Abstract
Functional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential “controlling” beta-cell populations. We focus on methodologies, including comparisons of different cell preparations as well as in vitro and in vivo approaches to imaging and controlling the activity of human and rodent islet preparations. We also discuss the analytical approaches that can be applied to live-cell data to identify and study critical subgroups of cells with a disproportionate role in control Ca2+ dynamics and thus insulin secretion (such as “first responders”, “leaders” and “hubs”, as defined by Ca2+ responses to glucose stimulation). Possible mechanisms by which this hierarchy is achieved, its physiological relevance and how its loss may contribute to islet failure in diabetes mellitus are also considered. A glossary of terms and links to computational resources are provided.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Change history
23 October 2024
A Correction to this paper has been published: https://doi.org/10.1038/s42255-024-01141-5
References
Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).
Steiner, D. J., Kim, A., Miller, K. & Hara, M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2, 135–145 (2010).
Eisenbarth, G. S. Banting Lecture 2009: An unfinished journey: molecular pathogenesis to prevention of type 1A diabetes. Diabetes 59, 759–774 (2010).
Kahn, S. E., Zraika, S., Utzschneider, K. M. & Hull, R. L. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52, 1003–1012 (2009).
Federation, I. D. https://idf.org/news/diabetes-now-affects-one-in-10-adults-worldwide/ (2023).
Kaestner, K. H. et al. What is a β cell? - Chapter I in the Human Islet Research Network (HIRN) review series. Mol. Metab. 53, 101323 (2021).
Rutter, G. A., Sidarala, V., Kaufman, B. A. & Soleimanpour, S. A. Mitochondrial metabolism and dynamics in pancreatic beta cell glucose sensing. Biochem J. 480, 773–789 (2023).
Hellerstrom, C., Petersson, B. & Hellman, B. Some properties of the B cells in the islet of Langerhans studied with regard to the position of the cells. Acta Endocrinol. (Copenh) 34, 449–456 (1960).
Saloman, D. & Meda, P. Heterogeneity and contact-dependent regulation of hormone secretion by individual B-cells. Exp. Cell Res. 162, 507–520 (1986).
Pipeleers, D. G. Heterogeneity in pancreatic ɑ-cell population. Diabetes 41, 777–781 (1992).
Van Schravendijk, C. F., Kiekens, R. & Pipeleers, D. G. Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. J. Biol. Chem. 267, 21344–21348 (1992).
Xin, Y. et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proc. Natl Acad. Sci. USA 113, 3293–3298 (2016).
Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).
Mawla, A. M. & Huising, M. O. Navigating the depths and avoiding the shallows of pancreatic islet cell transcriptomes. Diabetes 68, 1380–1393 (2019).
Bader, E. et al. Identification of proliferative and mature beta-cells in the islets of Langerhans. Nature 535, 430–434 (2016).
Cox, A. R. et al. Extreme obesity induces massive beta cell expansion in mice through self-renewal and does not alter the beta cell lineage. Diabetologia 59, 1231–1241 (2016).
Salinno, C. et al. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol. Metab. 49, 101188 (2021).
Rubio-Navarro, A. et al. A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nat. Cell Biol. 25, 565–578 (2023).
Chu, C. M. J. et al. Dynamic Ins2 gene activity defines β-cell maturity states. Diabetes 71, 2612–2631 (2022).
Karaca, M. et al. Exploring functional beta-cell heterogeneity in vivo using PSA-NCAM as a specific marker. PLoS One 4, e5555 (2009).
Rodnoi, P. et al. Neuropeptide Y expression marks partially differentiated β cells in mice and humans. JCI Insight 2, e94005 (2017).
Dorrell, C. et al. Human islets contain four distinct subtypes of beta cells. Nat. Commun. 7, 11756 (2016).
Dror, E. et al. Epigenetic dosage identifies two major and functionally distinct β cell subtypes. Cell Metab. 35, 821–836 (2023).
Kone, M. et al. LKB1 and AMPK differentially regulate pancreatic beta-cell identity. FASEB J. 28, 4972–4985 (2014).
Katsuta, H. et al. Single pancreatic beta cells co-express multiple islet hormone genes in mice. Diabetologia 53, 128–138 (2010).
Camunas-Soler, J. et al. Patch-seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab. 31, 1017–1031 (2020).
Yu, et al. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. Diabetologia 67, 1079–1094 (2024).
Millership, S. J. et al. Neuronatin regulates pancreatic β cell insulin content and secretion. J. Clin. Invest 128, 3369–3381 (2018).
Lee, S. et al. Virgin β-cells at the neogenic niche proliferate normally and mature slowly. Diabetes 70, 1070–1083 (2021).
Parveen, N. et al. DNA methylation-dependent restriction of tyrosine hydroxylase contributes to pancreatic β-cell heterogeneity. Diabetes 72, 575–589 (2023).
Beamish, C. A., Strutt, B. J., Arany, E. J. & Hill, D. J. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters. Islets 8, 65–82 (2016).
Beamish, C. A. et al. Decrease in Ins+Glut2LO β-cells with advancing age in mouse and human pancreas. J. Endocrinol. 233, 229–241 (2017).
Walker, J. T., Saunders, D. C., Brissova, M. & Powers, A. C. The human islet: mini-organ with mega-impact. Endocr. Rev. 42, 605–657 (2021).
Cohrs, C. M., Chen, C., Atkinson, M. A., Drotar, D. M. & Speier, S. Bridging the gap: pancreas tissue slices from organ and tissue donors for the study of diabetes pathogenesis. Diabetes 73, 11–22 (2024).
Speier, S. et al. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat. Med. 14, 574–578 (2008).
Salem, V. et al. Leader beta cells coordinate Ca2+ dynamics across pancreatic islets in vivo. Nat. Metab. 1, 615–629 (2019).
Akalestou, E. et al. Intravital imaging of islet Ca2+ dynamics reveals enhanced ×ý cell connectivity after bariatric surgery in mice. Nat. Commun. 12, 5165 (2021).
Delgadillo-Silva, L. F. et al. Simultaneous calcium imaging and glucose stimulation in living zebrafish to investigate in vivo β-cell function. J. Vis. Exp. 21, 175 (2021).
Reissaus, C. A. et al. A versatile, portable intravital microscopy platform for studying beta-cell biology in vivo. Sci. Rep. 9, 8449 (2019).
Adams, M. T. et al. Reduced synchroneity of intra-islet Ca2+ oscillations in vivo in Robo-deficient β cells. Elife 10, e61308 (2021).
Gilon, P., Chae, H. Y., Rutter, G. A. & Ravier, M. A. Calcium signaling in pancreatic beta-cells in health and in type 2 diabetes. Cell Calcium 56, 21, https://doi.org/10.1016/j.ceca.2014.09.001 (2014).
Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).
Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
Stozer, A. et al. Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLoS Comput. Biol. 9, e1002923 (2013).
Johnston, N. R. et al. Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab. 24, 389–401 (2016).
Westacott, M. J., Ludin, N. W. F. & Benninger, R. K. P. Spatially organized beta-cell subpopulations control electrical dynamics across islets of Langerhans. Biophys. J. 113, 1093–1108 (2017).
Kravets, V. et al. Functional architecture of pancreatic islets identifies a population of first responder cells that drive the first-phase calcium response. PLoS Biol. 20, e3001761 (2022).
Lou, S. et al. Genetically targeted all-optical electrophysiology with a transgenic Cre-dependent Optopatch mouse. J. Neurosci. 36, 11059–11073 (2016).
Satin, L. S., Zhang, Q. & Rorsman, P. Take me to your leader”: an electrophysiological appraisal of the role of hub cells in pancreatic islets. Diabetes 69, 830–836 (2020).
Raoux, M. et al. Non-invasive long-term and real-time analysis of endocrine cells on micro-electrode arrays. J. Physiol. 590, 1085–1091 (2012).
Gresch, A. et al. Resolving spatiotemporal electrical signaling within the islet via CMOS microelectrode arrays. Preprint at bioRxiv, https://doi.org/10.1101/2023.10.24.563843 (2023).
Dolenšek, J., Stožer, A., Skelin Klemen, M., Miller, E. W. & Slak Rupnik, M. The relationship between membrane potential and calcium dynamics in glucose-stimulated beta cell syncytium in acute mouse pancreas tissue slices. PLoS One 8, e82374 (2013).
Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).
Tsuboi, T. & Rutter, G. A. Multiple forms of kiss and run exocytosis revealed by evanescent wave microscopy. Curr. Biol. 13, 563–567 (2003).
Makhmutova, M. et al. Confocal imaging of neuropeptide Y-pHluorin: a technique to visualize insulin granule exocytosis in intact murine and human islets. J. Vis. Exp. (127), 56089 (2017).
Li, D. et al. Imaging dynamic insulin release using a fluorescent zinc probe, ZIMIR. Proc. Natl Acad. Sci. USA 108, 21063–21068 (2011).
Ghazvini Zadeh, E. H. et al. ZIGIR, a granule-specific Zn2+ indicator, reveals human islet α cell heterogeneity. Cell Rep. 32, 107904 (2020).
Peng, X. et al. Readily releasable β cells with tight Ca2+-exocytosis coupling dictate biphasic glucose-stimulated insulin secretion. Nat. Metab. 6, 238–253 (2024).
Low, J. T. et al. Insulin secretion from beta cells in intact mouse islets is targeted towards the vasculature. Diabetologia 57, 1655–1663 (2014).
Chabosseau, P. et al. Molecular phenotyping of single pancreatic islet leader beta cells by “Flash-Seq. Life Sci. 316, 121436 (2023).
Fontaine, A. K. et al. Optogenetic stimulation of cholinergic fibers for the modulation of insulin and glycemia. Sci. Rep. 11, 3670 (2021).
Mehta, Z. B. et al. Remote control of glucose homeostasis in vivo using photopharmacology. Sci. Rep. 7, 291–00397 (2017).
Loppini, A. & Chiodo, L. Biophysical modeling of β-cells networks: realistic architectures and heterogeneity effects. Biophys. Chem. 254, 106247 (2019).
Lei, C. L. et al. Beta-cell hubs maintain Ca2+ oscillations in human and mouse islet simulations. Islets 10, 151–167 (2018).
Dwulet, J. M., Briggs, J. K. & Benninger, R. K. P. Small subpopulations of β-cells do not drive islet oscillatory [Ca2+] dynamics via gap junction communication. PLoS Comput. Biol. 17, e1008948 (2021).
Hogan, J. P. & Peercy, B. E. Flipping the switch on the hub cell: islet desynchronization through cell silencing. PLoS One 16, e0248974 (2021).
Cha, C. Y., Santos, E., Amano, A., Shimayoshi, T. & Noma, A. Time-dependent changes in membrane excitability during glucose-induced bursting activity in pancreatic β cells. J. Gen. Physiol. 138, 39–47 (2011).
Marinelli, I., Vo, T., Gerardo-Giorda, L. & Bertram, R. Transitions between bursting modes in the integrated oscillator model for pancreatic β-cells. J. Theor. Biol. 454, 310–319 (2018).
Briggs, J. K. et al. Beta-cell intrinsic dynamics rather than gap junction structure dictates subpopulations in the islet functional network. Elife 12, e83147 (2023).
Silva, J. R., Cooper, P. & Nichols, C. G. Modeling K,ATP–dependent excitability in pancreatic islets. Biophys. J. 107, 2016–2026 (2014).
Hraha, T. H. et al. Phase transitions in the multi-cellular regulatory behavior of pancreatic islet excitability. PLoS Comput. Biol. 10, e1003819 (2014).
Marinelli, I. et al. Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells. Biophys. J. 121, 1449–1464 (2022).
Marinelli, I. et al. Slow oscillations persist in pancreatic beta cells lacking phosphofructokinase M. Biophys. J. 121, 692–704 (2022).
Bertram, R., Marinelli, I., Fletcher, P. A., Satin, L. S. & Sherman, A. S. Deconstructing the integrated oscillator model for pancreatic β-cells. Math. Biosci. 365, 109085 (2023).
Watts, M., Ha, J., Kimchi, O. & Sherman, A. Paracrine regulation of glucagon secretion: the β/α/δ model. Am. J. Physiol. Endocrinol. Metab. 310, E597–E611 (2016).
Riz, M., Braun, M. & Pedersen, M. G. Mathematical modeling of heterogeneous electrophysiological responses in human β-cells. PloS Comput. Biol. 10, e1003389 (2014).
Gosak, M., Yan-Do, R., Lin, H., MacDonald, P. E. & Stožer, A. Ca2+ oscillations, waves, and networks in islets from human donors with and without type 2 diabetes. Diabetes 71, 2584–2596 (2022).
Benninger, R. K., Zhang, M., Head, W. S., Satin, L. S. & Piston, D. W. Gap junction coupling and calcium waves in the pancreatic islet. Biophys. J. 95, 5048–5061 (2008).
Ravier, M. A. et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54, 1798–1807 (2005).
Hodson, D. J. et al. Lipotoxicity disrupts incretin-regulated human beta cell connectivity. J. Clin. Invest. 123, 4182–4194 (2013).
Gosak, M. et al. The relationship between node degree and dissipation rate in networks of diffusively coupled oscillators and its significance for pancreatic beta cells. Chaos 25, 073115 (2015).
Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
Gosak, M. et al. Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018).
Yu, V. et al. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. Diabetologia 67, 1079–1094 (2024).
Jaafar, R. et al. mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes. J. Clin. Invest 129, 4124–4137 (2019).
Lickert, H., et al. A multimodal cross-species comparison of pancreas development. Preprint at Research Square, https://doi.org/10.21203/rs.3.rs-4151759/v1 (2024).
Cnop, M. et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 53, 321–330 (2010).
Avrahami, D. et al. Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved beta cell runction. Cell Metab. 22, 619–632 (2015).
Aguayo-Mazzucato, C. et al. β cell aging markers have heterogeneous distribution and are induced by insulin resistance. Cell Metab. 25, 898–910 (2017).
Thompson, P. J. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 29, 1045–1060 (2019).
Lu, T. T. et al. The Polycomb-dependent epigenome controls beta cell dysfunction, dedifferentiation, and diabetes. Cell Metab. 27, 1294–1308 (2018).
Chabosseau, P. L. et al. Repetitive Ca2+ waves emanate from a stable leader cell in mouse islets. Diabetes 70, 124-OR (2021).
Silva, L. F. D. et al. “Leader” β-cells within the pancreatic islet are a functionally stable subpopulation in vitro and in vivo. Diabetes 72, 1767-P (2023).
Katsuta, H. et al. Subpopulations of GFP-marked mouse pancreatic beta-cells differ in size, granularity, and insulin secretion. Endocrinology 153, 5180–5187 (2012).
Benninger, R. K. P. & Kravets, V. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat. Rev. Endocrinol. 18, 9–22 (2022).
Peercy, B. E. & Sherman, A. S. Do oscillations in pancreatic islets require pacemaker cells? J. Biosci. 47, 14 (2022).
Avrahami, D., Klochendler, A., Dor, Y. & Glaser, B. Beta cell heterogeneity: an evolving concept. Diabetologia 60, 1363–1369 (2017).
Benninger, R. K. P. & Hodson, D. J. New understanding of β-cell heterogeneity and in situ islet function. Diabetes 67, 537–547 (2018).
Chabosseau, P., Rutter, G. A. & Millership, S. J. Importance of both imprinted genes and functional heterogeneity in pancreatic beta cells: is there a link? Int. J. Mol. Sci. 22, 1000 (2021).
Farack, L. et al. Transcriptional heterogeneity of beta cells in the intact pancreas. Dev. Cell 48, 115–125.e114 (2019).
Flisher, M. F., Shin, D. & Huising, M. O. Urocortin3: local inducer of somatostatin release and bellwether of beta cell maturity. Peptides 151, 170748 (2022).
Salinno, C. et al. β-cell maturation and identity in health and disease. Int. J. Mol. Sci. 20, 5417 (2019).
Katsumoto, K. et al. Wnt4 is heterogeneously activated in maturing β-cells to control calcium signaling, metabolism and function. Nat. Commun. 13, 6255 (2022).
Olaniru, O. E. et al. Single-cell transcriptomic and spatial landscapes of the developing human pancreas. Cell Metab. 35, 184–199 (2023).
Lehrstrand, J. et al. Illuminating the complete ß-cell mass of the human pancreas - signifying a new view on the islets of Langerhans. Nat. Commun. 15, 3318 (2024).
Singh, S. P. et al. A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development 149, dev199853 (2022).
Emfinger, C. H. et al. Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets. Physiol. Rep. 7, e14101 (2019).
Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).
Vuolo, L., Herrera, A., Torroba, B., Menendez, A. & Pons, S. Ciliary adenylyl cyclases control the Hedgehog pathway. J. Cell Sci. 128, 2928–2937 (2015).
Nasteska, D. et al. PDX1(LOW) MAFA(LOW) β-cells contribute to islet function and insulin release. Nat. Commun. 12, 674 (2021).
Sherman, A., Xu, L. & Stokes, C. L. Estimating and eliminating junctional current in coupled cell populations by leak subtraction. A computational study. J. Membr. Biol. 143, 79–87 (1995).
Rutter, G. A., Ninov, N., Salem, V. & Hodson, D. J. Comment on Satin et al. “Take me to your leader”: an electrophysiological appraisal of the role of hub cells in pancreatic islets. Diabetes 2020;69:830-836. Diabetes 69, e10–e11 (2020).
Dwulet, J. M. et al. How heterogeneity in glucokinase and gap-junction coupling determines the Islet [Ca(2+] response. Biophys. J. 117, 2188–2203 (2019).
Marchetti, P. et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55, 3262–3272 (2012).
McLean, B. A. et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocr. Rev. 42, 101–132 (2021).
Huising, M. O. Paracrine regulation of insulin secretion. Diabetologia 63, 2057–2063 (2020).
Kravets, V. et al. To which degree do alpha cells shape the role of the beta cells first responders? Diabetes 72, 195-OR (2023).
Yamada, K. et al. Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic beta-cells. J. Biol. Chem. 275, 22278–22283 (2000).
Pralong, W. F., Bartley, C. & Wollheim, C. B. Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca 2+ and secretion. EMBO J. 9, 53–60 (1990).
Rocheleau, J. V., Walker, G. M., Head, W. S., McGuinness, O. P. & Piston, D. W. Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proc. Natl Acad. Sci. USA 101, 12899–12903 (2004).
Bennett, B. D., Jetton, T. L., Ying, G., Magnuson, M. A. & Piston, D. W. Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J. Biol. Chem. 271, 3647–3651 (1996).
Benninger, R. K. et al. Intrinsic islet heterogeneity and gap junction coupling determine spatiotemporal Ca2+ wave dynamics. Biophys. J. 107, 2723–2733 (2014).
Nyman, L. R. et al. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J. Clin. Invest 118, 3790–3797 (2008).
Almaça, J., Weitz, J., Rodriguez-Diaz, R., Pereira, E. & Caicedo, A. The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab. 27, 630–644 (2018).
Nikolova, G. et al. The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev. Cell 10, 397–405 (2006).
Hogan, M. F. & Hull, R. L. The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60, 952–959 (2017).
Arrojo, E. D. R. et al. Structural basis for delta cell paracrine regulation in pancreatic islets. Nat. Commun. 10, 3700 (2019).
Yang, Y. H. C. et al. Innervation modulates the functional connectivity between pancreatic endocrine cells. Elife 4, e64526 (2022).
Wang, G. et al. Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes. Nat. Genet 55, 984–994 (2023).
Thompson, P. J., Pipella, J., Rutter, G. A., Gaisano, H. Y. & Santamaria, P. Islet autoimmunity in human type 1 diabetes: initiation and progression from the perspective of the beta cell. Diabetologia 66, 1971–1982 (2023).
Helman, A. et al. Effects of ageing and senescence on pancreatic beta-cell function. Diabetes Obes. Metab. 18, 58–62 (2016).
Ravier, M. A., Sehlin, J. & Henquin, J. C. Disorganization of cytoplasmic Ca2+ oscillations and pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 45, 1154–1163 (2002).
Farnsworth, N. L., Walter, R. L., Hemmati, A., Westacott, M. J. & Benninger, R. K. Low level pro-inflammatory cytokines secrease Connexin36 gap junction coupling in mouse and human islets through nitric oxide-mediated protein kinase Cδ. J. Biol. Chem. 291, 3184–3196 (2016).
Corezola do Amaral, M. E. et al. Caloric restriction recovers impaired β-cell-β-cell gap junction coupling, calcium oscillation coordination, and insulin secretion in prediabetic mice. Am. J. Physiol. Endocrinol. Metab. 319, E709–E720 (2020).
Westacott, M. J. et al. Age-dependent decline in the coordinated [Ca2+] and insulin secretory dynamics in human pancreatic islets. Diabetes 66, 2436–2445 (2017).
Mitchell, R. K. et al. Selective disruption of Tcf7l2 in the pancreatic beta cell impairs secretory function and lowers beta cell mass. Hum. Mol. Genet. 24, 1390–1399 (2015).
Carrat, G. R. et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am. J. Hum. Genet. 100, 238–256 (2017).
Mitchell, R. K. et al. Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance. Mol. Endocrinol. 30, 77–91 (2016).
Oram, R. A. et al. Most people with long-duration type 1 diabetes in a large population-based study are insulin microsecretors. Diabetes Care 38, 323–328 (2015).
Panzer, J. K., Cohrs, C. M. & Speier, S. Using pancreas tissue slices for the study of islet physiology. Methods Mol. Biol. 2128, 301–312 (2020).
Mateus Gonçalves, L. et al. Pericyte dysfunction and impaired vasomotion are hallmarks of islets during the pathogenesis of type 1 diabetes. Cell Rep. 42, 112913 (2023).
Cohrs, C. M. et al. Dysfunction of persisting beta cells is a key feature of early type 2 diabetes pathogenesis. Cell Rep. 31, 107469 (2020).
Huber, M. K. et al. Observing islet function and islet-immune cell interactions in live pancreatic tissue slices. J. Vis. Exp. (170), 10.3791/62207 (2021).
Qadir, M. M. F. et al. Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nat. Commun. 11, 3265 (2020).
Doke, M. et al. Dynamic scRNA-seq of live human pancreatic slices reveals functional endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell Metab. 35, 1944–1960 (2023).
Liu, Y. J., Tengholm, A., Grapengiesser, E., Hellman, B. & Gylfe, E. Origin of slow and fast oscillations of Ca2+ in mouse pancreatic islets. J. Physiol. Lond. 508, 471–481 (1998).
Nunemaker, C. S. et al. Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J. 91, 2082–2096 (2006).
Ren, H. et al. Pancreatic α and β cells are globally phase-locked. Nat. Commun. 13, 3721 (2022).
Hörnblad, A., Cheddad, A. & Ahlgren, U. An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution. Islets 3, 204–208 (2011).
Wang, Y. J. et al. Multiplexed in situ imaging mass cytometry analysis of the human endocrine pancreas and immune system in type 1 diabetes. Cell Metab. 29, 769–783 (2019).
Colella, R. M., Bonner-Weir, S., Braunstein, L. P., Schwalke, M. & Weir, G. C. Pancreatic islets of variable size–insulin secretion and glucose utilization. Life Sci. 37, 1059–1065 (1985).
Lehmann, R. et al. Superiority of small islets in human islet transplantation. Diabetes 56, 594–603 (2007).
MacGregor, R. R. et al. Small rat islets are superior to large islets in in vitro function and in transplantation outcomes. Am. J. Physiol. Endocrinol. Metab. 290, E771–E779 (2006).
Lau, J., Svensson, J., Grapensparr, L., Johansson, Å. & Carlsson, P. O. Superior beta cell proliferation, function and gene expression in a subpopulation of rat islets identified by high blood perfusion. Diabetologia 55, 1390–1399 (2012).
Olsson, R. & Carlsson, P. O. A low-oxygenated subpopulation of pancreatic islets constitutes a functional reserve of endocrine cells. Diabetes 60, 2068–2075 (2011).
Battistella, E., Schniete, J., Wesencraft, K., Quintana, J. F. & McConnell, G. Light-sheet mesoscopy with the Mesolens provides fast sub-cellular resolution imaging throughout large tissue volumes. iScience 25, 104797 (2022).
Schniete, J. et al. Fast optical sectioning for widefield fluorescence mesoscopy with the Mesolens based on HiLo microscopy. Sci. Rep. 8, 16259 (2018).
Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).
Pagliuca, F. W. et al. Generation of functional human pancreatic beta cells in citro. Cell 159, 428–439 (2014).
Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).
Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 40, 1042–1055 (2022).
Cherkaoui, I. et al. An optimized protocol for generating functional pancreatic insulin-secreting cells from human pluripotent stem cells. J. Vis. Exp. (204), https://doi.org/10.3791/65530 (2024).
Kaddis, J. S., Pugliese, A. & Atkinson, M. A. A run on the biobank: what have we learned about type 1 diabetes from the nPOD tissue repository? Curr. Opin. Endocrinol. Diabetes Obes. 22, 290–295 (2015).
Docherty, F. M. et al. ENTPD3 marks mature stem cell-derived β-cells formed by self-aggregation in vitro. Diabetes 70, 2554–2567 (2021).
Gromada, J., Chabosseau, P. & Rutter, G. A. The alpha-cell in diabetes mellitus. Nat. Rev. Endocrinol. 14, 694–704 (2018).
Kang, R. B. et al. Human pancreatic α-cell heterogeneity and trajectory inference analysis using integrated single cell- and single nucleus-RNA sequencing platforms. Preprint at bioRxiv, https://doi.org/10.1101/2023.11.19.567715 (2023).
Dai, X. Q. et al. Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metab. 34, 256–268 (2022).
Tritschler, S. et al. A transcriptional cross species map of pancreatic islet cells. Mol. Metab. 66, 101595 (2022).
Huang, Y. C., Rupnik, M. & Gaisano, H. Y. Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J. Physiol. 589, 395–408 (2011).
Campbell, S. A. et al. Human islets contain a subpopulation of glucagon-like peptide-1 secreting alpha cells that is increased in type 2 diabetes. Mol. Metab. 39, 101014 (2020).
Li, J. et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep. 17, 178–187 (2016).
Jaffredo, M. et al. Dynamic uni- and multicellular patterns encode biphasic activity in pancreatic islets. Diabetes 70, 878–888 (2021).
Šterk, M. et al. Functional characteristics of hub and wave-initiator cells in β cell networks. Biophys. J. 22, 784–801 (2023).
Acknowledgements
G.A.R. is supported by a Wellcome Trust Investigator award (212625/Z/18/Z); UKRI-Medical Research Council (MRC) Programme grant (MR/R022259/1), National Institutes of Health (NIH) NIH-NIDDK project grants (R01DK135268 and 1R01DK139630-01A1), a CIHR-JDRF Team grant (CIHR-IRSC TDP-186358 and JDRF 4-SRA-2023-1182-S-N), CRCHUM start-up funds and an Innovation Canada John R. Evans Leader Award (CFI 42649). L.D.S. is the recipient of a CIHR post-doctoral fellowship (#489982, CIHR-IRSC:0745000255). R.K.P.B. is supported by NIH grants R01DK102950, R01DK10641, an American Diabetes Association grant (11-22-ICTSPM-02) and JDRF grant 3-SRA-2023-1365-S-B.
We acknowledge J.K. Briggs (University of Colorado) and F. Yong (Imperial College London), who provided scripts for analysis of cell heterogeneity (Table 3). and L. Satin (University of Michigan), S. Millership (Imperial College London), A. Pospisilik (Van Andel Institute) and J. Hughes (University of Washington) for useful discussion.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
G.A.R. has received grant funding from, and is a consultant for, Sun Pharmaceutical Industries. This company was not involved in the conception or writing of the present manuscript. The remaining authors declare no competing interests.
Peer review
Peer review information
Nature Metabolism thanks Heiko Lickert, James Lo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1 and 2
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rutter, G.A., Gresch, A., Delgadillo Silva, L. et al. Exploring pancreatic beta-cell subgroups and their connectivity. Nat Metab 6, 2039–2053 (2024). https://doi.org/10.1038/s42255-024-01097-6
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42255-024-01097-6
This article is cited by
-
The role of the beta cell in type 2 diabetes: new findings from the last 5 years
Diabetologia (2025)