Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Incretin-based therapeutics for the treatment of neurodegenerative diseases

Abstract

Neurodegenerative diseases (NDDs) represent a heterogeneous group of disorders characterized by progressive neuronal loss, which results in significant deficits in memory, cognition, motor skills, and sensory functions. As the prevalence of NDDs rises, there is an urgent unmet need for effective therapies. Current drug development approaches primarily target single pathological features of the disease, which could explain the limited efficacy observed in late-stage clinical trials. Originally developed for the treatment of obesity and diabetes, incretin-based therapies, particularly long-acting GLP-1 receptor (GLP-1R) agonists and GLP-1R–gastric inhibitory polypeptide receptor (GIPR) dual agonists, are emerging as promising treatments for NDDs. Despite limited conclusive preclinical evidence, their pleiotropic ability to reduce neuroinflammation, enhance neuronal energy metabolism and promote synaptic plasticity positions them as potential disease-modifying NDD interventions. In anticipation of results from larger clinical trials, continued advances in next-generation incretin mimetics offer the potential for improved brain access and enhanced neuroprotection, paving the way for incretin-based therapies as a future cornerstone in the management of NDDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common hallmarks of neurodegenerative diseases offer therapeutic opportunities.
Fig. 2: Overview of established and potential disease-modifying effects of GLP-1R agonists.
Fig. 3: Expression of GLP-1R in NDD-relevant brain regions.
Fig. 4: Mechanisms of action of incretin mimetics in the brain.
Fig. 5: Emerging incretin-based therapies for NDDs.

Similar content being viewed by others

References

  1. Wilson, D. M. et al. Hallmarks of neurodegenerative diseases. Cell 186, 693–714 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Breijyeh, Z. & Karaman, R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25, 5789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 19, 1598–1695, (2023).

  4. WHO. Parkinson disease https://www.who.int/news-room/fact-sheets/detail/parkinson-disease (World Health Organization, 2023).

  5. Calabresi, P. et al. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14, 176 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kirkeby, A. et al. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson’s disease, STEM-PD. Cell Stem Cell 30, 1299–1314.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Hanzel, C. E. et al. Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol. Aging 35, 2249–2262 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2024. Alzheimers Dement. 10, e12465 (2024).

    Google Scholar 

  9. Drucker, D. J. The benefits of GLP-1 drugs beyond obesity. Science 385, 258–260 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Procaccini, C. et al. Role of metabolism in neurodegenerative disorders. Metabolism 65, 1376–1390 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ott, A. et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53, 1937–1942, (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Crane, P. K. et al. Glucose levels and risk of dementia. N. Engl. J. Med. 369, 540–548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hassing, L. B. et al. Overweight in midlife and risk of dementia: a 40-year follow-up study. Int. J. Obes. 33, 893–898 (2009).

    Article  CAS  Google Scholar 

  14. Kivipelto, M. et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol. 62, 1556–1560 (2005).

    Article  PubMed  Google Scholar 

  15. Beydoun, M. A., Beydoun, H. A. & Wang, Y. Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes. Rev. 9, 204–218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eskelinen, M. H. et al. Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int. J. Geriatr. Psychiatry 23, 741–747 (2008).

    Article  PubMed  Google Scholar 

  17. Kalmijn, S. et al. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol. 42, 776–782 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Han, K., Kim, B., Lee, S. H. & Kim, M. K. A nationwide cohort study on diabetes severity and risk of Parkinson disease. NPJ Parkinsons Dis. 9, 11 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Athauda, D. et al. The impact of type 2 diabetes in Parkinson’s disease. Mov. Disord. 37, 1612–1623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yue, X. et al. Risk of Parkinson disease in diabetes mellitus: an updated meta-analysis of population-based cohort studies. Medicine 95, e3549 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Golimstok, A. et al. Cardiovascular risk factors and frontotemporal dementia: a case-control study. Transl. Neurodegener. 3, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hou, W. H., Li, C. Y., Chang, H. H., Sun, Y. & Tsai, C. C. A population-based cohort study suggests an increased risk of multiple sclerosis incidence in patients with type 2 diabetes mellitus. J. Epidemiol. 27, 235–241 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Branigan, G. L., Torrandell-Haro, G., Vitali, F., Brinton, R. D. & Rodgers, K. Age and sex differences on anti-hyperglycemic medication exposure and risk of newly diagnosed multiple sclerosis in propensity score matched type 2 diabetics. Heliyon 8, e11196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Ovidio, F. et al. The role of pre-morbid diabetes on developing amyotrophic lateral sclerosis. Eur. J. Neurol. 25, 164–170 (2018).

    Article  PubMed  Google Scholar 

  25. Jawaid, A. et al. ALS disease onset may occur later in patients with pre-morbid diabetes mellitus. Eur. J. Neurol. 17, 733–739 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Tsai, C. P., Hu, C. & Lee, C. T. Finding diseases associated with amyotrophic lateral sclerosis: a total population-based case-control study. Amyotroph. Lateral Scler. Frontotemporal. Degener. 20, 82–89 (2019).

    Article  PubMed  Google Scholar 

  27. Sun, Y., Lu, C. J., Chen, R. C., Hou, W. H. & Li, C. Y. Risk of amyotrophic lateral sclerosis in patients with diabetes: a nationwide population-based cohort study. J. Epidemiol. 25, 445–451 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paganoni, S. et al. Pre-morbid type 2 diabetes mellitus is not a prognostic factor in amyotrophic lateral sclerosis. Muscle Nerve 52, 339–343 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mariosa, D., Kamel, F., Bellocco, R., Ye, W. & Fang, F. Association between diabetes and amyotrophic lateral sclerosis in Sweden. Eur. J. Neurol. 22, 1436–1442 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Gao, L., Cui, Z., Shen, L. & Ji, H. F. Shared genetic etiology between type 2 diabetes and Alzheimer’s disease identified by bioinformatics analysis. J. Alzheimers Dis. 50, 13–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Hao, K. et al. Shared genetic etiology underlying Alzheimer’s disease and type 2 diabetes. Mol. Aspects Med. 43–44, 66–76 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu, Z., Lin, Y., Li, X., Driver, J. A. & Liang, L. Shared genetic architecture between metabolic traits and Alzheimer’s disease: a large-scale genome-wide cross-trait analysis. Hum. Genet. 138, 271–285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeng, R. et al. Dissecting shared genetic architecture between obesity and multiple sclerosis. eBioMedicine 93, 104647 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bomfim, T. R. et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J. Clin. Invest. 122, 1339–1353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moloney, A. M. et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging 31, 224–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Bassil, F. et al. Impaired brain insulin signalling in Parkinson’s disease. Neuropathol. Appl. Neurobiol. 48, e12760 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Kellar, D. & Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19, 758–766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruiz-Pozo, V. A. et al. The Molecular mechanisms of the relationship between insulin resistance and Parkinson’s disease pathogenesis. Nutrients 15, 3585 (2023).

  39. Ayromlou, H. et al. Insulin resistance is associated with cognitive dysfunction in multiple sclerosis patients: a cross-sectional study. J. Neuroendocrinol. 35, e13288 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Milstein, J. L. & Ferris, H. A. The brain as an insulin-sensitive metabolic organ. Mol. Metab. 52, 101234 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szablewski, L. Brain glucose transporters: role in pathogenesis and potential targets for the treatment of Alzheimer’s disease. Int. J. Mol. Sci. 22, 8142 (2021).

  42. Sharma, M., Yadav, Y. & Dey, C. S. Neuronal insulin signaling and resistance: a balancing act of kinases and phosphatases. J. Endocrinol. 260, e230151 (2024).

  43. Zhao, W. Q. et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 22, 246–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Lourenco, M. V. et al. TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s beta-amyloid oligomers in mice and monkeys. Cell Metab. 18, 831–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Luciunaite, A. et al. Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. J. Neurochem. 155, 650–661 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Hotamisligil, G. S., Budavari, A., Murray, D. & Spiegelman, B. M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J. Clin. Invest. 94, 1543–1549 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pomytkin, I. et al. Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci. Ther. 24, 763–774 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carvalho, C. & Cardoso, S. Diabetes–Alzheimer’s disease link: targeting mitochondrial dysfunction and redox imbalance. Antioxid. Redox. Signal. 34, 631–649 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Schubert, M. et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc. Natl Acad. Sci. USA 101, 3100–3105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. García-Cáceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ferris, H. A. et al. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc. Natl Acad. Sci. USA 114, 1189–1194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, W. et al. Loss of insulin signaling in astrocytes exacerbates Alzheimer-like phenotypes in a 5xFAD mouse model. Proc. Natl Acad. Sci. USA 120, e2220684120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, W., Liu, X., Munoz, V. R. & Kahn, C. R. Loss of insulin signaling in microglia impairs cellular uptake of abeta and neuroinflammatory response exacerbating Alzheimer-like neuropathology. Preprint at bioRxiv https://doi.org/10.1101/2024.08.22.609112 (2024).

  54. Kwon, H. S. & Koh, S. H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9, 42 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Botella Lucena, P. & Heneka, M. T. Inflammatory aspects of Alzheimer’s disease. Acta Neuropathol. 148, 31 (2024).

    Article  PubMed  Google Scholar 

  56. Zhang, W., Xiao, D., Mao, Q. & Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target Ther. 8, 267 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tarkowski, E., Andreasen, N., Tarkowski, A. & Blennow, K. Intrathecal inflammation precedes development of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 74, 1200–1205 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. in t’ Veld, B. A. et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N. Engl. J. Med. 345, 1515–1521 (2001).

    Article  PubMed  Google Scholar 

  59. De Felice, F. G. & Ferreira, S. T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63, 2262–2272 (2014).

    Article  PubMed  Google Scholar 

  60. Elliott, R. et al. Glucagon-like peptide-1 (7–36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J. Endocrinol. 138, 159–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Drucker, D. J. & Holst, J. J. The expanding incretin universe: from basic biology to clinical translation. Diabetologia 66, 1765–1779 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. El, K. et al. GIP mediates the incretin effect and glucose tolerance by dual actions on α cells and β cells. Sci. Adv. 7, eabf1948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Turton, M. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liskiewicz, A. & Müller, T. D. Regulation of energy metabolism through central GIPR signaling. Peptides 176, 171198 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Finan, B. et al. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol. Med. 22, 359–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Mentlein, R., Gallwitz, B. & Schmidt, W. E. Dipeptidyl‐peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon‐like peptide‐1 (7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829–835 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Kusminski, C. M. et al. Transforming obesity: the advancement of multi-receptor drugs. Cell 187, 3829–3853 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Larsen, P. J., Tang-Christensen, M. & Holst, J. J. & Ørskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77, 257–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Trapp, S. & Richards, J. E. The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant? Curr. Opin. Pharmacol. 13, 964–969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cork, S. C. et al. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 4, 718–731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fukuda, M. The role of GIP receptor in the CNS for the pathogenesis of obesity. Diabetes 70, 1929–1937 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Adriaenssens, A. E. et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab. 30, 987–996.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaplan, A. M. & Vigna, S. R. Gastric inhibitory polypeptide (GIP) binding sites in rat brain. Peptides 15, 297–302 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Usdin, T., Mezey, E., Button, D., Brownstein, M. & Bonner, T. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 133, 2861–2870 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Trapp, S. & Brierley, D. I. Brain GLP‐1 and the regulation of food intake: GLP‐1 action in the brain and its implications for GLP‐1 receptor agonists in obesity treatment. Br. J. Pharmacol. 179, 557–570 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Fortin, S. M. et al. The locus coeruleus contributes to the anorectic, nausea, and autonomic physiological effects of glucagon-like peptide-1. Sci. Adv. 9, eadh0980 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Graham, D. L. et al. A novel mouse model of glucagon-like peptide-1 receptor expression: a look at the brain. J. Comp. Neurol. 528, 2445–2470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Smith, C. et al. A comparative transcriptomic analysis of glucagon-like peptide-1 receptor- and glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus. Appetite 174, 106022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Steuernagel, L. et al. HypoMap—a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 4, 1402–1419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tadross, J. A. et al. A comprehensive spatio-cellular map of the human hypothalamus. Nature 639, 708–716 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kurtzhals, P., Østergaard, S., Nishimura, E. & Kjeldsen, T. Derivatization with fatty acids in peptide and protein drug discovery. Nat. Rev. Drug Discov. 22, 59–80 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Knudsen, L. B. Inventing liraglutide, a glucagon-like peptide-1 analogue, for the treatment of diabetes and obesity. ACS Pharmacol. Transl. Sci. 2, 468–484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Knudsen, L. B. & Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 10, 155 (2019).

    Article  Google Scholar 

  86. Griffith, D. A. et al. A small-molecule oral agonist of the human glucagon-like peptide-1 receptor. J. Med. Chem. 65, 8208–8226 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wharton, S. et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 389, 877–888 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Z. J. et al. Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer’s disease via the GLP-1R/SIRT1/GLUT4 pathway. Neuropharmacology 240, 109716 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Qin, W. et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281, 21745–21754 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Xie, X.-Y., Mo, Z.-H., Chen, K., He, H.-H. & Xie, Y.-H. Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Med. Sci. Monit. 17, BR35 (2011).

    CAS  PubMed Central  Google Scholar 

  91. Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Gejl, M. et al. Blood–brain glucose transfer in Alzheimer’s disease: effect of GLP-1 analog treatment. Sci. Rep. 7, 17490 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fontanella, R. A. et al. Tirzepatide prevents neurodegeneration through multiple molecular pathways. J. Transl. Med. 22, 114 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Athauda, D. et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the Exenatide-PD Trial. JAMA Neurol 76, 420–429, (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Paladugu, L. et al. Liraglutide has anti-inflammatory and anti-amyloid properties in Streptozotocin-induced and 5xFAD mouse models of Alzheimer’s disease. Int. J. Mol. Sci. 22, 860 (2021).

  96. Hogan, A. E. et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia 57, 781–784 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Wong, C. K. et al. Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation. Cell Metab. 34, 1514–1531(2022).

    Article  CAS  PubMed  Google Scholar 

  98. Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17, 1481–1489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kahles, F. et al. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 63, 3221–3229 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Heng, T. S., Painter, M. W. & Immunological Genome Project, C. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Wong, C. K. et al. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 36, 130–143 (2023).

    Article  PubMed  Google Scholar 

  102. Wu, H. Y., Tang, X. Q., Mao, X. F. & Wang, Y. X. Autocrine interleukin-10 mediates glucagon-like peptide-1 receptor-induced spinal microglial beta-endorphin expression. J. Neurosci. 37, 11701–11714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kopp, K. O., Glotfelty, E. J., Li, Y. & Greig, N. H. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: implications for neurodegenerative disease treatment. Pharmacol. Res. 186, 106550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ammar, R. A., Mohamed, A. F., Kamal, M. M., Safar, M. M. & Abdelkader, N. F. Neuroprotective effect of liraglutide in an experimental mouse model of multiple sclerosis: role of AMPK/SIRT1 signaling and NLRP3 inflammasome. Inflammopharmacology 30, 919–934 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, S., Moon, M. & Park, S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J. Endocrinol. 202, 431–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, L., Zhang, L., Li, L. & Holscher, C. Neuroprotective effects of the novel GLP-1 long acting analogue semaglutide in the MPTP Parkinson’s disease mouse model. Neuropeptides 71, 70–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, L., Zhang, L., Li, L. & Holscher, C. Semaglutide is neuroprotective and reduces alpha-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. J. Parkinsons Dis. 9, 157–171 (2019).

    Article  PubMed  Google Scholar 

  110. Li, Y. et al. Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS ONE 7, e32008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Knippenberg, S., Thau, N., Dengler, R., Brinker, T. & Petri, S. Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS ONE 7, e36857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Verma, S. et al. Effects of once-weekly semaglutide 2.4 mg on C-reactive protein in adults with overweight or obesity (STEP 1, 2, and 3): exploratory analyses of three randomised, double-blind, placebo-controlled, phase 3 trials. eClinicalMedicine 55, 101737 (2023).

    Article  PubMed  Google Scholar 

  113. Wilson, J. M. et al. The dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist tirzepatide improves cardiovascular risk biomarkers in patients with type 2 diabetes: a post hoc analysis. Diabetes Obes. Metab. 24, 148–153 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Bomba, M. et al. Exenatide exerts cognitive effects by modulating the BDNF–TrkB neurotrophic axis in adult mice. Neurobiol. Aging 64, 33–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Bomba, M. et al. Exenatide reverts the high-fat-diet-induced impairment of BDNF signaling and inflammatory response in an animal model of Alzheimer’s disease. J. Alzheimers Dis. 70, 793–810 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Li, Y., Liu, W., Li, L. & Hölscher, C. D-Ala2-GIP-glu-PAL is neuroprotective in a chronic Parkinson’s disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation. Eur. J. Pharmacol. 797, 162–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McClean, P. L., Jalewa, J. & Holscher, C. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav. Brain Res. 293, 96–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. McClean, P. L. & Holscher, C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology 76, 57–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, X. et al. Exendin-4 antagonizes Aβ1–42-induced attenuation of spatial learning and memory ability. Exp. Ther. Med. 12, 2885–2892 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Perry, T. et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J. Pharmacol. Exp. Ther. 300, 958–966 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Bertilsson, G. et al. Peptide hormone exendin‐4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J. Neurosci. Res. 86, 326–338 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Ising, C. & Heneka, M. T. Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis. 9, 120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Watson, K. T. et al. Neural correlates of liraglutide effects in persons at risk for Alzheimer’s disease. Behav. Brain Res. 356, 271–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Perry, T., Haughey, N. J., Mattson, M. P., Egan, J. M. & Greig, N. H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther. 302, 881–888 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, W. et al. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 303, 42–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Jia, X. T. et al. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-beta peptide-induced impairment of spatial learning and memory in rats. Physiol. Behav. 159, 72–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Li, Y., Liu, W., Li, L. & Hölscher, C. Neuroprotective effects of a GIP analogue in the MPTP Parkinson’s disease mouse model. Neuropharmacology 101, 255–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Z. J. et al. Semaglutide promotes the transition of microglia from M1 to M2 type to reduce brain inflammation in APP/PS1/tau mice. Neuroscience 563, 222–234 (2024).

    Article  CAS  PubMed  Google Scholar 

  130. Yang, S. et al. Tirzepatide shows neuroprotective effects via regulating brain glucose metabolism in APP/PS1 mice. Peptides 179, 171271 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Yamamoto, E. A. et al. The perivascular space is a conduit for cerebrospinal fluid flow in humans: a proof-of-principle report. Proc. Natl Acad. Sci. USA 121, e2407246121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang, S. Y. et al. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer’s disease. Alzheimers Dement. 20, 3251–3269 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rasmussen, M. K., Mestre, H. & Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 17, 1016–1024 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Beschorner, N. & Nedergaard, M. Glymphatic system dysfunction in neurodegenerative diseases. Curr. Opin. Neurol. 37, 182–188 (2024).

    Article  CAS  PubMed  Google Scholar 

  135. Lohela, T. J., Lilius, T. O. & Nedergaard, M. The glymphatic system: implications for drugs for central nervous system diseases. Nat. Rev. Drug Discov. 21, 763–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Wu, W. et al. Modulation of glymphatic system by visual circuit activation alleviates memory impairment and apathy in a mouse model of Alzheimer’s disease. Nat. Commun. 16, 63 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Murdock, M. H. et al. Multisensory gamma stimulation promotes glymphatic clearance of amyloid. Nature 627, 149–156 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sasaki, K. et al. GLP-1 receptor signaling restores aquaporin 4 subcellular polarization in reactive astrocytes and promotes amyloid beta clearance in a mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 741, 151016 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Lv, C. et al. Cerebral glucagon-like peptide-1 receptor activation alleviates traumatic brain injury by glymphatic system regulation in mice. CNS Neurosci. Ther. 29, 3876–3888 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. During, M. J. et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9, 1173–1179 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. McClean, P. L., Parthsarathy, V., Faivre, E. & Holscher, C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci. 31, 6587–6594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Han, W. N. et al. Liraglutide protects against amyloid-beta protein-induced impairment of spatial learning and memory in rats. Neurobiol. Aging 34, 576–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Xiong, H. et al. The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice. J. Alzheimers Dis. 37, 623–635 (2013).

    Article  PubMed  Google Scholar 

  144. Hansen, H. H. et al. The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of Alzheimer’s disease. J. Alzheimers Dis. 46, 877–888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zheng, J. et al. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol. Metab. 47, 101180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, M. et al. Glucagon-like peptide-1 analogs mitigate neuroinflammation in Alzheimer’s disease by suppressing NLRP2 activation in astrocytes. Mol. Cell. Endocrinol. 542, 111529 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Cai, H. Y. et al. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid beta protein-induced impairments in rats. Neuroscience 277, 6–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, Y. et al. Semaglutide ameliorates Alzheimer’s disease and restores oxytocin in APP/PS1 mice and human brain organoid models. Biomed. Pharmacother. 180, 117540 (2024).

    Article  CAS  PubMed  Google Scholar 

  149. Chen, S. et al. Liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem. Res. 42, 2326–2335 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Qi, L. et al. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3beta pathway in an amyloid beta protein induced alzheimer disease mouse model. Eur. J. Pharmacol. 783, 23–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Guo, X. et al. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats. Front. Pharmacol. 14, 1146960 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, T. et al. A GLP-1/GIP/Gcg receptor triagonist improves memory behavior, as well as synaptic transmission, neuronal excitability and Ca2+ homeostasis in 3xTg-AD mice. Neuropharmacology 170, 108042 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Forny Germano, L. et al. The GLP-1 medicines semaglutide and tirzepatide do not alter disease-related pathology, behaviour or cognitive function in 5XFAD and APP/PS1 mice. Mol. Metab. 89, 102019 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gejl, M. et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 8, 108 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Cukierman-Yaffe, T. et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: an exploratory analysis of the REWIND trial. Lancet Neurol. 19, 582–590 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Norgaard, C. H. et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: Data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimers Dement. 8, e12268 (2022).

    Google Scholar 

  157. Edison, P. et al. Evaluation of liraglutide in the treatment of Alzheimer’s disease. Alzheimer’s Dement. 17, e057848 (2021).

    Article  Google Scholar 

  158. Li, Y. et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc. Natl Acad. Sci. USA 106, 1285–1290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Harkavyi, A. et al. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J. Neuroinflammation 5, 19 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yu, Y. W. et al. Glucose-dependent insulinotropic polypeptide mitigates 6-OHDA-induced behavioral impairments in Parkinsonian rats. Int. J. Mol. Sci. 19, 1153 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Feng, P. et al. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 133, 385–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Aviles-Olmos, I. et al. Exenatide and the treatment of patients with Parkinson’s disease. J. Clin. Invest. 123, 2730–2736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Aviles-Olmos, I. et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J. Parkinsons Dis. 4, 337–344 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Athauda, D. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390, 1664–1675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hogg, E. et al. A phase II, randomized, double-blinded, placebo-controlled trial of liraglutide in Parkinson’s disease. Lancet https://doi.org/10.2139/ssrn.4212371 (2022).

    Article  Google Scholar 

  166. Meissner, W. G. et al. Trial of lixisenatide in early Parkinson’s disease. N. Engl. J. Med. 390, 1176–1185 (2024).

    Article  CAS  PubMed  Google Scholar 

  167. Vijiaratnam, N. et al. Exenatide once a week versus placebo as a potential disease-modifying treatment for people with Parkinson’s disease in the UK: a phase 3, multicentre, double-blind, parallel-group, randomised, placebo-controlled trial. Lancet 405, 627–636 (2025).

    Article  CAS  PubMed  Google Scholar 

  168. McGarry, A. et al. Safety, tolerability, and efficacy of NLY01 in early untreated Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 23, 37–45 (2024).

    Article  CAS  PubMed  Google Scholar 

  169. Keerie, A. et al. The GLP-1 receptor agonist, liraglutide, fails to slow disease progression in SOD1(G93A) and TDP-43(Q331K) transgenic mouse models of ALS. Sci. Rep. 11, 17027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Motataianu, A. et al. Exploring the role of metabolic hormones in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 25, 5059 (2024).

  171. Kuyucu, E., Gumus, B., Erbas, O., Oltulu, F. & Bora, A. Exenatide promotes regeneration of injured rat sciatic nerve. Neural Regen. Res. 12, 637–643, (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yamamoto, K. et al. Therapeutic effect of exendin-4, a long-acting analogue of glucagon-like peptide-1 receptor agonist, on nerve regeneration after the crush nerve injury. BioMed Res. Int. 2013, 315848 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Takaku, S., Tsukamoto, M., Niimi, N., Yako, H. & Sango, K. Exendin-4 promotes schwann cell survival/migration and myelination in vitro. Int. J. Mol. Sci. 22, 2971 (2021).

  174. Lee, C. H. et al. Activation of glucagon-like peptide-1 receptor promotes neuroprotection in experimental autoimmune encephalomyelitis by reducing neuroinflammatory responses. Mol. Neurobiol. 55, 3007–3020 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. DellaValle, B. et al. Glucagon-like peptide-1 analog, liraglutide, delays onset of experimental autoimmune encephalitis in lewis rats. Front. Pharmacol. 7, 433 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Chiou, H. C. et al. Dulaglutide modulates the development of tissue-infiltrating TH1/TH17 cells and the pathogenicity of encephalitogenic TH1 cells in the central nervous system. Int. J. Mol. Sci. 20, 1584 (2019).

  177. Ong, L. K. Beyond thE Primary Infarction: Focus on Mechanisms Related to Secondary Neurodegeneration after Stroke. Int. J. Mol. Sci. 23, 16024 (2022).

  178. Verges, B. et al. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. Cardiovasc. Diabetol. 21, 242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Teramoto, S. et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 31, 1696–1705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Basalay, M. V., Davidson, S. M. & Yellon, D. M. Neuroprotection in rats following ischaemia-reperfusion injury by GLP-1 analogues-liraglutide and semaglutide. Cardiovasc. Drugs Ther. 33, 661–667 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Marlet, I. R., Olmestig, J. N. E., Vilsboll, T., Rungby, J. & Kruuse, C. Neuroprotective mechanisms of glucagon-like peptide-1-based therapies in ischaemic stroke: a systematic review based on pre-clinical studies. Basic Clin. Pharmacol. Toxicol. 122, 559–569 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Maskery, M. P. et al. Glucagon-like peptide-1 receptor agonists as neuroprotective agents for ischemic stroke: a systematic scoping review. J. Cereb. Blood Flow Metab. 41, 14–30 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Bellastella, G. et al. Glucagon-like peptide-1 receptor agonists and prevention of stroke systematic review of cardiovascular outcome trials with meta-analysis. Stroke 51, 666–669 (2020).

    Article  PubMed  Google Scholar 

  184. Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Lin, D. S., Lee, J. K. & Chen, W. J. Major adverse cardiovascular and limb events in patients with diabetes treated with GLP-1 receptor agonists vs DPP-4 inhibitors. Diabetologia 64, 1949–1962 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Bassil, F. et al. Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain 140, 1420–1436 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Salameh, T. S., Rhea, E. M., Talbot, K. & Banks, W. A. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer’s and Parkinson’s disease therapeutics. Biochem. Pharmacol. 180, 114187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Rhea, E. M. et al. Brain uptake pharmacokinetics of albiglutide, dulaglutide, tirzepatide, and DA5-CH in the search for new treatments of Alzheimer’s and Parkinson’s diseases. Tissue Barriers 12, 2292461 (2023).

  189. Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124, 4473–4488 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gabery, S. et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 5, e133429 (2020).

  191. Skovbjerg, G. et al. Uncovering CNS access of lipidated exendin-4 analogues by quantitative whole-brain 3D light sheet imaging. Neuropharmacology 238, 109637 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Adriaenssens, A. et al. Hypothalamic and brainstem glucose-dependent insulinotropic polypeptide receptor neurons employ distinct mechanisms to affect feeding. JCI Insight 8, e164921 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Garcia-Caceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Imbernon, M. et al. Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab. 34, 1054–1063(2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hisadome, K., Reimann, F., Gribble, F. M. & Trapp, S. Leptin directly depolarizes preproglucagon neurons in the nucleus tractus solitarius: electrical properties of glucagon-like peptide 1 neurons. Diabetes 59, 1890–1898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Brierley, D. I. et al. Central and peripheral GLP-1 systems independently suppress eating. Nat. Metab. 3, 258–273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Llewellyn-Smith, I. J., Reimann, F., Gribble, F. M. & Trapp, S. Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 180, 111–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  199. Hsu, T. M., Hahn, J. D., Konanur, V. R., Lam, A. & Kanoski, S. E. Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission. Neuropsychopharmacology 40, 327–337 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Montaner, M. et al. A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion. Nat. Commun. 15, 6941 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Thiebaud, N. et al. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel. J. Physiol. 594, 2607–2628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zueco, J. A. et al. Coexpression of glucagon-like peptide-(GLP-1) receptor, vasopressin, and oxytocin mRNAs in neurons of the rat hypothalamic supraoptic and paraventricular nuclei: effect of GLP-17–36 amide on vasopressin and oxytocin release. J. Neurochem. 72, 10–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  203. Lin, Y. T., Chen, C. C., Huang, C. C., Nishimori, K. & Hsu, K. S. Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat. Commun. 8, 537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Chaudhuri, A. et al. Exenatide exerts a potent antiinflammatory effect. J. Clin. Endocrinol. Metab. 97, 198–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Kappe, C., Tracy, L. M., Patrone, C., Iverfeldt, K. & Sjoholm, A. GLP-1 secretion by microglial cells and decreased CNS expression in obesity. J. Neuroinflammation 9, 276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).

  207. Cummings, J. L. et al. Evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating efficacy, safety, and tolerability of semaglutide in early-stage symptomatic Alzheimer’s disease. Alzheimers Res. Ther. 17, 14 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Borner, T. et al. GIP receptor agonism attenuates GLP-1 receptor agonist–induced nausea and emesis in preclinical models. Diabetes 70, 2545–2553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yusta, B. et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes 64, 2537–2549 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Quarta, C. et al. Molecular integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity. Cell Metab. 26, 620–632 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Decarie-Spain, L. et al. GLP-1/dexamethasone inhibits food reward without inducing mood and memory deficits in mice. Neuropharmacology 151, 55–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Finan, B. et al. Targeted estrogen delivery reverses the metabolic syndrome. Nat. Med. 18, 1847–1856 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ge, F. et al. Ovariectomy induces microglial cell activation and inflammatory response in rat prefrontal cortices to accelerate the chronic unpredictable stress‐mediated anxiety and depression. BioMed Res. Int. 2020, 3609758 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Rentzeperi, E., Pegiou, S., Koufakis, T., Grammatiki, M. & Kotsa, K. Sex differences in response to treatment with glucagon-like peptide 1 receptor agonists: opportunities for a tailored approach to diabetes and obesity care. J. Pers. Med. 12, 454 (2022).

  216. Bianco, A., Antonacci, Y. & Liguori, M. Sex and gender differences in neurodegenerative diseases: challenges for therapeutic opportunities. Int. J. Mol. Sci. 24, 6354 (2023).

  217. Liu, J., Chang, L., Song, Y., Li, H. & Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci. 13, 43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Petersen, J. et al. GLP-1-directed NMDA receptor antagonism for obesity treatment. Nature 629, 1133–1141 (2024).

  219. Wu, D. et al. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduct. Target.Ther. 8, 217 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discovery. 20, 362–383 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Godschall, E. N. et al. A brain reward circuit inhibited by next-generation weight loss drugs. Preprint at bioRxiv https://doi.org/10.1101/2024.12.12.628169 (2024).

Download references

Acknowledgements

We thank previous and current members of the Clemmensen Group for scientific discussions. This work was supported by the Novo Nordisk Foundation (NNF22OC0073778). The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent research centre, based at the University of Copenhagen, Denmark, and is partially funded by an unconditional donation from the Novo Nordisk Foundation (www.cbmr.ku.dk) (grant numbers NNF18CC0034900 and NNF23SA0084103).

Author information

Authors and Affiliations

Authors

Contributions

A.V. and C.C. drafted the manuscript and created the visual elements; M.T.H. critically revised the manuscript for important intellectual content. All authors provided input and approved the final version of the manuscript.

Corresponding author

Correspondence to Christoffer Clemmensen.

Ethics declarations

Competing interests

C.C. is a cofounder of Ousia Pharma, a biotechnology company developing therapeutics for treatment of obesity. M.T.H. is a scientific advisory board member at Alector the Dementia Discovery Fund and Muna Therapeutics and has received honoraria for oral presentations from Pfizer, Novartis, Roche, Abbvie and Biogen. A.V. does not declare any competing interests.

Peer review

Peer review information

Nature Metabolism thanks Carol Troy, Stefan Trapp, Xu Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vear, A., Heneka, M.T. & Clemmensen, C. Incretin-based therapeutics for the treatment of neurodegenerative diseases. Nat Metab 7, 679–696 (2025). https://doi.org/10.1038/s42255-025-01263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-025-01263-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research