Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiome and cancer: from tumorigenesis to therapy

Abstract

The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome’s involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota–immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gut microbiota in general, main metabolites produced and their targets.
Fig. 2: Gut microbiome-based therapies against cancer and their impact on treatments.
Fig. 3: Gut microbiota metabolites and immunity.

Similar content being viewed by others

References

  1. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Cani, P. D. & Van Hul, M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat. Rev. Gastroenterol. Hepatol. 21, 164–183 (2023).

  3. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article  PubMed  Google Scholar 

  4. Wiertsema, S. P., van Bergenhenegouwen, J., Garssen, J. & Knippels, L. M. J. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13, 886 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koren, O., Konnikova, L., Brodin, P., Mysorekar, I. U. & Collado, M. C. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat. Rev. Gastroenterol. Hepatol. 21, 35–45 (2024).

    Article  PubMed  Google Scholar 

  6. Rinninella, E. et al. The role of diet in shaping human gut microbiota. Best. Pract. Res. Clin. Gastroenterol. 62–63, 101828 (2023).

    Article  PubMed  Google Scholar 

  7. Van Hul, M. et al. What defines a healthy gut microbiome? Gut 73, 1893–1908 (2024).

  8. Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Q. et al. A review of gut microbiota-derived metabolites in tumor progression and cancer therapy. Adv. Sci. 10, e2207366 (2023).

    Article  Google Scholar 

  10. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  12. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    Article  PubMed  Google Scholar 

  13. Ugai, T. et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat. Rev. Clin. Oncol. 19, 656–673 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Steck, S. E. & Murphy, E. A. Dietary patterns and cancer risk. Nat. Rev. Cancer 20, 125–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Tsvetikova, S. A. & Koshel, E. I. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int. J. Med. Microbiol. 310, 151425 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Mirzaei, R. et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed. Pharmacother. 139, 111619 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, Y. et al. A systematic review of the gut microbiome, metabolites, and multi-omics biomarkers across the colorectal cancer care continuum. Benef. Microbes 15, 539–563 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Herlo, L. F. et al. Gut microbiota signatures in colorectal cancer as a potential diagnostic biomarker in the future: a systematic review. Int. J. Mol. Sci. 25, 7937 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wong, S. H. et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153, 1621–1633 (2017).

    Article  PubMed  Google Scholar 

  20. Baas, F. S., Brusselaers, N., Nagtegaal, I. D., Engstrand, L. & Boleij, A. Navigating beyond associations: opportunities to establish causal relationships between the gut microbiome and colorectal carcinogenesis. Cell Host Microbe 32, 1235–1247 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Zepeda-Rivera, M. et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 628, 424–432 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sears, C. L. & Pardoll, D. M. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J. Infect. Dis. 203, 306–311 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10, 575–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973–1980 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, B. et al. Contribution of pks+ E. coli mutations to colorectal carcinogenesis. Nat. Commun. 14, 7827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosendahl Huber, A. et al. Improved detection of colibactin-induced mutations by genotoxic E. coli in organoids and colorectal cancer. Cancer Cell 42, 487–496 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Cornish, A. J. et al. The genomic landscape of 2,023 colorectal cancers. Nature 633, 127–136 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Y. et al. Peptostreptococcus anaerobius mediates anti-PD1 therapy resistance and exacerbates colorectal cancer via myeloid-derived suppressor cells in mice. Nat. Microbiol 9, 1467–1482 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, R., Kang, R. & Tang, D. Gut microbiome mediates ferroptosis resistance for colorectal cancer development. Cancer Res. 84, 796–797 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, P. et al. Peptostreptococcus stomatis promotes colonic tumorigenesis and receptor tyrosine kinase inhibitor resistance by activating ERBB2-MAPK. Cell Host Microbe 32, 1365–1379 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Kang, X. et al. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells. Gut 72, 2112–2122 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 469, 456–467 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Pu, W. et al. Inhibitory effects of Clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice. Front. Immunol. 14, 1004756 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fan, S., Zhou, L., Zhang, W., Wang, D. & Tang, D. Role of imbalanced gut microbiota in promoting CRC metastasis: from theory to clinical application. Cell Commun. Signal 22, 232 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ayabe, R. I. & White, M. G. Metastasis and the microbiome: the impact of bacteria in disseminated colorectal cancer. Front. Biosci. 29, 152 (2024).

    Article  CAS  Google Scholar 

  41. Li, R. et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 26, 2447–2463 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coker, O. O. et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 67, 1024–1032 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Gantuya, B. et al. Gastric mucosal microbiota in a Mongolian population with gastric cancer and precursor conditions. Aliment Pharm. Ther. 51, 770–780 (2020).

    Article  CAS  Google Scholar 

  44. Castano-Rodriguez, N., Goh, K. L., Fock, K. M., Mitchell, H. M. & Kaakoush, N. O. Dysbiosis of the microbiome in gastric carcinogenesis. Sci. Rep. 7, 15957 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen, Y., Segers, S. & Blaser, M. J. Association between Helicobacter pylori and mortality in the NHANES III study. Gut 62, 1262–1269 (2013).

    Article  PubMed  Google Scholar 

  46. Zeng, R., Gou, H., Lau, H. C. H. & Yu, J. Stomach microbiota in gastric cancer development and clinical implications. Gut 73, 2062–2073 (2024).

  47. Kumar, S., Metz, D. C., Ellenberg, S., Kaplan, D. E. & Goldberg, D. S. Risk factors and incidence of gastric cancer after detection of Helicobacter pylori infection: a large cohort study. Gastroenterology 158, 527–536 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Hayashi, Y. et al. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 62, 1536–1546 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Sun, X. et al. TLR2 mediates Helicobacter pylori-induced tolerogenic immune response in mice. PLoS ONE 8, e74595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng, A. S. et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 144, 122–133 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Chauhan, N., Tay, A. C. Y., Marshall, B. J. & Jain, U. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: an overview. Helicobacter 24, e12544 (2019).

    Article  PubMed  Google Scholar 

  52. Yang, I. et al. Different gastric microbiota compositions in two human populations with high and low gastric cancer risk in Colombia. Sci. Rep. 6, 18594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, J. et al. Fecal microbiome alteration may be a potential marker for gastric cancer. Dis. Markers 2020, 3461315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yu, C. et al. Dysbiosis of gut microbiota is associated with gastric carcinogenesis in rats. Biomed. Pharmacother. 126, 110036 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Li, Q. et al. Propionibacterium acnes overabundance in gastric cancer promote M2 polarization of macrophages via a TLR4/PI3K/Akt signaling. Gastric Cancer 24, 1242–1253 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Xin, Y. et al. Fusobacterium nucleatum-induced exosomal HOTTIP promotes gastric cancer progression through the microRNA-885-3p/EphB2 axis. Cancer Sci. 114, 2360–2374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fu, K. et al. Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice. Cell 187, 882–896 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Sung, J. J. Y. et al. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut 69, 1572–1580 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, Y. et al. Prospective study of oral microbiome and gastric cancer risk among Asian, African American and European American populations. Int. J. Cancer 150, 916–927 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Hu, J., Han, S., Chen, Y. & Ji, Z. Variations of tongue coating microbiota in patients with gastric cancer. BioMed. Res. Int. 2015, 173729 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cani, P. D. & Jordan, B. F. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 15, 671–682 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Ponziani, F. R. et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in non-alcoholic fatty liver disease. Hepatology 69, 107–120 (2018).

  63. Ren, Z. et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 68, 1014–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Grat, M. et al. Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis. Transplant. Proc. 48, 1687–1691 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Xie, G. et al. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7, 19355–19366 (2016).

  66. Jinato, T., Anuntakarun, S., Satthawiwat, N., Chuaypen, N. & Tangkijvanich, P. Distinct alterations of gut microbiota between viral- and non-viral-related hepatocellular carcinoma. Appl. Microbiol. Biotechnol. 108, 34 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwabe, R. F. & Greten, T. F. Gut microbiome in HCC - mechanisms, diagnosis and therapy. J. Hepatol. 72, 230–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Ma, H. et al. B. thetaiotaomicron-derived acetic acid modulate immune microenvironment and tumor growth in hepatocellular carcinoma. Gut Microbes 16, 2297846 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu, Q. et al. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog. 11, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wu, L. et al. The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomed. Pharmacother. 133, 111036 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Van Hul, M. et al. Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities. Clin. Microbiol. Rev. 37, e0004523 (2024).

    Article  PubMed  Google Scholar 

  72. Mishra, Y. et al. The role of the gut microbiome in gastrointestinal cancers. Cell. Signal. 115, 111013 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Ren, Z. et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget 8, 95176–95191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mendez, R. et al. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis 41, 561–570 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Half, E. et al. Fecal microbiome signatures of pancreatic cancer patients. Sci. Rep. 9, 16801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Del Castillo, E. et al. The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic cancer and noncancer subjects. Cancer Epidemiol. Biomark. Prev. 28, 370–383 (2019).

    Article  Google Scholar 

  77. Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paternoster, S. & Falasca, M. The intricate relationship between diabetes, obesity and pancreatic cancer. Biochim. Biophys. Acta Rev. Cancer 1873, 188326 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Mirji, G. et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 7, eabn0704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Genovese, G. et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature 542, 362–366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Plottel, C. S. & Blaser, M. J. Microbiome and malignancy. Cell Host Microbe 10, 324–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fuhrman, B. J. et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 99, 4632–4640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ervin, S. M. et al. Gut microbial beta-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J. Biol. Chem. 294, 18586–18599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martin, F., Peltonen, J., Laatikainen, T., Tikkanen, M. & Pulkkinen, M. Excretion of unconjugated and conjugated progesterone metabolites in pregnancy urine during ampicillin administration. Clin. Chim. Acta. 55, 71–80 (1974).

    Article  CAS  PubMed  Google Scholar 

  85. Doisneau-Sixou, S. F. et al. Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr. Relat. Cancer 10, 179–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Luu, T. H. et al. Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr. Cancer 69, 267–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Crispo, A. et al. Central obesity, body mass index, metabolic syndrome and mortality in Mediterranean breast cancer patients. Sci. Rep. 13, 21208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Siiteri, P. K. Adipose tissue as a source of hormones. Am. J. Clin. Nutr. 45, 277–282 (1987).

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, J. et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome 6, 136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Goedert, J. J. et al. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J. Natl Cancer Inst. 107, djv147 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bobin-Dubigeon, C. et al. Faecal microbiota composition varies between patients with breast cancer and healthy women: a comparative case-control study. Nutrients 13, 2705 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aarnoutse, R. et al. Intestinal microbiota in postmenopausal breast cancer patients and controls. Cancers 13, 6200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeber-Lubecka, N. et al. Breast cancer but not the menopausal status is associated with small changes of the gut microbiota. Front. Oncol. 14, 1279132 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Su, J. et al. Prevotella copri exhausts intrinsic indole-3-pyruvic acid in the host to promote breast cancer progression: inactivation of AMPK via UHRF1-mediated negative regulation. Gut Microbes 16, 2347757 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ma, J. et al. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiol. 20, 82 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wenhui, Y. et al. Variations in the gut microbiota in breast cancer occurrence and bone metastasis. Front. Microbiol. 13, 894283 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Parida, S. et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and beta-catenin axes. Cancer Discov. 11, 1138–1157 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Parida, S. et al. Gut colonization with an obesity-associated enteropathogenic microbe modulates the premetastatic niches to promote breast cancer lung and liver metastasis. Front. Immunol. 14, 1194931 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Buchta Rosean, C. et al. Preexisting commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer. Cancer Res. 79, 3662–3675 (2019).

    Article  PubMed  Google Scholar 

  100. Shin, J. H. et al. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res. Microbiol. 170, 192–201 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Bui, N. N. et al. Clostridium scindens metabolites trigger prostate cancer progression through androgen receptor signaling. J. Microbiol. Immunol. Infect. 56, 246–256 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Pernigoni, N. et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, S. et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer. J. Exp. Clin. Cancer Res. 38, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Li, B. et al. Fusobacterium nucleatum induces oxaliplatin resistance by inhibiting ferroptosis through E-cadherin/beta-catenin/GPX4 axis in colorectal cancer. Free Radic. Biol. Med. 220, 125–138 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Tintelnot, J. et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 615, 168–174 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. He, Y. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33, 988–1000 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Daillere, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Li, Y. et al. Metagenomic analyses reveal distinct gut microbiota signature for predicting the neoadjuvant chemotherapy responsiveness in breast cancer patients. Front. Oncol. 12, 865121 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bhatt, A. P. et al. Targeted inhibition of gut bacterial beta-glucuronidase activity enhances anticancer drug efficacy. Proc. Natl Acad. Sci. USA 117, 7374–7381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Terrisse, S. et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ. 28, 2778–2796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nguyen, S. M. et al. Gut microbiome in association with chemotherapy-induced toxicities among patients with breast cancer. Cancer 130, 2014–2030 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, X. et al. Antibiotics modulate neoadjuvant therapy efficiency in patients with breast cancer: a pilot analysis. Sci. Rep. 11, 14024 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chambers, L. M. et al. Disruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancer. Cancer Res. 82, 4654–4669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Benej, M. et al. The tumor microbiome reacts to hypoxia and can influence response to radiation treatment in colorectal cancer. Cancer Res. Commun. 4, 1690–1701 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim, Y. S., Kim, J. & Park, S. J. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 33, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Jameus, A. et al. Acute impacts of ionizing radiation exposure on the gastrointestinal tract and gut microbiome in mice. Int. J. Mol. Sci. 25, 3339 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cui, M. et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol. Med. 9, 448–461 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nam, Y. D., Kim, H. J., Seo, J. G., Kang, S. W. & Bae, J. W. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS ONE 8, e82659 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Reis Ferreira, M. et al. Microbiota- and Radiotherapy-induced Gastrointestinal Side-effects (MARS) study: a large pilot study of the microbiome in acute and late-radiation enteropathy. Clin. Cancer Res. 25, 6487–6500 (2019).

    Article  PubMed  Google Scholar 

  122. Iacovacci, J. et al. Intestinal microbiota composition is predictive of radiotherapy-induced acute gastrointestinal toxicity in prostate cancer patients. eBioMedicine 106, 105246 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Meivelu, M. Letter to the editor, “Gut microbiome predicts gastrointestinal toxicity outcomes from chemoradiation therapy in patients with head and neck squamous cell carcinoma”. Oral. Oncol. 155, 106903 (2024).

    Article  Google Scholar 

  124. Acharya, M., Venkidesh, B. S. & Mumbrekar, K. D. Bacterial supplementation in mitigation of radiation-induced gastrointestinal damage. Life Sci. 353, 122921 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Lu, L. et al. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol. Med 30, 105 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, L., Li, Y., Zhang, Y. J. & Peng, L. H. Intestinal microecological transplantation for a patient with chronic radiation enteritis: a case report. World J. Gastroenterol. 30, 2603–2611 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ma, C. Y., Zhao, J. & Zhou, J. Y. Microbiome profiling and co-metabolism pathway analysis in cervical cancer patients with acute radiation enteritis. Heliyon 10, e29598 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, Y. et al. The effects of preoperative intestinal dysbacteriosis on postoperative recovery in colorectal cancer surgery: a prospective cohort study. BMC Gastroenterol. 21, 446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. van Praagh, J. B. et al. Mucus microbiome of anastomotic tissue during surgery has predictive value for colorectal anastomotic leakage. Ann. Surg. 269, 911–916 (2019).

    Article  PubMed  Google Scholar 

  130. Hajjar, R. et al. Gut microbiota influence anastomotic healing in colorectal cancer surgery through modulation of mucosal proinflammatory cytokines. Gut 72, 1143–1154 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Hajjar, R. et al. Basal levels of microbiota-driven subclinical inflammation are associated with anastomotic leak in patients with colorectal cancer. Gut 73, 1031–1033 (2024).

    Article  CAS  PubMed  Google Scholar 

  132. Tong, J. et al. Changes of intestinal microbiota in ovarian cancer patients treated with surgery and chemotherapy. Cancer Manag. Res. 12, 8125–8135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fan, P., Ding, L., Du, G. & Wei, C. Effect of mastectomy on gut microbiota and its metabolites in patients with breast cancer. Front. Microbiol. 15, 1269558 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Morris, M. S., Graham, L. A., Chu, D. I., Cannon, J. A. & Hawn, M. T. Oral antibiotic bowel preparation significantly reduces surgical site infection rates and readmission rates in elective colorectal surgery. Ann. Surg. 261, 1034–1040 (2015).

    Article  PubMed  Google Scholar 

  135. Bachmann, R., Leonard, D., Delzenne, N., Kartheuser, A. & Cani, P. D. Novel insight into the role of microbiota in colorectal surgery. Gut 66, 738–749 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Alam, A. et al. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat. Microbiol 1, 15021 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bachmann, R. et al. Akkermansia muciniphila reduces peritonitis and improves intestinal tissue wound healing after a colonic transmural defect by a MyD88-dependent mechanism. Cells 11, 2666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Masaud, K. et al. The gut microbiota in persistent post-operative pain following breast cancer surgery. Sci. Rep. 14, 12401 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, Y. C. et al. Gut microbiota composition in chemotherapy and targeted therapy of patients with metastatic colorectal cancer. Front. Oncol. 12, 955313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Martini, G. et al. Gut microbiota correlates with antitumor activity in patients with mCRC and NSCLC treated with cetuximab plus avelumab. Int. J. Cancer 151, 473–480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Saifon, W. et al. Gastrointestinal microbiota profile and clinical correlations in advanced EGFR-WT and EGFR-mutant non-small cell lung cancer. BMC Cancer 22, 963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schettini, F. et al. Faecal microbiota composition is related to response to CDK4/6-inhibitors in metastatic breast cancer: a prospective cross-sectional exploratory study. Eur. J. Cancer 191, 112948 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Di Modica, M. et al. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 81, 2195–2206 (2021).

    Article  PubMed  Google Scholar 

  144. Wong, C. W. et al. Analysis of gut microbiome using explainable machine learning predicts risk of diarrhea associated with tyrosine kinase inhibitor neratinib: a pilot study. Front. Oncol. 11, 604584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guardamagna, M. et al. Gut microbiota and therapy in metastatic melanoma: focus on MAPK pathway inhibition. Int. J. Mol. Sci. 23, 11990 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shiravand, Y. et al. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 29, 3044–3060 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Regnier, M., Van Hul, M., Knauf, C. & Cani, P. D. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J. Endocrinol. 248, R67–R82 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Muschaweck, M. et al. Cognate recognition of microbial antigens defines constricted CD4+ T cell receptor repertoires in the inflamed colon. Immunity 54, 2565–2577 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Sari, Z. et al. Indolepropionic acid, a metabolite of the microbiome, has cytostatic properties in breast cancer by activating AHR and PXR receptors and inducing oxidative stress. Cancers 12, 2411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Luu, T. H. et al. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol. 41, 13–24 (2018).

    Article  CAS  Google Scholar 

  152. Miller, K. D. et al. Acetate acts as a metabolic immunomodulator by bolstering T-cell effector function and potentiating antitumor immunity in breast cancer. Nat. Cancer 4, 1491–1507 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Blaak, E. E. et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 11, 411–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Son, M. Y. & Cho, H. S. Anticancer effects of gut microbiota-derived short-chain fatty acids in cancers. J. Microbiol. Biotechnol. 33, 849–856 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yusuf, F., Adewiah, S., Syam, A. F. & Fatchiyah, F. Altered profile of gut microbiota and the level short chain fatty acids in colorectal cancer patients. J. Phys. Conf. Ser. 1146, 012037 (2019).

    Article  Google Scholar 

  156. He, C., Liu, Y., Ye, S., Yin, S. & Gu, J. Changes of intestinal microflora of breast cancer in premenopausal women. Eur. J. Clin. Microbiol Infect. Dis. 40, 503–513 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. He, C. et al. Gut microbial composition changes in bladder cancer patients: a case-control study in Harbin, China. Asia Pac. J. Clin. Nutr. 29, 395–403 (2020).

    CAS  PubMed  Google Scholar 

  158. Hersi, F. et al. Cancer immunotherapy resistance: the impact of microbiome-derived short-chain fatty acids and other emerging metabolites. Life Sci. 300, 120573 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Carretta, M. D., Quiroga, J., Lopez, R., Hidalgo, M. A. & Burgos, R. A. Participation of short-chain fatty acids and their receptors in gut inflammation and colon cancer. Front. Physiol. 12, 662739 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tang, Y., Chen, Y., Jiang, H., Robbins, G. T. & Nie, D. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int. J. Cancer 128, 847–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Thangaraju, M. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, 1026831 (2016).

    Article  Google Scholar 

  163. Gately, S. Human microbiota and personalized cancer treatments: role of commensal microbes in treatment outcomes for cancer patients. Cancer Treat. Res 178, 253–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Kobayashi, M. et al. A short-chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells. Oncotarget 9, 31342–31354 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Nomura, M. et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw. Open 3, e202895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Mann, E. R., Lam, Y. K. & Uhlig, H. H. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat. Rev. Immunol. 24, 577–595 (2024).

  167. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Qing, C. & Ghorani, E. Two faces: IL-22 effects prevail over defense against metastasis. Immunity 56, 6–8 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hu, S. et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS ONE 6, e16221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Song, Q. et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J. Hepatol. 79, 1352–1365 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Hu, C. et al. Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology 77, 48–64 (2023).

    Article  PubMed  Google Scholar 

  177. Wang, J. et al. Acetate reprogrammes tumour metabolism and promotes PD-L1 expression and immune evasion by upregulating c-Myc. Nat. Metab. 6, 914–932 (2024).

    Article  CAS  PubMed  Google Scholar 

  178. Le Floc’h, N., Otten, W. & Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41, 1195–1205 (2011).

    Article  PubMed  Google Scholar 

  179. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Gupta, S. K. et al. Microbiota-derived tryptophan metabolism: impacts on health, aging, and disease. Exp. Gerontol. 183, 112319 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Bender, M. J. et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 186, 1846–1862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jia, D. et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 187, 1651–1665 (2024).

    Article  CAS  PubMed  Google Scholar 

  184. Fong, W. et al. Lactobacillus gallinarum-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/Kyn/AHR axis. Gut 72, 2272–2285 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Ohta, A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front. Immunol. 7, 109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Xia, C., Yin, S., To, K. K. W. & Fu, L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol. Cancer 22, 44 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, S. et al. The expression of adenosine A2B receptor on antigen-presenting cells suppresses CD8+ T-cell responses and promotes tumor growth. Cancer Immunol. Res. 8, 1064–1074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Leone, R. D. et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol. Immunother. 67, 1271–1284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kroemer, G. & Zitvogel, L. Inosine: novel microbiota-derived immunostimulatory metabolite. Cell Res 30, 942–943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Brown, E. M. et al. Gut microbiome ADP-ribosyltransferases are widespread phage-encoded fitness factors. Cell Host Microbe 29, 1351–1365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kim, I. S. & Jo, E. K. Inosine: a bioactive metabolite with multimodal actions in human diseases. Front. Pharm. 13, 1043970 (2022).

    Article  CAS  Google Scholar 

  192. Welihinda, A. A., Kaur, M., Raveendran, K. S. & Amento, E. P. Enhancement of inosine-mediated A(2A)R signaling through positive allosteric modulation. Cell. Signal. 42, 227–235 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Welihinda, A. A., Kaur, M., Greene, K., Zhai, Y. & Amento, E. P. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell. Signal. 28, 552–560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, T. et al. Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nat. Metab. 2, 635–647 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Lefort, C. & Cani, P. D. The liver under the spotlight: bile acids and oxysterols as pivotal actors controlling metabolism. Cells 10, 400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kriaa, A. et al. Bile acids: key players in inflammatory bowel diseases? Cells 11, 901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Malhi, H. & Camilleri, M. Modulating bile acid pathways and TGR5 receptors for treating liver and GI diseases. Curr. Opin. Pharmacol. 37, 80–86 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Guo, C., Chen, W. D. & Wang, Y. D. TGR5, not only a metabolic regulator. Front Physiol. 7, 646 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Okajima, F. Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell. Signal. 25, 2263–2271 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Yoneno, K. et al. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease. Immunology 139, 19–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ye, D., He, J. & He, X. The role of bile acid receptor TGR5 in regulating inflammatory signalling. Scand. J. Immunol. 99, e13361 (2024).

    Article  CAS  PubMed  Google Scholar 

  203. Fiorucci, S., Biagioli, M., Zampella, A. & Distrutti, E. Bile acids activated receptors regulate innate immunity. Front. Immunol. 9, 1853 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Goldberg, A. A., Titorenko, V. I., Beach, A. & Sanderson, J. T. Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ 1, e122 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Miko, E. et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim. Biophys. Acta, Bioenerg. 1859, 958–974 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Serfaty, L., Bissonnette, M. & Poupon, R. Ursodeoxycholic acid and chemoprevention of colorectal cancer. Gastroenterol. Clin. Biol. 34, 516–522 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Hess, L. M. et al. Results of a phase I multiple-dose clinical study of ursodeoxycholic acid. Cancer Epidemiol. Biomark. Prev. 13, 861–867 (2004).

    Article  CAS  Google Scholar 

  208. Bezzio, C., Festa, S., Saibeni, S. & Papi, C. Chemoprevention of colorectal cancer in ulcerative colitis: digging deep in current evidence. Expert Rev. Gastroenterol. Hepatol. 11, 339–347 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Lee, J. et al. Ursodeoxycholic acid shows antineoplastic effects in bile duct cancer cells via apoptosis induction; p53 activation; and EGFR-ERK, COX-2, and PI3K-AKT pathway inhibition. Mol. Biol. Rep. 48, 6231–6240 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Song, P., Peng, Z. & Guo, X. Gut microbial metabolites in cancer therapy. Trends Endocrinol. Metab. 36, 55–69 (2024).

    Article  PubMed  Google Scholar 

  211. Cleusix, V., Lacroix, C., Vollenweider, S., Duboux, M. & Le Blay, G. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol. 7, 101 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357, 806–810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang, T. et al. Probiotics Lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells. Front. Immunol. 10, 1235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. He, J., Yin, W., Galperin, M. Y. & Chou, S. H. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res. 48, 2807–2829 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Danilchanka, O. & Mekalanos, J. J. Cyclic dinucleotides and the innate immune response. Cell 154, 962–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Waters, C. M. Au naturale: use of biologically derived cyclic di-nucleotides for cancer immunotherapy. Open Biol. 11, 210277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Brown, J. M. & Hazen, S. L. Microbial modulation of cardiovascular disease. Nat. Rev. Microbiol. 16, 171–181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang, H. et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34, 581–594 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Zarour, H. M. Microbiome-derived metabolites counteract tumor-induced immunosuppression and boost immune checkpoint blockade. Cell Metab. 34, 1903–1905 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Holbert, C. E., Cullen, M. T., Casero, R. A. Jr. & Stewart, T. M. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat. Rev. Cancer 22, 467–480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Casero, R. A. Jr., Murray Stewart, T. & Pegg, A. E. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat. Rev. Cancer 18, 681–695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Naseemuddin, M. et al. Cell mediated immune responses through TLR4 prevents DMBA-induced mammary carcinogenesis in mice. Int. J. Cancer 130, 765–774 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Zhang, J. J. et al. Expression and significance of TLR4 and HIF-1 alpha in pancreatic ductal adenocarcinoma. World J. Gastroenterol. 16, 2881–2888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Yin, H. et al. Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer. Cell Death Dis. 12, 1033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Melssen, M. M. et al. A multipeptide vaccine plus toll-like receptor agonists LPS or polyICLC in combination with incomplete Freund’s adjuvant in melanoma patients. J. Immunother. Cancer 7, 163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Jiang, S. S. et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe 31, 781–797 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Wang, X. et al. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer. Cancer Cell 42, 1729–1746 (2024).

    Article  CAS  PubMed  Google Scholar 

  229. Li, X. et al. Ketogenic diet-induced bile acids protect against obesity through reduced calorie absorption. Nat. Metab. 6, 1397–1414 (2024).

    Article  CAS  PubMed  Google Scholar 

  230. Arnone, A. A., Wilson, A. S., Soto-Pantoja, D. R. & Cook, K. L. Diet modulates the gut microbiome, metabolism, and mammary gland inflammation to influence breast cancer risk. Cancer. Prev. Res. 17, 415–428 (2024).

  231. Turati, F. et al. Fiber-type prebiotics and gynecological and breast cancers risk: the PrebiotiCa study. Am. J. Epidemiol. 193, 1693–1700 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Xu, K. et al. A dose-response meta-analysis of dietary fiber intake and breast cancer risk. Asia Pac. J. Public Health 34, 331–337 (2022).

    Article  PubMed  Google Scholar 

  233. Jenkins, D. J. A. et al. Association of glycaemic index and glycaemic load with type 2 diabetes, cardiovascular disease, cancer, and all-cause mortality: a meta-analysis of mega cohorts of more than 100,000 participants. Lancet Diabetes Endocrinol. 12, 107–118 (2024).

    Article  PubMed  Google Scholar 

  234. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Simpson, R. C. et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat. Med. 28, 2344–2352 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Holmes, Z. C. et al. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 10, 114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Gibson, G. R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  240. Zhang, S. L. et al. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Theranostics 11, 4155–4170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents Anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12, 1070–1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Xiao, X. et al. Synergistic effects of omega-3 polyunsaturated fatty acid supplementation and programmed cell death protein 1 blockade on tumor growth and immune modulation in a xenograft model of esophageal cancer. Clin. Nutr. ESPEN 61, 308–315 (2024).

    Article  PubMed  Google Scholar 

  243. Xie, X. et al. Effects of prebiotics on immunologic indicators and intestinal microbiota structure in perioperative colorectal cancer patients. Nutrition 61, 132–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Polakowski, C. B., Kato, M., Preti, V. B., Schieferdecker, M. E. M. & Ligocki Campos, A. C. Impact of the preoperative use of synbiotics in colorectal cancer patients: a prospective, randomized, double-blind, placebo-controlled study. Nutrition 58, 40–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. Flesch, A. T., Tonial, S. T., Contu, P. C. & Damin, D. C. Perioperative synbiotics administration decreases postoperative infections in patients with colorectal cancer: a randomized, double-blind clinical trial. Rev. Col. Bras. Cir. 44, 567–573 (2017).

    Article  PubMed  Google Scholar 

  246. Hill, C. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  247. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Yang, D. et al. Effects of probiotics on gastric cancer-related inflammation: a systematic review and meta-analysis. J. Food Biochem. 46, e14034 (2022).

    Article  PubMed  Google Scholar 

  250. Zhao, R. et al. Effects of fiber and probiotics on diarrhea associated with enteral nutrition in gastric cancer patients: a prospective randomized and controlled trial. Medicine 96, e8418 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Pitsillides, L., Pellino, G., Tekkis, P. & Kontovounisios, C. The effect of perioperative administration of probiotics on colorectal cancer surgery outcomes. Nutrients 13, 1451 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health.Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  254. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Cani, P. D., Depommier, C., Derrien, M., Everard, A. & de Vos, W. M. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 19, 625–637 (2022).

    Article  PubMed  Google Scholar 

  256. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Peled, J. U. et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J. Clin. Oncol. 35, 1650–1659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  260. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Gunjur, A. et al. A gut microbial signature for combination immune checkpoint blockade across cancer types. Nat. Med. 30, 797–809 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Muller, E., Shiryan, I. & Borenstein, E. Multi-omic integration of microbiome data for identifying disease-associated modules. Nat. Commun. 15, 2621 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Qin, W. et al. Multiomics-based molecular subtyping based on the commensal microbiome predicts molecular characteristics and the therapeutic response in breast cancer. Mol. Cancer 23, 99 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Frankel, A. E. et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19, 848–855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Hou, X. et al. Akkermansia muciniphila potentiates the antitumor efficacy of FOLFOX in colon cancer. Front. Pharm. 12, 725583 (2021).

    Article  CAS  Google Scholar 

  267. Wang, L. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut 69, 1988–1997 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  269. Kang, C. S. et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE 8, e76520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Zhang, L. et al. Akkermansia muciniphila inhibits tryptophan metabolism via the AhR/beta-catenin signaling pathway to counter the progression of colorectal cancer. Int. J. Biol. Sci. 19, 4393–4410 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Paz Del Socorro, T. et al. The biotherapeutic Clostridium butyricum MIYAIRI 588 strain potentiates enterotropism of Rorgammat+ Treg and PD-1 blockade efficacy. Gut Microbes 16, 2315631 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Tomita, Y. et al. Association of Clostridium butyricum therapy using the live bacterial product CBM588 with the survival of patients with lung cancer receiving chemoimmunotherapy combinations. Cancers 16, 47 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Tomita, Y. et al. Clostridium butyricum therapy restores the decreased efficacy of immune checkpoint blockade in lung cancer patients receiving proton pump inhibitors. Oncoimmunology 11, 2081010 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28, 704–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Whitfill, T. & Oh, J. Recoding the metagenome: microbiome engineering in situ. Curr. Opin. Microbiol. 50, 28–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  276. Pujo, J. et al. Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut 70, 1088–1097 (2021).

    Article  CAS  PubMed  Google Scholar 

  277. Gurbatri, C. R. et al. Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia. Nat. Commun. 15, 646 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Ho, C. L. et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2, 27–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  279. Selvanesan, B. C. et al. Listeria delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice. Sci. Transl. Med. 14, eabc1600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Mullish, B. H. et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 73, 1052–1075 (2024).

    Article  PubMed  Google Scholar 

  281. Routy, B. et al. 614 Microbiome modification with fecal microbiota transplant from healthy donors before anti-PD1 therapy reduces primary resistance to immunotherapy in advanced and metastatic melanoma patients. J. Immunother. Cancer 10, A646 (2022).

    Google Scholar 

  282. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  284. Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  285. Rasmussen, T. S. et al. Overcoming donor variability and risks associated with fecal microbiota transplants through bacteriophage-mediated treatments. Microbiome 12, 119 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Wang, Z. et al. Protective role of fecal microbiota transplantation on colitis and colitis-associated colon cancer in mice is associated with Treg cells. Front. Microbiol. 10, 2498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Gurunathan, S., Thangaraj, P. & Kim, J. H. Postbiotics: functional food materials and therapeutic agents for cancer, diabetes, and inflammatory diseases. Foods 13, 89 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Xie, W. et al. Postbiotics in colorectal cancer: intervention mechanisms and perspectives. Front. Microbiol. 15, 1360225 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Teng, Y. et al. Pasteurized Akkermansia muciniphila mitigates 5-FU-induced intestinal mucositis in tumor-bearing mice through suppression of the cGAS-STING pathway and epithelial cell apoptosis. Food Biosci. 61, 104605 (2024).

    Article  CAS  Google Scholar 

  292. Porcari, S. et al. International consensus statement on microbiome testing in clinical practice. Lancet Gastroenterol. Hepatol. 10, 154–167 (2024).

    Article  PubMed  Google Scholar 

  293. Gand, M., Bloemen, B., Vanneste, K., Roosens, N. H. C. & De Keersmaecker, S. C. J. Comparison of 6 DNA extraction methods for isolation of high yield of high molecular weight DNA suitable for shotgun metagenomics Nanopore sequencing to detect bacteria. BMC Genomics 24, 438 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Fernandez-Pato, A. et al. Choice of DNA extraction method affects stool microbiome recovery and subsequent phenotypic association analyses. Sci. Rep. 14, 3911 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Nakatsu, G. et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155, 529–541 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

B.F.J. is research director at FRS-FNRS (Fonds de la Recherche Scientifique) and P.D.C. is honorary research director at FRS-FNRS. B.F.J. and P.D.C. are the recipients of Actions de Recherches concertees-Communaute Française de Belgique no. ARC19/24–096. P.D.C. is the recipient of grants from FNRS (Projet de Recherche PDR-convention: FNRS T.0032.25, FRFS-WELBIO: WELBIO-CR-2022A-02P, EOS: programme no. 40007505). C.v.M. is supported by a postdoctoral research mandate from the Fonds de Recherche Clinique. A.N. is supported by a doctoral research mandate from the Fondation Saint-Luc.

Author information

Authors and Affiliations

Authors

Contributions

A.N., C.v.M., B.F.J., M.V.H. and P.D.C. conceived and designed the Review. P.D.C. coordinated and supervised the Review. A.N., C.v.M., B.F.J., M.V.H. and P.D.C. performed the literature review. A.N., C.v.M., B.F.J., M.V.H. and P.D.C. conducted the writing. M.V.H. prepared the figures. A.N., C.v.M., B.F.J., M.V.H. and P.D.C reviewed the final draft. All authors discussed the Review, reviewed the revised versions, commented on the manuscript and figures before submission, and agreed with the final submitted manuscript.

Corresponding authors

Correspondence to Matthias Van Hul or Patrice D. Cani.

Ethics declarations

Competing interests

P.D.C. and B.F.J. are inventors on patent applications dealing with the use of gut bacteria and their components in the treatment of diseases. P.D.C. was a co-founder of The Akkermansia Company and Enterosys. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Yanina-Yasmin Pesch, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobels, A., van Marcke, C., Jordan, B.F. et al. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 7, 895–917 (2025). https://doi.org/10.1038/s42255-025-01287-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-025-01287-w

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer