Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetes in China: epidemiology, pathophysiology and multi-omics

Abstract

Although diabetes is now a global epidemic, China has the highest number of affected people, presenting profound public health and socioeconomic challenges. In China, rapid ecological and lifestyle shifts have dramatically altered diabetes epidemiology and risk factors. In this Review, we summarize the epidemiological trends and the impact of traditional and emerging risk factors on Chinese diabetes prevalence. We also explore recent genetic, metagenomic and metabolomic studies of diabetes in Chinese, highlighting their role in pathogenesis and clinical management. Although heterogeneity across these multidimensional areas poses major analytic challenges in classifying patterns or features, they have also provided an opportunity to increase the accuracy and specificity of diagnosis for personalized treatment and prevention. National strategies and ongoing research are essential for improving diabetes detection, prevention and control, and for personalizing care to alleviate societal impacts and maintain quality of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trend of number of adults with diabetes across IDF regions during the last two decades.
Fig. 2: Different risk-conferring and protective factors for T2D in Chinese women and men.
Fig. 3: Genomics of T2D.
Fig. 4: Metagenomic and metabolomic discoveries and therapeutic targets in T2D in China.

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF Diabetes Atlas 10th edition. https://diabetesatlas.org/atlas/tenth-edition/ (accessed 12 September 2024).

  2. American Diabetes Association Professional Practice Committee. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 47, S20–S42 (2024).

    Google Scholar 

  3. International Diabetes Federation. IDF Diabetes Atlas 5th edition. https://diabetesatlas.org/atlas/fifth-edition/ (accessed 12 September 2024).

  4. International Diabetes Federation. IDF Diabetes Atlas 7th edition. https://diabetesatlas.org/atlas/seventh-edition/ (accessed 13 September 2024).

  5. Diabetes in China: mapping the road ahead. Lancet Diabetes Endocrinol 2, 923 (2014).

  6. Wang, L. et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 317, 2515–2523 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Ma, R. C. W., Lin, X. & Jia, W. Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol. 2, 980–991 (2014).

    PubMed  Google Scholar 

  8. Ma, R. C. & Chan, J. C. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann. N. Y. Acad. Sci. 1281, 64–91 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. Zhong, H. et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine 47, 373–383 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Wang, L. et al. Prevalence and treatment of diabetes in China, 2013–2018. JAMA 326, 2498–2506 (2021).

    PubMed  PubMed Central  Google Scholar 

  11. International Diabetes Federation. IDF Diabetes Atlas 1st edition. https://diabetesatlas.org/atlas/first-edition/ (accessed 10 June 2024).

  12. Non-Communicable Disease Branch, Centre for Health Protection, Department of Health, Hong Kong, China. Report of Population Health Survey 2020–22 (Part II). https://www.chp.gov.hk/files/pdf/dh_phs_2020-22_part_2_report_eng_rectified.pdf

  13. Sheen, Y. J. et al. Trends in prevalence and incidence of diabetes mellitus from 2005 to 2014 in Taiwan. J. Formos. Med Assoc. 118, S66–S73 (2019).

    PubMed  Google Scholar 

  14. Li, Y. et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross-sectional study. BMJ 369, m997 (2020).

    PubMed  PubMed Central  Google Scholar 

  15. Yang, W. et al. Prevalence of diabetes among men and women in China. N. Engl. J. Med. 362, 1090–1101 (2010).

    PubMed  CAS  Google Scholar 

  16. Bragg, F. et al. Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA 317, 280–289 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

  18. Liu, S. et al. Prevalence of diabetes and impaired fasting glucose in Chinese adults, China National Nutrition and Health Survey, 2002. Prev. Chronic Dis. 8, A13 (2011).

    PubMed  Google Scholar 

  19. Zghebi, S. S. et al. Examining trends in type 2 diabetes incidence, prevalence and mortality in the UK between 2004 and 2014. Diabetes Obes. Metab. 19, 1537–1545 (2017).

    PubMed  Google Scholar 

  20. Gnavi, R., Migliardi, A., Maggini, M. & Costa, G. Prevalence of and secular trends in diagnosed diabetes in Italy: 1980–2013. Nutr. Metab. Cardiovasc. Dis. 28, 219–225 (2018).

    PubMed  CAS  Google Scholar 

  21. Misra, S. et al. Current insights and emerging trends in early-onset type 2 diabetes. Lancet Diabetes Endocrinol. 11, 768–782 (2023).

    PubMed  Google Scholar 

  22. NCD Risk Factor Collaboration (NCD-RisC). Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c. Nat. Med. 29, 2885–2901 (2023).

  23. Ogurtsova, K. et al. IDF diabetes Atlas: global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin. Pract. 183, 109118 (2022).

    PubMed  Google Scholar 

  24. Fang, M., Wang, D., Coresh, J. & Selvin, E. Undiagnosed diabetes in U.S. adults: prevalence and trends. Diabetes Care 45, 1994–2002 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Chan, J. C. N. et al. The Lancet Commission on diabetes: using data to transform diabetes care and patient lives. Lancet 396, 2019–2082 (2020).

    PubMed  CAS  Google Scholar 

  26. Khunti, K. & Aroda, V. R. Coming full circle: prioritizing early glycemic control to reduce microvascular and macrovascular complications in people with type 2 diabetes. Diabetes Care 45, 766–768 (2022).

    PubMed  Google Scholar 

  27. Wong, T. Y., Cheung, C. M. G., Larsen, M., Sharma, S. & Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Primers 2, 16012 (2016).

    PubMed  Google Scholar 

  28. Cheung, N., Mitchell, P. & Wong, T. Y. Diabetic retinopathy. Lancet 376, 124–136 (2010).

    PubMed  Google Scholar 

  29. Chen, J. et al. Trends in prevalence rates of blindness among patients with diabetic retinopathy in high-income countries from 1990 to 2019: a joinpoint regression analysis. Diabetes Res Clin. Pract. 202, 110823 (2023).

    PubMed  Google Scholar 

  30. GBD 2019 Blindness and Vision Impairment Collaborators. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob. Health 9, e144–e160 (2021).

    Google Scholar 

  31. Xu, T. et al. Prevalence and causes of vision loss in China from 1990 to 2019: findings from the Global Burden of Disease Study 2019. Lancet Public Health 5, e682–e691 (2020).

    PubMed  Google Scholar 

  32. Hou, X. et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat. Commun. 14, 4296 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Scanlon, P. H. et al. Prevalence and incidence of diabetic retinopathy (DR) in the UK population of Gloucestershire. Acta Ophthalmol. 100, e560–e570 (2022).

    PubMed  Google Scholar 

  34. Zhang, C. & Gong, P. Healthy China: from words to actions. Lancet Public Health 4, e438–e439 (2019).

    PubMed  Google Scholar 

  35. China CDC Weekly. Healthy China: Interpretation of the Diabetes Prevention and Control Action of the Healthy China Initiative 2019–2030. https://weekly.chinacdc.cn/en/article/doi/10.46234/ccdcw2020.039 (accessed September 13. 2024).

  36. Li, H., Lu, W., Wang, A., Jiang, H. & Lyu, J. Changing epidemiology of chronic kidney disease as a result of type 2 diabetes mellitus from 1990 to 2017: estimates from Global Burden of Disease 2017. J. Diabetes Investig. 12, 346–356 (2021).

    PubMed  Google Scholar 

  37. Yang, C. et al. CKD in China: evolving spectrum and public health implications. Am. J. Kidney Dis. 76, 258–264 (2020).

    PubMed  Google Scholar 

  38. Wang, L. et al. Prevalence of chronic kidney disease in China: results from the Sixth China Chronic Disease and Risk Factor Surveillance. JAMA Intern. Med. 183, 298–310 (2023).

    PubMed  PubMed Central  Google Scholar 

  39. Liu, M. et al. Burden of diabetes, hyperglycaemia in China from to 2016: findings from the 1990 to 2016, global burden of disease study. Diabetes Metab. 45, 286–293 (2019).

    PubMed  CAS  Google Scholar 

  40. Wu, H. et al. Young age at diabetes diagnosis amplifies the effect of diabetes duration on risk of chronic kidney disease: a prospective cohort study. Diabetologia 64, 1990–2000 (2021).

    PubMed  Google Scholar 

  41. Afkarian, M. et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA 316, 602–610 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Burrows, N. R., Hora, I., Geiss, L. S., Gregg, E. W. & Albright, A. Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes - United States and Puerto Rico, 2000–2014. MMWR Morb. Mortal. Wkly Rep. 66, 1165–1170 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Zhao, D., Liu, J., Wang, M., Zhang, X. & Zhou, M. Epidemiology of cardiovascular disease in China: current features and implications. Nat. Rev. Cardiol. 16, 203–212 (2019).

    PubMed  Google Scholar 

  44. Liu, S. et al. Burden of cardiovascular diseases in China, 1990–2016: findings from the 2016 Global Burden of Disease Study. JAMA Cardiol. 4, 342–352 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Yang, A. et al. Glucose-lowering drug use, glycemic outcomes, and severe hypoglycemia: 18-year trends in 0.9 million adults with diabetes in Hong Kong (2002–2019). Lancet Reg. Health West Pac. 26, 100509 (2022).

    PubMed  PubMed Central  Google Scholar 

  46. Magliano, D. J. et al. Trends in all-cause mortality among people with diagnosed diabetes in high-income settings: a multicountry analysis of aggregate data. Lancet Diabetes Endocrinol. 10, 112–119 (2022).

    PubMed  PubMed Central  Google Scholar 

  47. Magliano, D. J. et al. Trends in the incidence of diagnosed diabetes: a multicountry analysis of aggregate data from 22 million diagnoses in high-income and middle-income settings. Lancet Diabetes Endocrinol. 9, 203–211 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Wu, H. et al. Secular trends in all-cause and cause-specific mortality rates in people with diabetes in Hong Kong, 2001–2016: a retrospective cohort study. Diabetologia 63, 757–766 (2020).

    PubMed  CAS  Google Scholar 

  49. Wang, J. S. et al. Trends in all-cause mortality and major causes of death between 2007 and 2018 among patients with diabetes in Taiwan. Front. Endocrinol. 13, 984137 (2022).

    Google Scholar 

  50. Gregg, E. W. et al. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet 391, 2430–2440 (2018).

    PubMed  Google Scholar 

  51. Pearson-Stuttard, J. et al. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol. 9, 165–173 (2021).

    PubMed  PubMed Central  Google Scholar 

  52. Nakamura, J. et al. Causes of death in Japanese patients with diabetes based on the results of a survey of 45,708 cases during 2001–2010: Report of the Committee on Causes of Death in Diabetes Mellitus. J. Diabetes Investig. 8, 397–410 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Ndumele, C. E. et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation 148, 1606–1635 (2023).

    PubMed  Google Scholar 

  54. Jia, W. et al. Standards of medical care for type 2 diabetes in China 2019. Diabetes Metab. Res. Rev. 35, e3158 (2019).

    PubMed  Google Scholar 

  55. Jia, W. P., Wang, C., Jiang, S. & Pan, J. M. Characteristics of obesity and its related disorders in China. Biomed. Environ. Sci. 23, 4–11 (2010).

    PubMed  CAS  Google Scholar 

  56. Jia, W. P., Xiang, K. S., Chen, L., Lu, J. X. & Wu, Y. M. Epidemiological study on obesity and its comorbidities in urban Chinese older than 20 years of age in Shanghai, China. Obes. Rev. 3, 157–165 (2002).

    PubMed  CAS  Google Scholar 

  57. National Health Commission of the People’s Republic of China. Report on the nutrition and chronic diseases status of Chinese residents (2020). (People’s Medical Publishing House, Beijing, 2021).

  58. Song, Z. et al. Metabolically healthy obesity, transition to unhealthy phenotypes, and type 2 diabetes in 0.5 million Chinese adults: the China Kadoorie Biobank. Eur. J. Endocrinol. 186, 233–244 (2022).

    PubMed  CAS  Google Scholar 

  59. Xi, Y. et al. Overweight and risk of type 2 diabetes: a prospective Chinese twin study. Diabetes Metab. 48, 101278 (2022).

    PubMed  Google Scholar 

  60. Li, Y. et al. Prevalence and associated factors of diabetes mellitus among individuals aged 18 years and above in Xiaoshan District, China, 2018: a community-based cross-sectional study. BMJ Open 12, e049754 (2022).

    PubMed  PubMed Central  Google Scholar 

  61. Ko, G. T. et al. Simple anthropometric indexes and cardiovascular risk factors in Chinese. Int. J. Obes. Relat. Metab. Disord. 21, 995–1001 (1997).

    PubMed  CAS  Google Scholar 

  62. Chen, P. et al. Abdominal subcutaneous adipose tissue: a favorable adipose depot for diabetes? Cardiovasc. Diabetol. 17, 93 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Deurenberg-Yap, M., Yian, T. B., Kai, C. S., Deurenberg, P. & WA, V. A. N. S. Manifestation of cardiovascular risk factors at low levels of body mass index and waist-to-hip ratio in Singaporean Chinese. Asia Pac. J. Clin. Nutr. 8, 177–183 (1999).

    PubMed  CAS  Google Scholar 

  64. Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007).

    PubMed  Google Scholar 

  65. Kawada, T., Andou, T. & Fukumitsu, M. Waist circumference, visceral abdominal fat thickness and three components of metabolic syndrome. Diabetes Metab. Syndr. 10, 4–6 (2016).

    PubMed  Google Scholar 

  66. Chen, H. et al. Sex- and age-specific associations between abdominal fat and non-alcoholic fatty liver disease: a prospective cohort study. J. Mol. Cell Biol. 15, mjad069 (2023).

  67. Kim, D. et al. Body fat distribution and risk of incident and regressed nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 14, 132–138 (2016).

    PubMed  Google Scholar 

  68. Huxley, R. et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes. Rev. 9, 53–61 (2008).

    PubMed  Google Scholar 

  69. Bao, Y. et al. Optimal waist circumference cutoffs for abdominal obesity in Chinese. Atherosclerosis 201, 378–384 (2008).

    PubMed  CAS  Google Scholar 

  70. Alberti, K. G., Zimmet, P. & Shaw, J. Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 23, 469–480 (2006).

    PubMed  CAS  Google Scholar 

  71. Wang, T. et al. Causal association of overall obesity and abdominal obesity with type 2 diabetes: a Mendelian randomization analysis. Obesity 26, 934–942 (2018).

    PubMed  CAS  Google Scholar 

  72. Wan, H. et al. Associations between abdominal obesity indices and diabetic complications: Chinese visceral adiposity index and neck circumference. Cardiovasc. Diabetol. 19, 118 (2020).

    PubMed  PubMed Central  Google Scholar 

  73. Xu, H., Jin, C. & Guan, Q. Causal effects of overall and abdominal obesity on insulin resistance and the risk of type 2 diabetes mellitus: a two-sample Mendelian randomization study. Front. Genet. 11, 603 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Kong, X. et al. Obesity-related genomic loci are associated with type 2 diabetes in a Han Chinese population. PLoS ONE 9, e104486 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Tanaka, S., Kanazawa, I. & Sugimoto, T. Visceral fat accumulation is associated with increased plasma sphingosine-1-phosphate levels in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 143, 146–150 (2018).

    PubMed  CAS  Google Scholar 

  76. Xu, Y. et al. Correlations between serum concentration of three bone-derived factors and obesity and visceral fat accumulation in a cohort of middle aged men and women. Cardiovasc. Diabetol. 17, 143 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Du, Y. et al. Inverse relationship between serum Metrnl levels and visceral fat obesity (VFO) in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 161, 108068 (2020).

    PubMed  CAS  Google Scholar 

  78. Chen, Z. et al. Contrasting male and female trends in tobacco-attributed mortality in China: evidence from successive nationwide prospective cohort studies. Lancet 386, 1447–1456 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Zhang, M. et al. Trends in smoking prevalence in urban and rural China, 2007 to 2018: findings from 5 consecutive nationally representative cross-sectional surveys. PLoS Med. 19, e1004064 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Liu, X. et al. Smoking and smoking cessation in relation to risk of diabetes in Chinese men and women: a 9-year prospective study of 0.5 million people. Lancet Public Health 3, e167–e176 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Chan, K. H. et al. Tobacco smoking and risks of more than 470 diseases in China: a prospective cohort study. Lancet Public Health 7, e1014–e1026 (2022).

    PubMed  PubMed Central  Google Scholar 

  82. Huang, C. et al. Association between environmental tobacco smoke exposure and risk of type 2 diabetes mellitus in Chinese female never smokers: a population-based cohort study. J. Diabetes 12, 339–346 (2020).

    PubMed  Google Scholar 

  83. Jha, P. & Peto, R. Global effects of smoking, of quitting, and of taxing tobacco. N. Engl. J. Med. 370, 60–68 (2014).

    PubMed  CAS  Google Scholar 

  84. Hu, A. et al. The transition of alcohol control in China 1990–2019: impacts and recommendations. Int. J. Drug Policy 105, 103698 (2022).

    PubMed  PubMed Central  Google Scholar 

  85. Zhang, L. et al. Prevalence, correlates, and behavioral outcomes of alcohol gifting in China. BMC Public Health 22, 1653 (2022).

    PubMed  PubMed Central  Google Scholar 

  86. Li, H. et al. The association between age at initiation of alcohol consumption and type 2 diabetes mellitus: a cohort study of 0.5 million persons in China. Am. J. Epidemiol. 189, 1478–1491 (2020).

    PubMed  PubMed Central  Google Scholar 

  87. Yu, H. et al. Alcohol consumption and its interaction with genetic variants are strongly associated with the risk of type 2 diabetes: a prospective cohort study. Nutr. Metab. 16, 64 (2019).

    Google Scholar 

  88. Peng, M. et al. Alcohol consumption and diabetes risk in a Chinese population: a Mendelian randomization analysis. Addiction 114, 436–449 (2019).

    PubMed  Google Scholar 

  89. Li, M. J. et al. Association of alcohol drinking with incident type 2 diabetes and pre-diabetes: the Guangzhou Biobank Cohort Study. Diabetes Metab. Res Rev. 38, e3548 (2022).

    PubMed  CAS  Google Scholar 

  90. Im, P. K. et al. Alcohol consumption and risks of more than 200 diseases in Chinese men. Nat. Med. 29, 1476–1486 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Ma, B. & Jin, X. Does internet use connect us to a healthy diet? Evidence from rural China. Nutrients 14, 2630 (2022).

    PubMed  PubMed Central  Google Scholar 

  92. Han, G. et al. Prevalence of internet addiction and Its relationship with combinations of physical activity and screen-based sedentary behavior among adolescents in China. J. Phys. Act. Health 18, 1245–1252 (2021).

    PubMed  Google Scholar 

  93. Su, C. et al. Longitudinal association of leisure time physical activity and sedentary behaviors with body weight among Chinese adults from China Health and Nutrition Survey 2004–2011. Eur. J. Clin. Nutr. 71, 383–388 (2017).

    PubMed  CAS  Google Scholar 

  94. Bennett, D. A. et al. Physical activity, sedentary leisure-time and risk of incident type 2 diabetes: a prospective study of 512,000 Chinese adults. BMJ Open Diabetes Res Care 7, e000835 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. Fan, M., Lyu, J. & Guo, Y. Regional differences on patterns of physical activity and leisure sedentary time: findings from the China Kadoorie Biobank study, including a million people from 10 regions. Chin. J. Epidemiol. 36, 779–785 (2015).

    Google Scholar 

  96. Ng, S. W., Howard, A. G., Wang, H. J., Su, C. & Zhang, B. The physical activity transition among adults in China: 1991–2011. Obes. Rev. 15, 27–36 (2014).

    PubMed  Google Scholar 

  97. He, Y. et al. The dietary transition and its association with cardiometabolic mortality among Chinese adults, 1982–2012: a cross-sectional population-based study. Lancet Diabetes Endocrinol. 7, 540–548 (2019).

    PubMed  Google Scholar 

  98. Du, H. et al. Red meat, poultry and fish consumption and risk of diabetes: a 9 year prospective cohort study of the China Kadoorie Biobank. Diabetologia 63, 767–779 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Du, H. et al. Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: a 7-y prospective study of 0.5 million Chinese adults. PLoS Med. 14, e1002279 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Yang, J. et al. Coarse grain consumption and risk of cardiometabolic diseases: a prospective cohort study of Chinese adults. J. Nutr. 152, 1476–1486 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Li, L. et al. Whole fresh fruit intake and risk of incident diabetes in different glycemic stages: a nationwide prospective cohort investigation. Eur. J. Nutr. 62, 771–782 (2023).

    PubMed  CAS  Google Scholar 

  102. Wang, Y. et al. Whole grain and cereal fiber intake and the risk of type 2 diabetes: a meta-analysis. Int. J. Mol. Epidemiol. Genet. 10, 38–46 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Chen, Y. et al. Tea consumption and risk of diabetes in the Chinese population: a multi-centre, cross-sectional study. Br. J. Nutr. 123, 428–436 (2020).

    PubMed  CAS  Google Scholar 

  104. Wang, L. et al. Body-mass index and obesity in urban and rural China: findings from consecutive nationally representative surveys during 2004–18. Lancet 398, 53–63 (2021).

    PubMed  PubMed Central  Google Scholar 

  105. Zhang, M. et al. Prevalence, awareness, treatment, and control of hypertension in China, 2004–18: findings from six rounds of a national survey. BMJ 380, e071952 (2023).

    PubMed  PubMed Central  Google Scholar 

  106. Chinese Ministry of Public Health (CMPH). Report of the 2002 China National Nutrition and Health Survey (2004).

  107. Tan, S. et al. Dietary quality is associated with reduced risk of diabetes among adults in Northern China: a cross-sectional study. Br. J. Nutr. 126, 923–932 (2021).

    PubMed  CAS  Google Scholar 

  108. Dong, W. et al. Geographical distribution of dietary patterns and their association with T2DM in Chinese adults aged 45 y and above: a nationwide cross-sectional study. Nutrients 16, 107 (2023).

    PubMed  PubMed Central  Google Scholar 

  109. Wang, Y. et al. Associations of dietary patterns and incident type 2 diabetes in a community population cohort from Southwest China. Front. Public Health 10, 773172 (2022).

    PubMed  PubMed Central  Google Scholar 

  110. Nie, J. et al. Tea consumption and long-term risk of type 2 diabetes and diabetic complications: a cohort study of 0.5 million Chinese adults. Am. J. Clin. Nutr. 114, 194–202 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Huang, F. et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun. 10, 4971 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. Chu, Y. et al. Temporal trends in sleep pattern among Chinese adults between 2010 and 2018: findings from five consecutive nationally representative surveys. Public Health 225, 360–368 (2023).

    PubMed  CAS  Google Scholar 

  113. Wu, H. B. et al. The association between sleep duration, snoring and prevalent type 2 diabetes mellitus with regard to gender and menopausal status: the CKB study in Zhejiang rural area, China. Acta Diabetol. 54, 81–90 (2017).

    PubMed  CAS  Google Scholar 

  114. Liu, H. et al. Association between sleep duration and incidence of type 2 diabetes in China: the REACTION study. Chin. Med. J. 135, 1242–1248 (2022).

    PubMed  PubMed Central  Google Scholar 

  115. Wei, Y. et al. Habitual snoring, adiposity measures and risk of type 2 diabetes in 0.5 million Chinese adults: a 10-year cohort. BMJ Open Diabetes Res. Care 8, e001015 (2020).

    PubMed  PubMed Central  Google Scholar 

  116. Dai, N. et al. Snoring frequency and risk of type 2 diabetes mellitus: a prospective cohort study. BMJ Open 11, e042469 (2021).

    PubMed  PubMed Central  Google Scholar 

  117. Wang, M. et al. Associations between stressful life events and diabetes: findings from the China Kadoorie Biobank study of 500,000 adults. J. Diabetes Investig. 10, 1215–1222 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Wu, H. et al. Sex differences in the association between socioeconomic status and diabetes prevalence and incidence in China: cross-sectional and prospective studies of 0.5 million adults. Diabetologia 62, 1420–1429 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Song, C. et al. Air pollution in China: status and spatiotemporal variations. Environ. Pollut. 227, 334–347 (2017).

    PubMed  CAS  Google Scholar 

  120. Wang, M. et al. Association between ambient particulate matter (PM(10)) and incidence of diabetes in northwest of China: a prospective cohort study. Ecotoxicol. Environ. Saf. 202, 110880 (2020).

    PubMed  CAS  Google Scholar 

  121. Wang, Y. et al. Long-term exposure to ozone and diabetes incidence: a longitudinal cohort study in China. Sci. Total Environ. 816, 151634 (2022).

    PubMed  CAS  Google Scholar 

  122. Liang, F. et al. Long-term exposure to ambient fine particulate matter and incidence of diabetes in China: a cohort study. Environ. Int. 126, 568–575 (2019).

    PubMed  CAS  Google Scholar 

  123. Kang, N. et al. Adverse associations of different obesity measures and the interactions with long-term exposure to air pollutants with prevalent type 2 diabetes mellitus: the Henan Rural Cohort study. Environ. Res. 207, 112640 (2022).

    PubMed  CAS  Google Scholar 

  124. Jia, C. et al. Association between serum pyrethroid insecticide levels and incident type 2 diabetes risk: a nested case-control study in Dongfeng-Tongji cohort. Eur. J. Epidemiol. 37, 959–970 (2022).

    PubMed  CAS  Google Scholar 

  125. Stumvoll, M., Goldstein, B. J. & van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).

    PubMed  CAS  Google Scholar 

  126. Chan, J. C. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301, 2129–2140 (2009).

    PubMed  CAS  Google Scholar 

  127. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Ma, R. C. et al. Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4. Diabetologia 56, 1291–1305 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Suzuki, K. et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet. 51, 379–386 (2019).

    PubMed  CAS  Google Scholar 

  130. Cho, Y. S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67–72 (2011).

    PubMed  PubMed Central  Google Scholar 

  131. Silander, K. et al. Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes 53, 1141–1149 (2004).

    PubMed  CAS  Google Scholar 

  132. Gloyn, A. L. et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52, 568–572 (2003).

    PubMed  CAS  Google Scholar 

  133. Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).

    PubMed  CAS  Google Scholar 

  134. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 26, 163–175 (2000).

    PubMed  CAS  Google Scholar 

  135. Meyre, D. et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat. Genet. 37, 863–867 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Vasseur, F. et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum. Mol. Genet 11, 2607–2614 (2002).

    PubMed  CAS  Google Scholar 

  137. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).

    PubMed  CAS  Google Scholar 

  138. Frayling, T. M. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet. 8, 657–662 (2007).

    PubMed  CAS  Google Scholar 

  139. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    PubMed  CAS  Google Scholar 

  140. Saxena, R. etal. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Google Scholar 

  141. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39, 770–775 (2007).

    PubMed  CAS  Google Scholar 

  144. Salonen, J. T. et al. Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium. Am. J. Hum. Genet. 81, 338–345 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  145. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    PubMed Central  Google Scholar 

  146. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Ng, M. C. et al. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57, 2226–2233 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Ng, M. C. et al. Implication of genetic variants near NEGR1, SEC16B, TMEM18, ETV5/DGKG, GNPDA2, LIN7C/BDNF, MTCH2, BCDIN3D/FAIM2, SH2B1, FTO, MC4R, and KCTD15 with obesity and type 2 diabetes in 7705 Chinese. J. Clin. Endocrinol. Metab. 95, 2418–2425 (2010).

    PubMed  CAS  Google Scholar 

  149. Hu, C. et al. Variants from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 are associated with glucose metabolism in the Chinese. PLoS ONE 5, e15542 (2010).

    PubMed  PubMed Central  Google Scholar 

  150. Ng, M. C. et al. Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J. Clin. Endocrinol. Metab. 92, 3733–3737 (2007).

    PubMed  CAS  Google Scholar 

  151. Ng, M. C. et al. Ethnic differences in the linkage disequilibrium and distribution of single-nucleotide polymorphisms in 35 candidate genes for cardiovascular diseases. Genomics 83, 559–565 (2004).

    PubMed  CAS  Google Scholar 

  152. Yasuda, K. et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40, 1092–1097 (2008).

    PubMed  CAS  Google Scholar 

  153. Unoki, H. et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40, 1098–1102 (2008).

    PubMed  CAS  Google Scholar 

  154. Lee, Y. H. et al. Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J. Hum. Genet. 53, 991–998 (2008).

    PubMed  CAS  Google Scholar 

  155. Hu, C. et al. Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population. Diabetologia 52, 1322–1325 (2009).

    PubMed  CAS  Google Scholar 

  156. Tan, J. T. et al. Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function: a study of 3,734 subjects comprising three ethnicities living in Singapore. Diabetes 58, 1445–1449 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Li, H. et al. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62, 291–298 (2013).

    PubMed  CAS  Google Scholar 

  158. Ohn, J. H. et al. 10-year trajectory of beta-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 4, 27–34 (2016).

    PubMed  CAS  Google Scholar 

  159. Fan, Y. et al. Comparison of beta-cell function between Hong Kong Chinese with young-onset type 2 diabetes and late-onset type 2 diabetes. Diabetes Res Clin. Pract. 205, 110954 (2023).

    PubMed  CAS  Google Scholar 

  160. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  161. Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240–245 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Hu, C. et al. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS ONE 4, e7643 (2009).

    PubMed  PubMed Central  Google Scholar 

  163. Andersson, E. A. et al. Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic beta-cell function over 5 years of follow-up. Diabetes 62, 3610–3617 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  164. Yan, J. et al. Impaired pancreatic beta cell compensatory function is the main cause of type 2 diabetes in individuals with high genetic risk: a 9 year prospective cohort study in the Chinese population. Diabetologia 59, 1458–1462 (2016).

    PubMed  CAS  Google Scholar 

  165. Inaishi, J. et al. Association between genetic risk and development of type 2 diabetes in a general Japanese population: the Hisayama study. J. Clin. Endocrinol. Metab. 104, 3213–3222 (2019).

    PubMed  Google Scholar 

  166. Han, X. et al. Genetic risk, a healthy lifestyle, and type 2 diabetes: the Dongfeng-Tongji Cohort Study. J. Clin. Endocrinol. Metab. 105, dgz325 (2020).

    PubMed  Google Scholar 

  167. Dawed, A. Y. et al. Genome-wide meta-analysis identifies genetic variants associated with glycemic response to sulfonylureas. Diabetes Care 44, 2673–2682 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  168. Jamaluddin, J. L., Huri, H. Z. & Vethakkan, S. R. Clinical and genetic predictors of dipeptidyl peptidase-4 inhibitor treatment response in type 2 diabetes mellitus. Pharmacogenomics 17, 867–881 (2016).

    PubMed  CAS  Google Scholar 

  169. Pearson, E. R. Diabetes: is there a future for pharmacogenomics guided treatment? Clin. Pharmacol. Ther. 106, 329–337 (2019).

    PubMed  PubMed Central  Google Scholar 

  170. GoDarts et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 43, 117–120 (2011).

    Google Scholar 

  171. Zhou, K. et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet. 48, 1055–1059 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  172. Chen, M. et al. Association of PAX4 genetic variants with oral antidiabetic drugs efficacy in Chinese type 2 diabetes patients. Pharmacogenomics J. 14, 488–492 (2014).

    PubMed  CAS  Google Scholar 

  173. Chen, M. et al. A variant of PSMD6 is associated with the therapeutic efficacy of oral antidiabetic drugs in Chinese type 2 diabetes patients. Sci. Rep. 5, 10701 (2015).

    PubMed  PubMed Central  Google Scholar 

  174. Kim, Y. G. et al. Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and non-Asians: a systematic review and meta-analysis. Diabetologia 56, 696–708 (2013).

    PubMed  CAS  Google Scholar 

  175. Shi, M. et al. Genetic susceptibility of dipeptidyl Peptidase-4 inhibitor associated bullous pemphigoid in Chinese patients with type 2 diabetes. J. Eur. Acad. Dermatol. Venereol. 37, e375–e377 (2023).

    PubMed  CAS  Google Scholar 

  176. Rathmann, W. & Bongaerts, B. Pharmacogenetics of novel glucose-lowering drugs. Diabetologia 64, 1201–1212 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  177. Chen, M. et al. Joint effects of diabetic-related genomic loci on the therapeutic efficacy of oral anti-diabetic drugs in Chinese type 2 diabetes patients. Sci. Rep. 6, 23266 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  178. Li, K. Y. et al. DNA methylation markers for kidney function and progression of diabetic kidney disease. Nat. Commun. 14, 2543 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Chung, W. K. et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43, 1617–1635 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    PubMed  Google Scholar 

  181. Chan, J. C. N. et al. Multifaceted nature of young-onset diabetes - can genomic medicine improve the precision of diagnosis and management? J. Transl. Genet. Genom. 8, 13–34 (2024).

    CAS  Google Scholar 

  182. Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383–397 (2022).

    PubMed  Google Scholar 

  183. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  184. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    PubMed  CAS  Google Scholar 

  185. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    PubMed  CAS  Google Scholar 

  186. Lu, J. et al. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes 7, 71 (2021).

    PubMed  PubMed Central  Google Scholar 

  187. Zhang, J. et al. Decreased abundance of Akkermansia muciniphila leads to the impairment of insulin secretion and glucose homeostasis in lean type 2 diabetes. Adv. Sci. 8, e2100536 (2021).

    Google Scholar 

  188. Gou, W. et al. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care 44, 358–366 (2021).

    PubMed  CAS  Google Scholar 

  189. Zheng, X. et al. Hyocholic acid species as novel biomarkers for metabolic disorders. Nat. Commun. 12, 1487 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  190. Hu, J. et al. Distinct signatures of gut microbiota and metabolites in different types of diabetes: a population-based cross-sectional study. eClinicalMedicine 62, 102132 (2023).

    PubMed  PubMed Central  Google Scholar 

  191. Bowling, F. L., Rashid, S. T. & Boulton, A. J. M. Preventing and treating foot complications associated with diabetes mellitus. Nat. Rev. Endocrinol. 11, 606–616 (2015).

    PubMed  Google Scholar 

  192. Zhao, M. et al. Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy. Nat. Commun. 13, 1757 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  193. Gao, J. et al. Gasdermin D deficiency in vascular smooth muscle cells ameliorates abdominal aortic aneurysm through reducing putrescine synthesis. Adv. Sci. 10, 2204038 (2023).

    CAS  Google Scholar 

  194. Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961 (2018).

    PubMed  CAS  Google Scholar 

  195. Hua, S. et al. Microbial metabolites in chronic heart failure and its common comorbidities. EMBO Mol. Med. 15, e16928 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Wong, C. W., Wong, T. Y., Cheng, C. Y. & Sabanayagam, C. Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways. Kidney Int. 85, 1290–1302 (2014).

    PubMed  Google Scholar 

  197. Xuan, Q. et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects. Adv. Sci. 7, 2001714 (2020).

    CAS  Google Scholar 

  198. Liu, S. et al. Serum integrative omics reveals the landscape of human diabetic kidney disease. Mol. Metab. 54, 101367 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  199. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    PubMed  CAS  Google Scholar 

  200. Ni, Y. et al. Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metab. 35, 1530–1547 (2023).

    PubMed  CAS  Google Scholar 

  201. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    PubMed  CAS  Google Scholar 

  202. Zheng, X. et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 33, 791–803 (2021).

    PubMed  CAS  Google Scholar 

  203. Kuang, J. et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut–liver axis. Cell Metab. 35, 1752–1766 (2023).

    PubMed  CAS  Google Scholar 

  204. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619 (2017).

    PubMed  CAS  Google Scholar 

  205. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012).

    PubMed  CAS  Google Scholar 

  206. Yang, J. et al. Gut microbiota modulate distal symmetric polyneuropathy in patients with diabetes. Cell Metab. 35, 1548–1562 (2023).

    PubMed  CAS  Google Scholar 

  207. Chan, J. C. N. et al. From Hong Kong Diabetes Register to JADE Program to RAMP-DM for data-driven actions. Diabetes Care 42, 2022–2031 (2019).

    PubMed  Google Scholar 

  208. Chan, J. C., Zhang, Y. & Ning, G. Diabetes in China: a societal solution for a personal challenge. Lancet Diabetes Endocrinol. 2, 969–979 (2014).

    PubMed  Google Scholar 

  209. Tobias, D. K. et al. Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine. Nat. Med. 29, 2438–2457 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  210. Wang, P. et al. Optimal dietary patterns for prevention of chronic disease. Nat. Med. 29, 719–728 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  211. Celli, A. et al. Lifestyle intervention strategy to treat diabetes in older adults: a randomized controlled trial. Diabetes Care 45, 1943–1952 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  212. Fisher, E. B., Chan, J. C., Nan, H., Sartorius, N. & Oldenburg, B. Co-occurrence of diabetes and depression: conceptual considerations for an emerging global health challenge. J. Affect. Disord. 142, S56–S66 (2012).

    PubMed  Google Scholar 

  213. Chan, J. C. et al. Effects of telephone-based peer support in patients with type 2 diabetes mellitus receiving integrated care: a randomized clinical trial. JAMA Intern. Med. 174, 972–981 (2014).

    PubMed  Google Scholar 

  214. Fisher, E. B. et al. Peer support for self-management of diabetes improved outcomes in international settings. Health Aff. 31, 130–139 (2012).

    Google Scholar 

  215. Sun, H. et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin. Pract. 183, 109119 (2022).

    PubMed  Google Scholar 

  216. Liu, Y. et al. Peer support in Shanghai’s Commitment to diabetes and chronic disease self-management: program development, program expansion, and policy. Transl. Behav. Med. 10, 13–24 (2020).

    PubMed  PubMed Central  Google Scholar 

  217. Evans, M. et al. Community organization guides standardization, adaptability, and innovation: lessons from peer support in the Shanghai Integration Model. Transl. Behav. Med. 13, 519–532 (2023).

    PubMed  PubMed Central  Google Scholar 

  218. A deep learning system for predicting time to progression of diabetic retinopathy. Nat. Med. 30, 358–359 (2024).

  219. Collaborative Project of Department of Health and Department of Community Medicine, University of Hong Kong. Population Health Survey 2003/2004. https://www.chp.gov.hk/files/pdf/report_on_population_health_survey_2003_2004_en.pdf

  220. Surveillance and Epidemiology Branch, Centre for Health Protection, Department of Health Hong Kong. Population Health Survey 2014/2015. https://www.chp.gov.hk/files/pdf/dh_phs_2014_15_full_report_eng.pdf

  221. Chang, H. Y. et al. Gender differences in trends in diabetes prevalence from 1993 to 2008 in Taiwan. Diabetes Res. Clin. Pract. 90, 358–364 (2010).

    PubMed  Google Scholar 

  222. Nawata, K. Estimation of diabetes prevalence, and evaluation of factors affecting blood glucose levels and use of medications in Japan. Health 13, 1431–1451 (2021).

    CAS  Google Scholar 

  223. Menke, A., Rust, K. F., Fradkin, J., Cheng, Y. J. & Cowie, C. C. Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States: a series of cross-sectional studies. Ann. Intern. Med. 161, 328–335 (2014).

    PubMed  Google Scholar 

  224. Cheng, Y. J. et al. Prevalence of diabetes by race and ethnicity in the United States, 2011–2016. JAMA 322, 2389–2398 (2019).

    PubMed  PubMed Central  Google Scholar 

  225. Public Health Agency of Canada. Diabetes in Canada in review (2021). https://www.canada.ca/content/dam/phac-aspc/documents/services/publications/diseases-conditions/diabetes-canada-review-2021/diabetes-canada-review-2021.pdf

  226. Heidemann, C. et al. Temporal changes in the prevalence of diagnosed diabetes, undiagnosed diabetes and prediabetes: findings from the German Health Interview and Examination Surveys in 1997–1999 and 2008–2011. Diabet. Med. 33, 1406–1414 (2016).

    PubMed  CAS  Google Scholar 

  227. Whicher, C. A., O’Neill, S. & Holt, R. I. G. Diabetes in the UK: 2019. Diabet. Med. 37, 242–247 (2020).

    PubMed  CAS  Google Scholar 

  228. Anjana, R. M. et al. Metabolic non-communicable disease health report of India: the ICMR-INDIAB national cross-sectional study (ICMR-INDIAB-17). Lancet Diabetes Endocrinol. 11, 474–489 (2023).

    PubMed  Google Scholar 

  229. Chowdhury, M., Islam, M., Rahman, J., Uddin, M. J. & Haque, M. R. Diabetes among adults in Bangladesh: changes in prevalence and risk factors between two cross-sectional surveys. BMJ Open 12, 8 (2022).

  230. Kyari, F. et al. Prevalence and risk factors for diabetes and diabetic retinopathy: results from the Nigeria national blindness and visual impairment survey. BMC Public Health 14, 1299 (2014).

    PubMed  PubMed Central  Google Scholar 

  231. Sifunda, S. et al. Prevalence and Psychosocial Correlates of Diabetes Mellitus in South Africa: Results from the South African National Health and Nutrition Examination Survey (SANHANES-1). Int. J. Environ. Res. Public Health 20, 5798 (2023).

    PubMed  PubMed Central  Google Scholar 

  232. Statistics South Africa, South African Medical Research Council. South Africa Demographic and Health Survey 2016. https://www.dhsprogram.com/pubs/pdf/SR248/SR248.pdf

  233. Al-Rubeaan, K. et al. Epidemiology of abnormal glucose metabolism in a country facing its epidemic: SAUDI-DM study. J. Diabetes 7, 622–632 (2015).

    PubMed  Google Scholar 

  234. Alqahtani, B., Elnaggar, R. K., Alshehri, M. M., Khunti, K. & Alenazi, A. National and regional prevalence rates of diabetes in Saudi Arabia: analysis of national survey data. Int. J. Diabetes Dev. Ctries. 43, 392–397 (2022).

    Google Scholar 

  235. Hamoudi, R. et al. Prediabetes and diabetes prevalence and risk factors comparison between ethnic groups in the United Arab Emirates. Sci. Rep. 9, 17437 (2019).

    PubMed  PubMed Central  Google Scholar 

  236. Al Awadi, F. et al. Prevalence of diabetes and associated health risk factors among adults in Dubai, United Arab Emirates: results from Dubai Household Survey 2019. Dubai Diabetes Endocrinol. J. 26, 164–173 (2020).

    Google Scholar 

  237. Reis, R., Duncan, B. B., Malta, D. C., Iser, B. P. M. & Schmidt, M. I. Evolution of diabetes in Brazil: prevalence data from the 2013 and 2019 Brazilian National Health Survey. Cad. Saude Publica 38, e00149321 (2022).

    Google Scholar 

  238. Aguero, M. R. et al. Prevalence and mortality from diabetes in Cuba during the 2010–2019 decade. Rev. Haban. Cienc. Méd. 21, e4239 (2022).

    Google Scholar 

  239. Weng, J. et al. Incidence of type 1 diabetes in China, 2010–13: population based study. BMJ 360, j5295 (2018).

    PubMed  PubMed Central  Google Scholar 

  240. Tang, X. et al. Prevalence and identification of type 1 diabetes in Chinese adults with newly diagnosed diabetes. Diabetes Metab. Syndr. Obes. 12, 1527–1541 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  241. Liu, J. et al. Trends in the incidence of diabetes mellitus: results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health 20, 1415 (2020).

    PubMed  PubMed Central  Google Scholar 

  242. Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin. J. Diabetes Mellitus 13, 315–409 (2021).

    Google Scholar 

  243. Li, Y., Guo, C. & Cao, Y. Secular incidence trends and effect of population aging on mortality due to type 1 and type 2 diabetes mellitus in China from 1990 to 2019: findings from the Global Burden of Disease Study 2019. BMJ Open Diabetes Res. Care 9, e002529 (2021).

    PubMed  PubMed Central  Google Scholar 

  244. Wang, H. et al. IDF Diabetes Atlas: estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res Clin. Pract. 183, 109050 (2022).

    PubMed  Google Scholar 

  245. Gao, C., Sun, X., Lu, L., Liu, F. & Yuan, J. Prevalence of gestational diabetes mellitus in mainland China: a systematic review and meta-analysis. J. Diabetes Investig. 10, 154–162 (2019).

    PubMed  CAS  Google Scholar 

  246. Nkonge, K. M., Nkonge, D. K. & Nkonge, T. N. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin. Diabetes Endocrinol. 6, 20 (2020).

    PubMed  PubMed Central  Google Scholar 

  247. Chen, Y. et al. Prevalence of maturity-onset diabetes of the young in phenotypic type 2 diabetes in young adults: a nationwide, multi-center, cross-sectional survey in China. Chin. Med. J. 136, 56–64 (2023).

    PubMed  PubMed Central  Google Scholar 

  248. Bommer, C. et al. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 5, 423–430 (2017).

    PubMed  Google Scholar 

  249. Liu, X., Zhang, L. & Chen, W. Trends in economic burden of type 2 diabetes in China: based on longitudinal claim data. Front. Public Health 11, 1062903 (2023).

    PubMed  PubMed Central  Google Scholar 

  250. Wang, F. et al. Mortality and years of life lost in diabetes mellitus and its subcategories in china and its provinces, 2005–2020. J. Diabetes Res. 2022, 1609267 (2022).

    PubMed  PubMed Central  Google Scholar 

  251. Safiri, S. et al. Prevalence, deaths and disability-adjusted-life-years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990–2019: results from the Global Burden of Disease Study 2019. Front. Endocrinol. 13, 838027 (2022).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFA1004804), Shanghai Municipal Key Clinical Specialty and Shanghai Research Center for Endocrine and Metabolic Diseases (2022ZZ01002), Shanghai Key Discipline of Public Health Grants Award (GWVI-11.1-20) and the Sanming Project of Medicine in Shenzhen (SZSM202311019). We acknowledge the support of the Hong Kong Genome Institute for the genetic/genomic research of diabetes and its complications in the Hong Kong Chinese population.

Author information

Authors and Affiliations

Authors

Contributions

W.J., J.C.C., T.Y.W. and E.B.F. researched data for the article and wrote, reviewed and edited the manuscript.

Corresponding author

Correspondence to Weiping Jia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Yanina-Yasmin Pesch, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Chan, J.C., Wong, T.Y. et al. Diabetes in China: epidemiology, pathophysiology and multi-omics. Nat Metab 7, 16–34 (2025). https://doi.org/10.1038/s42255-024-01190-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-024-01190-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing