Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The time is now: accounting for time-of-day effects to improve reproducibility and translation of metabolism research

Abstract

The constant expansion of the field of metabolic research has led to more nuanced and sophisticated understanding of the complex mechanisms that underlie metabolic functions and diseases. Collaborations with scientists of various fields such as neuroscience, immunology and drug discovery have further enhanced the ability to probe the role of metabolism in physiological processes. However, many behaviours, endocrine and biochemical processes, and the expression of genes, proteins and metabolites have daily ~24-h biological rhythms and thus peak only at specific times of the day. This daily variation can lead to incorrect interpretations, lack of reproducibility across laboratories and challenges in translating preclinical studies to humans. In this Review, we discuss the biological, environmental and experimental factors affecting circadian rhythms in rodents, which can in turn alter their metabolic pathways and the outcomes of experiments. We recommend that these variables be duly considered and suggest best practices for designing, analysing and reporting metabolic experiments in a circadian context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Daily biological rhythms at various organizational levels.
Fig. 2: Schematic representation of the peaks of various hormones in the serum in diurnal humans and nocturnal rodents.
Fig. 3: Factors affecting circadian rhythms and metabolic outcomes.
Fig. 4: Various scenarios demonstrating how the timing of experiments or sample collection can affect conclusions.
Fig. 5: Examples of how ignoring the reporting of sample collection time (or using single-time point measurements) can lead to incorrect experimental conclusions.

Similar content being viewed by others

References

  1. Percie du Sert, N. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nelson, R. J. et al. Time of day as a critical variable in biology. BMC Biol. 20, 142 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. la Fleur, S. E., Kalsbeek, A., Wortel, J., Fekkes, M. L. & Buijs, R. M. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50, 1237–1243 (2001).

    Article  PubMed  Google Scholar 

  4. Zimmet, P. Z., Wall, J. R., Rome, R., Stimmler, L. & Jarrett, R. J. Diurnal variation in glucose tolerance: associated changes in plasma insulin, growth hormone, and non-esterified fatty acids. Br. Med. J. 1, 485–488 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klerman, E. B. et al. Keeping an eye on circadian time in clinical research and medicine. Clin. Transl. Med. 12, e1131 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Hatori, M. & Panda, S. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol. Med. 16, 435–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ono, D. et al. The suprachiasmatic nucleus at 50: looking back, then looking forward. J. Biol. Rhythms 39, 135–165 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Todd, W. D. et al. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat. Commun. 11, 4410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saini, C. et al. Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev. 27, 1526–1536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349–1354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Mukherji, A. et al. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc. Natl Acad. Sci. USA 112, E6691–E6698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vollmers, C. et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl Acad. Sci. USA 106, 21453–21458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Izumo, M. et al. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. eLife 3, e04617 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rao, F. & Xue, T. Circadian-independent light regulation of mammalian metabolism. Nat. Metab. 6, 1000–1007 (2024).

    Article  PubMed  Google Scholar 

  18. Panda, S. Circadian physiology of metabolism. Science 354, 1008–1015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chouchani, E. T. & Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 1, 189–200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bideyan, L., Nagari, R. & Tontonoz, P. Hepatic transcriptional responses to fasting and feeding. Genes Dev. 35, 635–657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hui, S. et al. Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petrenko, V. et al. The core clock transcription factor BMAL1 drives circadian beta-cell proliferation during compensatory regeneration of the endocrine pancreas. Genes Dev. 34, 1650–1665 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stenvers, D. J., Scheer, F., Schrauwen, P., la Fleur, S. E. & Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15, 75–89 (2018).

    Article  Google Scholar 

  24. Challet, E. Keeping circadian time with hormones. Diabetes Obes. Metab. 17, 76–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Martchenko, A., Martchenko, S. E., Biancolin, A. D. & Brubaker, P. L. Circadian rhythms and the gastrointestinal tract: relationship to metabolism and gut hormones. Endocrinology 161, bqaa167 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Voigt, R. M., Forsyth, C. B. & Keshavarzian, A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev. Gastroenterol. Hepatol. 13, 411–424 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao, R. mTOR signaling, translational control, and the circadian clock. Front. Genet. 9, 367 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, S. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502, 550–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guan, D. et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 174, 831–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perino, A., Demagny, H., Velazquez-Villegas, L. & Schoonjans, K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 101, 683–731 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Yeung, J. & Naef, F. Rhythms of the genome: circadian dynamics from chromatin topology, tissue-specific gene expression, to behavior. Trends Genet. 34, 915–926 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Mermet, J., Yeung, J. & Naef, F. Systems chronobiology: global analysis of gene regulation in a 24-hour periodic world. Cold Spring Harb. Perspect. Biol. 9, a028720 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim, Y. H. & Lazar, M. A. Transcriptional control of circadian rhythms and metabolism: a matter of time and space. Endocr. Rev. 41, 707–732 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lim, C. & Allada, R. Emerging roles for post-transcriptional regulation in circadian clocks. Nat. Neurosci. 16, 1544–1550 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, S. A. Circadian metabolism: from mechanisms to metabolomics and medicine. Trends Endocrinol. Metab. 27, 415–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Adamovich, Y., Dandavate, V. & Asher, G. Circadian clocks’ interactions with oxygen sensing and signalling. Acta Physiol. 234, e13770 (2022).

    Article  CAS  Google Scholar 

  37. Liu, X., Cai, Y. D. & Chiu, J. C. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J. Biol. Chem. 300, 105616 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Chaix, A., Zarrinpar, A. & Panda, S. The circadian coordination of cell biology. J. Cell Biol. 215, 15–25 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aviram, R., Adamovich, Y. & Asher, G. Circadian organelles: rhythms at all scales. Cells 10, 2447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manella, G. & Asher, G. The circadian nature of mitochondrial biology. Front. Endocrinol. 7, 162 (2016).

    Article  Google Scholar 

  41. Neufeld-Cohen, A. et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc. Natl Acad. Sci. USA 113, E1673–E1682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Masri, S. et al. Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc. Natl Acad. Sci. USA 110, 3339–3344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aguilar-Lopez, B. A., Moreno-Altamirano, M. M. B., Dockrell, H. M., Duchen, M. R. & Sanchez-Garcia, F. J. Mitochondria: an integrative hub coordinating circadian rhythms, metabolism, the microbiome, and immunity. Front. Cell Dev. Biol. 8, 51 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ma, D., Li, S., Molusky, M. M. & Lin, J. D. Circadian autophagy rhythm: a link between clock and metabolism? Trends Endocrinol. Metab. 23, 319–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Juste, Y. R. et al. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat. Cell Biol. 23, 1255–1270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Welsh, D. K., Yoo, S. H., Liu, A. C., Takahashi, J. S. & Kay, S. A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14, 2289–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Brown, S. A., Zumbrunn, G., Fleury-Olela, F., Preitner, N. & Schibler, U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12, 1574–1583 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Yagita, K. & Okamura, H. Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett. 465, 79–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Brown, S. A. et al. Molecular insights into human daily behavior. Proc. Natl Acad. Sci. USA 105, 1602–1607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manella, G., Aizik, D., Aviram, R., Golik, M. & Asher, G. Circa-SCOPE: high-throughput live single-cell imaging method for analysis of circadian clock resetting. Nat. Commun. 12, 5903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwartz, W. J. & Zimmerman, P. Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J. Neurosci. 10, 3685–3694 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kopp, C. et al. Effects of a daylight cycle reversal on locomotor activity in several inbred strains of mice. Physiol. Behav. 63, 577–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Moore, T. M. et al. Conserved multi-tissue transcriptomic adaptations to exercise training in humans and mice. Cell Rep. 42, 112499 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reiter, R. J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12, 151–180 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Cipolla-Neto, J. & Amaral, F. G. D. Melatonin as a hormone: new physiological and clinical insights. Endocr. Rev. 39, 990–1028 (2018).

    Article  PubMed  Google Scholar 

  58. Persaud, S. J. & Jones, P. M. A wake-up call for type 2 diabetes? N. Engl. J. Med. 375, 1090–1092 (2016).

    Article  PubMed  Google Scholar 

  59. Karamitri, A. & Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat. Rev. Endocrinol. 15, 105–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Goto, M., Oshima, I., Tomita, T. & Ebihara, S. Melatonin content of the pineal gland in different mouse strains. J. Pineal Res. 7, 195–204 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Roseboom, P. H. et al. Natural melatonin ‘knockdown’ in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Brain Res. Mol. Brain Res. 63, 189–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Enriquez, J. A. Mind your mouse strain. Nat. Metab. 1, 5–7 (2019).

    Article  PubMed  Google Scholar 

  63. Buckley, T. N. et al. High-fat feeding disrupts daily eating behavior rhythms in obesity-prone but not in obesity-resistant male inbred mouse strains. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320, R619–R629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lempiainen, P. A., Ylitalo, A., Huikuri, H., Kesaniemi, Y. A. & Ukkola, O. H. Non-dipping blood pressure pattern is associated with cardiovascular events in a 21-year follow-up study. J. Hum. Hypertens. 38, 444–451 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kudo, T. et al. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia 47, 1425–1436 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Hou, T. et al. Time-restricted feeding protects the blood pressure circadian rhythm in diabetic mice. Proc. Natl Acad. Sci. USA 118, e2015873118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, T. et al. High-throughput discovery of genetic determinants of circadian misalignment. PLoS Genet. 16, e1008577 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, G. et al. Systemic PPARγ deletion impairs circadian rhythms of behavior and metabolism. PLoS ONE 7, e38117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Canaple, L. et al. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor a defines a novel positive feedback loop in the rodent liver circadian clock.Mol. Endocrinol. 20, 1715–1727 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J. D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447, 477–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Hong, H. K. et al. Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice. Genes Dev. 32, 1367–1379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shen, Y. et al. NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genet. 17, e1009933 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Duncan, M. J. et al. Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APP × PS1 knock-in mice, a model for Alzheimer’s disease. Exp. Neurol. 236, 249–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Krizo, J. A. & Mintz, E. M. Sex differences in behavioral circadian rhythms in laboratory rodents. Front. Endocrinol. 5, 234 (2014).

    Google Scholar 

  75. Alvord, V. M., Kantra, E. J. & Pendergast, J. S. Estrogens and the circadian system. Semin. Cell Dev. Biol. 126, 56–65 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Alvord, V. M. & Pendergast, J. S. The estrous cycle coordinates the circadian rhythm of eating behavior in mice. J. Biol. Rhythms 39, 413–422 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Palmisano, B. T., Stafford, J. M. & Pendergast, J. S. High-fat feeding does not disrupt daily rhythms in female mice because of protection by ovarian hormones. Front. Endocrinol. 8, 44 (2017).

    Article  Google Scholar 

  78. Weger, B. D. et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29, 362–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakamura, T. J. et al. Influence of the estrous cycle on clock gene expression in reproductive tissues: effects of fluctuating ovarian steroid hormone levels. Steroids 75, 203–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iwasaki-Sekino, A., Mano-Otagiri, A., Ohata, H., Yamauchi, N. & Shibasaki, T. Gender differences in corticotropin and corticosterone secretion and corticotropin-releasing factor mRNA expression in the paraventricular nucleus of the hypothalamus and the central nucleus of the amygdala in response to footshock stress or psychological stress in rats. Psychoneuroendocrinology 34, 226–237 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Weinert, D. Age-dependent changes of the circadian system. Chronobiol. Int. 17, 261–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Welsh, D. K., Richardson, G. S. & Dement, W. C. Effect of age on the circadian pattern of sleep and wakefulness in the mouse. J. Gerontol. 41, 579–586 (1986).

    Article  CAS  PubMed  Google Scholar 

  83. Valentinuzzi, V. S., Scarbrough, K., Takahashi, J. S. & Turek, F. W. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am. J. Physiol. 273, R1957–R1964 (1997).

    CAS  PubMed  Google Scholar 

  84. Buresova, M., Benesova, O. & Illnerova, H. Aging alters resynchronization of the circadian system in rats after a shift of the light–dark cycle. Experientia 46, 75–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Davidson, A. J. et al. Chronic jet-lag increases mortality in aged mice. Curr. Biol. 16, R914–R916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Acosta-Rodriguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Speakman, J. R. & Keijer, J. Not so hot: optimal housing temperatures for mice to mimic the thermal environment of humans. Mol. Metab. 2, 5–9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fischer, A. W., Cannon, B. & Nedergaard, J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol. Metab. 7, 161–170 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Ganeshan, K. & Chawla, A. Warming the mouse to model human diseases. Nat. Rev. Endocrinol. 13, 458–465 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kajimura, S. & Spiegelman, B. M. Confounding issues in the ‘humanized’ BAT of mice. Nat. Metab. 2, 303–304 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rabearivony, A. et al. Housing temperature affects the circadian rhythm of hepatic metabolism and clock genes. J. Endocrinol. 247, 183–195 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Skop, V. et al. Mouse thermoregulation: introducing the concept of the thermoneutral point. Cell Rep. 31, 107501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Keijer, J., Li, M. & Speakman, J. R. What is the best housing temperature to translate mouse experiments to humans? Mol. Metab. 25, 168–176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fischer, A. W., Cannon, B. & Nedergaard, J. The answer to the question ‘what is the best housing temperature to translate mouse experiments to humans?’ is: thermoneutrality. Mol. Metab. 26, 1–3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Keijer, J., Li, M. & Speakman, J. R. To best mimic human thermal conditions, mice should be housed slightly below thermoneutrality. Mol. Metab. 26, 4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Manzanares, G., Brito-da-Silva, G. & Gandra, P. G. Voluntary wheel running: patterns and physiological effects in mice. Braz. J. Med. Biol. Res. 52, e7830 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wolff, G. & Esser, K. A. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med. Sci. Sports Exerc. 44, 1663–1670 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yasumoto, Y., Nakao, R. & Oishi, K. Free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice. PLoS ONE 10, e0116476 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Schroeder, A. M. et al. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice. J. Physiol. 590, 6213–6226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pendergast, J. S., Branecky, K. L., Huang, R., Niswender, K. D. & Yamazaki, S. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior. Front. Psychol. 5, 177 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Karamihalev, S., Flachskamm, C., Eren, N., Kimura, M. & Chen, A. Social context and dominance status contribute to sleep patterns and quality in groups of freely-moving mice. Sci. Rep. 9, 15190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Robbers, Y., Tersteeg, M. M. H., Meijer, J. H. & Coomans, C. P. Group housing and social dominance hierarchy affect circadian activity patterns in mice. R. Soc. Open Sci. 8, 201985 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ota, S. M., Kong, X., Hut, R., Suchecki, D. & Meerlo, P. The impact of stress and stress hormones on endogenous clocks and circadian rhythms. Front. Neuroendocrinol. 63, 100931 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Tahara, Y. et al. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress. Sci. Rep. 5, 11417 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Manno, F. A. M. et al. Environmental enrichment leads to behavioral circadian shifts enhancing brain-wide functional connectivity between sensory cortices and eliciting increased hippocampal spiking. NeuroImage 252, 119016 (2022).

    Article  PubMed  Google Scholar 

  106. Peirson, S. N., Brown, L. A., Pothecary, C. A., Benson, L. A. & Fisk, A. S. Light and the laboratory mouse. J. Neurosci. Methods 300, 26–36 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Small, L. et al. Seasonal light hours modulate peripheral clocks and energy metabolism in mice. Cell Metab. 35, 1722–1735 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Fonken, L. K. et al. Light at night increases body mass by shifting the time of food intake. Proc. Natl Acad. Sci. USA 107, 18664–18669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, S., Zhang, Y., Zhang, W., Chen, S. & Liu, C. Chronic exposure to green light aggravates high-fat diet-induced obesity and metabolic disorders in male mice. Ecotoxicol. Environ. Saf. 178, 94–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Lucas, R. J. et al. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol. 22, e3002535 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kohsaka, A. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6, 414–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Pendergast, J. S. et al. High-fat diet acutely affects circadian organisation and eating behavior. Eur. J. Neurosci. 37, 1350–1356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Mendoza, J., Pevet, P. & Challet, E. High-fat feeding alters the clock synchronization to light. J. Physiol. 586, 5901–5910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chaix, A., Deota, S., Bhardwaj, R., Lin, T. & Panda, S. Sex- and age-dependent outcomes of 9-hour time-restricted feeding of a Western high-fat high-sucrose diet in C57BL/6J mice. Cell Rep. 36, 109543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Benegiamo, G. et al. The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression. J. Exp. Med. 220, e20221738 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Montgomery, M. K. et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56, 1129–1139 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Bachmann, A. M. et al. Genetic background and sex control the outcome of high-fat diet feeding in mice. iScience 25, 104468 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chaix, A., Manoogian, E. N. C., Melkani, G. C. & Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr. 39, 291–315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ikeda, Y. et al. Glucagon and/or IGF-1 production regulates resetting of the liver circadian clock in response to a protein or amino acid-only diet. EBioMedicine 28, 210–224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Oishi, K. et al. Ketogenic diet disrupts the circadian clock and increases hypofibrinolytic risk by inducing expression of plasminogen activator inhibitor-1. Arterioscler. Thromb. Vasc. Biol. 29, 1571–1577 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Tognini, P. et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab. 26, 523–538 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Acosta-Rodriguez, V. A., de Groot, M. H. M., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 26, 267–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Acosta-Rodriguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376, 1192–1202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pendergast, J. S. & Yamazaki, S. The mysterious food-entrainable oscillator: insights from mutant and engineered mouse models. J. Biol. Rhythms 33, 458–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xin, H. et al. A multi-tissue multi-omics analysis reveals distinct kineztics in entrainment of diurnal transcriptomes by inverted feeding. iScience 24, 102335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Froy, O., Chapnik, N. & Miskin, R. Effect of intermittent fasting on circadian rhythms in mice depends on feeding time. Mech. Ageing Dev. 130, 154–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Frazier, K. & Chang, E. B. Intersection of the gut microbiome and circadian rhythms in metabolism. Trends Endocrinol. Metab. 31, 25–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Frazier, K. et al. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction. Cell Host Microbe 30, 809–823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Murakami, M. et al. Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Rep. 17, 1292–1303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tahara, Y. et al. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci. Rep. 8, 1395 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Montagner, A. et al. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Sci. Rep. 6, 20127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Smith, J. G. et al. Antibiotic-induced microbiome depletion remodels daily metabolic cycles in the brain. Life Sci. 303, 120601 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Allaband, C. et al. Time of sample collection is critical for the replicability of microbiome analyses. Nat. Metab. 6, 1282–1293 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zarrinpar, A. et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun. 9, 2872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gabriel, B. M. & Zierath, J. R. Circadian rhythms and exercise — re-setting the clock in metabolic disease. Nat. Rev. Endocrinol. 15, 197–206 (2019).

    Article  PubMed  Google Scholar 

  136. Martin, R. A., Viggars, M. R. & Esser, K. A. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat. Rev. Endocrinol. 19, 272–284 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Shirai, H., Oishi, K., Kudo, T., Shibata, S. & Ishida, N. PPARα is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders. Biochem. Biophys. Res. Commun. 357, 679–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Antoch, M. P. & Kondratov, R. V. Pharmacological modulators of the circadian clock as potential therapeutic drugs: focus on genotoxic/anticancer therapy. In Circadian Clocks. Handbook of Experimental Pharmacology Vol. 217 (eds Kramer, A. & Merrow, M.) 289–309 (Springer, 2013).

  139. Tamai, T. K. et al. Identification of circadian clock modulators from existing drugs. EMBO Mol. Med. 10, e8724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Crosby, P. et al. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177, 896–909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Weger, M., Weger, B. D. & Gachon, F. Understanding circadian dynamics: current progress and future directions for chronobiology in drug discovery. Expert Opin. Drug Discov. 18, 893–901 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Manella, G. et al. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc. Natl Acad. Sci. USA 117, 779–786 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Koritala, B. S. C. et al. Intermittent hypoxia alters the circadian expression of clock genes in mouse brain and liver. Genes 12, 1627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Koritala, B. S. C. et al. Obstructive sleep apnea in a mouse model is associated with tissue-specific transcriptomic changes in circadian rhythmicity and mean 24-hour gene expression. PLoS Biol. 21, e3002139 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Niu, L. et al. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology. Brain Pathol. 32, e13028 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Takahashi, K. et al. Chronic mild stress alters circadian expressions of molecular clock genes in the liver. Am. J. Physiol. Endocrinol. Metab. 304, E301–E309 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Logan, R. W. et al. Chronic stress induces brain region-specific alterations of molecular rhythms that correlate with depression-like behavior in mice. Biol. Psychiatry 78, 249–258 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Miyazaki, K., Itoh, N., Ohyama, S., Kadota, K. & Oishi, K. Continuous exposure to a novel stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep–wake cycles in mice. PLoS ONE 8, e55452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gil-Lozano, M., Mingomataj, E. L., Wu, W. K., Ridout, S. A. & Brubaker, P. L. Circadian secretion of the intestinal hormone GLP-1 by the rodent L cell. Diabetes 63, 3674–3685 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Kalsbeek, A. & Strubbe, J. H. Circadian control of insulin secretion is independent of the temporal distribution of feeding. Physiol. Behav. 63, 553–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Pak, H. H. et al. Non-canonical metabolic and molecular effects of calorie restriction are revealed by varying temporal conditions. Cell Rep. 43, 114663 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dantas Machado, A. C. et al. Diet and feeding pattern modulate diurnal dynamics of the ileal microbiome and transcriptome. Cell Rep. 40, 111008 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Parra-Vargas, M., Ramon-Krauel, M., Lerin, C. & Jimenez-Chillaron, J. C. Size does matter: litter size strongly determines adult metabolism in rodents. Cell Metab. 32, 334–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Yu, H. et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin. Chem. 57, 691–700 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Andersen, B., Beck-Nielsen, H. & Hojlund, K. Plasma FGF21 displays a circadian rhythm during a 72-h fast in healthy female volunteers. Clin. Endocrinol. 75, 514–519 (2011).

    Article  CAS  Google Scholar 

  156. Tong, X. et al. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J. Biol. Chem. 285, 36401–36409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fenzl, T., Flachskamm, C., Rossbauer, M., Deussing, J. M. & Kimura, M. Circadian rhythms of basal orexin levels in the hypothalamus are not influenced by an impaired corticotropin-releasing hormone receptor type 1 system. Behav. Brain Res. 203, 143–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Surya, S., Symons, K., Rothman, E. & Barkan, A. L. Complex rhythmicity of growth hormone secretion in humans. Pituitary 9, 121–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Bodosi, B. et al. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1071–R1079 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Sinha, M. K. et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J. Clin. Invest. 97, 1344–1347 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.G. receives funding from the Australian National Health and Medical Research Council (Synergy Grant 2019260), the National Institutes of Health (R01AG078241) and the Novo Nordisk Foundation (Hallas-Møller Ascending Investigator grant 0087882). Research in S.P.’s laboratory is supported by NIH grants AG068550 and CA258221, the Wu Tsai Human Performance Alliance and the Joe and Clara Tsai Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.D. and S.P. wrote the initial draft of the manuscript and led the revisions. All authors contributed to the content and organization of this Review; contributed to writing, editing and/or revising the manuscript; and approved the final version.

Corresponding author

Correspondence to Satchidananda Panda.

Ethics declarations

Competing interests

S.A.B. is a cofounder and scientific advisor of Ona Therapeutics. G.S.H. is a scientific advisory board member of Crescenta Biosciences. J.S.T. is a founder and scientific advisory board member of Synchronicity Pharma. J.D.R. is a paid adviser and/or stockholder in Colorado Research Partners, L.E.A.F. Pharmaceuticals, Faeth Therapeutics and Empress Therapeutics; a paid consultant of Pfizer; a founder and stockholder in Marea Therapeutics; and a founder, director and stockholder of Farber Partners, Raze Therapeutics and Sofro Pharmaceuticals. S.K. serves as a scientific advisory board member of Moonwalk Biosciences. V.D.L. has equity interest in L-Nutra, a company making medical food, and has filed patents related to fasting-mimicking diets and their medical use. M.A.L. is on the advisory board of Pfizer and serves on the advisory board and is a cofounder of Flare Therapeutics. E.V. is a scientific cofounder of Napa Therapeutics and BHB Therapeutics and serves on the scientific advisory board of Seneque. J.A. is a board member of NOV Metapharma, a founder and/or consultant for Vandria and Amprenta Therapeutics and consults for OrsoBio, MetroBiotech and Amazentis (now Timeline); none of these companies develop products regulating circadian activity. D.J.D. has served as a consultant or speaker within the past 12 months for Amgen, AstraZeneca, Boehringer Ingelheim, Kallyope, Novo Nordisk and Pfizer. S.P. is the author of the books the Circadian Code and the Circadian Diabetes Code and is a scientific advisor to Hooke London, Avadel and WndrHlth. Other authors have no conflict of interests to declare.

Peer review

Peer review information

Nature Metabolism thanks Kevin Koronowski, Annie Curtis and Min-Dian Li for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deota, S., Pendergast, J.S., Kolthur-Seetharam, U. et al. The time is now: accounting for time-of-day effects to improve reproducibility and translation of metabolism research. Nat Metab 7, 454–468 (2025). https://doi.org/10.1038/s42255-025-01237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-025-01237-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing