al. Dysfunction of persisting beta cells is a key feature of early type 2 diabetes pathogenesis. Cell Rep. 31, 107469 (2020).

    CAS  PubMed  Google Scholar 

  144. Huber, M. K. et al. Observing islet function and islet-immune cell interactions in live pancreatic tissue slices. J. Vis. Exp. (170), 10.3791/62207 (2021).

  145. Qadir, M. M. F. et al. Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nat. Commun. 11, 3265 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Doke, M. et al. Dynamic scRNA-seq of live human pancreatic slices reveals functional endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell Metab. 35, 1944–1960 (2023).

    CAS  PubMed  Google Scholar 

  147. Liu, Y. J., Tengholm, A., Grapengiesser, E., Hellman, B. & Gylfe, E. Origin of slow and fast oscillations of Ca2+ in mouse pancreatic islets. J. Physiol. Lond. 508, 471–481 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Nunemaker, C. S. et al. Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J. 91, 2082–2096 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ren, H. et al. Pancreatic α and β cells are globally phase-locked. Nat. Commun. 13, 3721 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hörnblad, A., Cheddad, A. & Ahlgren, U. An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution. Islets 3, 204–208 (2011).

    PubMed  PubMed Central  Google Scholar 

  151. Wang, Y. J. et al. Multiplexed in situ imaging mass cytometry analysis of the human endocrine pancreas and immune system in type 1 diabetes. Cell Metab. 29, 769–783 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Colella, R. M., Bonner-Weir, S., Braunstein, L. P., Schwalke, M. & Weir, G. C. Pancreatic islets of variable size–insulin secretion and glucose utilization. Life Sci. 37, 1059–1065 (1985).

    CAS  PubMed  Google Scholar 

  153. Lehmann, R. et al. Superiority of small islets in human islet transplantation. Diabetes 56, 594–603 (2007).

    CAS  PubMed  Google Scholar 

  154. MacGregor, R. R. et al. Small rat islets are superior to large islets in in vitro function and in transplantation outcomes. Am. J. Physiol. Endocrinol. Metab. 290, E771–E779 (2006).

    CAS  PubMed  Google Scholar 

  155. Lau, J., Svensson, J., Grapensparr, L., Johansson, Å. & Carlsson, P. O. Superior beta cell proliferation, function and gene expression in a subpopulation of rat islets identified by high blood perfusion. Diabetologia 55, 1390–1399 (2012).

    CAS  PubMed  Google Scholar 

  156. Olsson, R. & Carlsson, P. O. A low-oxygenated subpopulation of pancreatic islets constitutes a functional reserve of endocrine cells. Diabetes 60, 2068–2075 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Battistella, E., Schniete, J., Wesencraft, K., Quintana, J. F. & McConnell, G. Light-sheet mesoscopy with the Mesolens provides fast sub-cellular resolution imaging throughout large tissue volumes. iScience 25, 104797 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Schniete, J. et al. Fast optical sectioning for widefield fluorescence mesoscopy with the Mesolens based on HiLo microscopy. Sci. Rep. 8, 16259 (2018).

    PubMed  PubMed Central  Google Scholar 

  159. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    CAS  PubMed  Google Scholar 

  160. Pagliuca, F. W. et al. Generation of functional human pancreatic beta cells in citro. Cell 159, 428–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 40, 1042–1055 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Cherkaoui, I. et al. An optimized protocol for generating functional pancreatic insulin-secreting cells from human pluripotent stem cells. J. Vis. Exp. (204), https://doi.org/10.3791/65530 (2024).

  164. Kaddis, J. S., Pugliese, A. & Atkinson, M. A. A run on the biobank: what have we learned about type 1 diabetes from the nPOD tissue repository? Curr. Opin. Endocrinol. Diabetes Obes. 22, 290–295 (2015).

    CAS  PubMed  Google Scholar 

  165. Docherty, F. M. et al. ENTPD3 marks mature stem cell-derived β-cells formed by self-aggregation in vitro. Diabetes 70, 2554–2567 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Gromada, J., Chabosseau, P. & Rutter, G. A. The alpha-cell in diabetes mellitus. Nat. Rev. Endocrinol. 14, 694–704 (2018).

    CAS  PubMed  Google Scholar 

  167. Kang, R. B. et al. Human pancreatic α-cell heterogeneity and trajectory inference analysis using integrated single cell- and single nucleus-RNA sequencing platforms. Preprint at bioRxiv, https://doi.org/10.1101/2023.11.19.567715 (2023).

  168. Dai, X. Q. et al. Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metab. 34, 256–268 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Tritschler, S. et al. A transcriptional cross species map of pancreatic islet cells. Mol. Metab. 66, 101595 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Huang, Y. C., Rupnik, M. & Gaisano, H. Y. Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J. Physiol. 589, 395–408 (2011).

    CAS  PubMed  Google Scholar 

  171. Campbell, S. A. et al. Human islets contain a subpopulation of glucagon-like peptide-1 secreting alpha cells that is increased in type 2 diabetes. Mol. Metab. 39, 101014 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, J. et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep. 17, 178–187 (2016).

    CAS  PubMed  Google Scholar 

  173. Jaffredo, M. et al. Dynamic uni- and multicellular patterns encode biphasic activity in pancreatic islets. Diabetes 70, 878–888 (2021).

    CAS  PubMed  Google Scholar 

  174. Šterk, M. et al. Functional characteristics of hub and wave-initiator cells in β cell networks. Biophys. J. 22, 784–801 (2023).

    Google Scholar 

Download references

Acknowledgements

G.A.R. is supported by a Wellcome Trust Investigator award (212625/Z/18/Z); UKRI-Medical Research Council (MRC) Programme grant (MR/R022259/1), National Institutes of Health (NIH) NIH-NIDDK project grants (R01DK135268 and 1R01DK139630-01A1), a CIHR-JDRF Team grant (CIHR-IRSC TDP-186358 and JDRF 4-SRA-2023-1182-S-N), CRCHUM start-up funds and an Innovation Canada John R. Evans Leader Award (CFI 42649). L.D.S. is the recipient of a CIHR post-doctoral fellowship (#489982, CIHR-IRSC:0745000255). R.K.P.B. is supported by NIH grants R01DK102950, R01DK10641, an American Diabetes Association grant (11-22-ICTSPM-02) and JDRF grant 3-SRA-2023-1365-S-B.

We acknowledge J.K. Briggs (University of Colorado) and F. Yong (Imperial College London), who provided scripts for analysis of cell heterogeneity (Table 3). and L. Satin (University of Michigan), S. Millership (Imperial College London), A. Pospisilik (Van Andel Institute) and J. Hughes (University of Washington) for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guy A. Rutter or Richard K. P. Benninger.

Ethics declarations

Competing interests

G.A.R. has received grant funding from, and is a consultant for, Sun Pharmaceutical Industries. This company was not involved in the conception or writing of the present manuscript. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Heiko Lickert, James Lo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutter, G.A., Gresch, A., Delgadillo Silva, L. et al. Exploring pancreatic beta-cell subgroups and their connectivity. Nat Metab 6, 2039–2053 (2024). https://doi.org/10.1038/s42255-024-01097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-024-01097-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing