Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A consensus guide to preclinical indirect calorimetry experiments

Abstract

Understanding the complex factors influencing mammalian metabolism and body weight homeostasis is a long-standing challenge requiring knowledge of energy intake, absorption and expenditure. Using measurements of respiratory gas exchange, indirect calorimetry can provide non-invasive estimates of whole-body energy expenditure. However, inconsistent measurement units and flawed data normalization methods have slowed progress in this field. This guide aims to establish consensus standards to unify indirect calorimetry experiments and their analysis for more consistent, meaningful and reproducible results. By establishing community-driven standards, we hope to facilitate data comparison across research datasets. This advance will allow the creation of an in-depth, machine-readable data repository built on shared standards. This overdue initiative stands to markedly improve the accuracy and depth of efforts to interrogate mammalian metabolism. Data sharing according to established best practices will also accelerate the translation of basic findings into clinical applications for metabolic diseases afflicting global populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Standard visualizations of body composition in diet-induced obesity.
Fig. 2: Visualizing indirect calorimetry results.
Fig. 3: Quality control and visualization guide.
Fig. 4: Correct and incorrect visualization of metabolic rates.
Fig. 5: Statistical approach for indirect calorimetry and choosing the appropriate covariate.

Similar content being viewed by others

References

  1. Lavoisier, A. L. & Marquis de Laplace, P. S. Mémoire sur la chaleur: Lû à'Académie royale des sciences, le 28 juin 1783. (De l’Imprimerie royale, 1783).

  2. Shechtman, O. & Talan, M. I. Effect of exercise on cold tolerance and metabolic heat production in adult and aged C57BL/6J mice. J. Appl. Physiol. 77, 2214–2218 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. Susulic, V. S. et al. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 270, 29483–29492 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. Speakman, J. R. & McQueenie, J. Limits to sustained metabolic rate: the link between food intake, basal metabolic rate, and morphology in reproducing mice, Mus musculus. Physiological Zool. 69, 746–769 (1996).

    Article  Google Scholar 

  6. Ravussin, E., Burnand, B., Schutz, Y. & Jequier, E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am. J. Clin. Nutr. 35, 566–573 (1982).

    Article  PubMed  CAS  Google Scholar 

  7. Brychta, R. & Chen, K. Cold-induced thermogenesis in humans. Eur. J. Clin. Nutr. 71, 345–352 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Achamrah, N., Delsoglio, M., De Waele, E., Berger, M. M. & Pichard, C. Indirect calorimetry: the 6 main issues. Clin. Nutr. 40, 4–14 (2021).

    Article  PubMed  Google Scholar 

  9. Duivenvoorde, L. P., van Schothorst, E. M., Swarts, H. J. & Keijer, J. Assessment of metabolic flexibility of old and adult mice using three noninvasive, indirect calorimetry-based treatments. J. Gerontol. A Biol. Sci. Med Sci. 70, 282–293 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Houtkooper, R. H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schefer, V. & Talan, M. I. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp. Gerontol. 31, 387–392 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. Petr, M. A. et al. A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice. eLife 10, e62952 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ellacott, K. L., Morton, G. J., Woods, S. C., Tso, P. & Schwartz, M. W. Assessment of feeding behavior in laboratory mice. Cell Metab. 12, 10–17 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Martin, R. E. et al. Maternal oxycodone treatment results in neurobehavioral disruptions in mice offspring. eNeuro 8, ENEURO.0150–21.2021 (2021).

    Article  PubMed  CAS  Google Scholar 

  15. Sanchez-Alavez, M., Bortell, N., Galmozzi, A., Conti, B. & Marcondes, M. C. G. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice. Temperature 1, 227–241 (2014).

    Article  Google Scholar 

  16. Rupprecht, L. E. et al. Self-administered nicotine increases fat metabolism and suppresses weight gain in male rats. Psychopharmacology 235, 1131–1140 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Addolorato, G., Capristo, E., Greco, A., Stefanini, G. & Gasbarrini, G. Influence of chronic alcohol abuse on body weight and energy metabolism: is excess ethanol consumption a risk factor for obesity or malnutrition? J. Intern. Med. 244, 387–395 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. Levine, J. A., Harris, M. M. & Morgan, M. Y. Energy expenditure in chronic alcohol abuse. Eur. J. Clin. Invest 30, 779–786 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. Schwindinger, W. F., Borrell, B. M., Waldman, L. C. & Robishaw, J. D. Mice lacking the G protein γ3-subunit show resistance to opioids and diet induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1494–R1502 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bonasera, S. J., Chaudoin, T. R., Goulding, E. H., Mittek, M. & Dunaevsky, A. Decreased home cage movement and oromotor impairments in adult Fmr1‐KO mice. Genes Brain Behav. 16, 564–573 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Gremminger, V. L. et al. Skeletal muscle specific mitochondrial dysfunction and altered energy metabolism in a murine model (oim/oim) of severe osteogenesis imperfecta. Mol. Genet Metab. 132, 244–253 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nandy, A. et al. Lipolysis supports bone formation by providing osteoblasts with endogenous fatty acid substrates to maintain bioenergetic status. Bone Res. 11, 62 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhang, J., Chen, D., Sweeney, P. & Yang, Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat. Commun. 11, 6326 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Piñol, R. A. et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab. 33, 1389–1403 (2021).

  26. Cavalcanti-de-Albuquerque, J. P., Bober, J., Zimmer, M. R. & Dietrich, M. O. Regulation of substrate utilization and adiposity by Agrp neurons. Nat. Commun. 10, 311 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lerner, L. et al. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J. Cachexia Sarcopenia Muscle 7, 467–482 (2016).

    Article  PubMed  Google Scholar 

  28. Falconer, J. S., Fearon, K. C., Plester, C. E., Ross, J. A. & Carter, D. C. Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann. Surg. 219, 325–331 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Suriben, R. et al. Antibody-mediated inhibition of GDF15–GFRAL activity reverses cancer cachexia in mice. Nat. Med. 26, 1264–1270 (2020).

    Article  PubMed  Google Scholar 

  30. Kliewer, K. L. et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol. Ther. 16, 886–897 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Kir, S. et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 23, 315–323 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Desai, M. S. et al. Hypertrophic cardiomyopathy and dysregulation of cardiac energetics in a mouse model of biliary fibrosis. Hepatology 51, 2097–2107 (2010).

    Article  PubMed  CAS  Google Scholar 

  34. Darrah, R. J. et al. Ventilatory pattern and energy expenditure are altered in cystic fibrosis mice. J. Cyst. Fibros. 12, 345–351 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang, J. N., Wang, Y., Garcia-Roves, P. M., Bjornholm, M. & Fredholm, B. B. Adenosine A(3) receptors regulate heart rate, motor activity and body temperature. Acta Physiol. 199, 221–230 (2010).

    Article  CAS  Google Scholar 

  36. Lakin, R. et al. Changes in heart rate and its regulation by the autonomic nervous system do not differ between forced and voluntary exercise in mice. Front. Physiol. 9, 841 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roy, A. et al. Cardiomyocyte‐secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J. 27, 5072–5082 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tang, K. et al. Impaired exercise capacity and skeletal muscle function in a mouse model of pulmonary inflammation. J. Appl. Physiol. 114, 1340–1350 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Van Remoortel, H. et al. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PloS ONE 7, e39198 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. West, J. et al. A potential role for insulin resistance in experimental pulmonary hypertension. Eur. Respir. J. 41, 861–871 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Swoap, S. J. et al. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol. 294, H1581–H1588 (2008).

    Article  PubMed  CAS  Google Scholar 

  42. Lowell, B. B. & Bachman, E. S. Beta-adrenergic receptors, diet-induced thermogenesis, and obesity. J. Biol. Chem. 278, 29385–29388 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Investig. 121, 96–105 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. Sass, F. et al. NK2R control of energy expenditure and feeding to treat metabolic diseases. Nature 635, 987–1000 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Clapham, J. C. & Arch, J. R. Targeting thermogenesis and related pathways in anti-obesity drug discovery. Pharmacol. Ther. 131, 295–308 (2011).

    Article  PubMed  CAS  Google Scholar 

  47. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. Schreiber, R. et al. Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. Proc. Natl Acad. Sci. USA 112, 13850–13855 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Shin, H. et al. Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metab. 26, 764–777 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gavrilova, O. et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 105, 271–278 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Marcaletti, S., Thomas, C. & Feige, J. N. Exercise performance tests in mice. Curr. Protoc. Mouse Biol. 1, 141–154 (2011).

    Article  PubMed  Google Scholar 

  52. Scott, C. B. & Kemp, R. B. Direct and indirect calorimetry of lactate oxidation: implications for whole-body energy expenditure. J. Sports Sci. 23, 15–19 (2005).

    Article  PubMed  Google Scholar 

  53. Flynn, J. M., Meadows, E., Fiorotto, M. & Klein, W. H. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse. PloS ONE 5, e13535 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Virtue, S., Even, P. & Vidal-Puig, A. Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metab. 16, 665–671 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. De Siqueira, M. K. et al. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proc. Natl Acad. Sci. USA 120, e2214484120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. van der Zande, H. J. P. et al. The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake. FASEB J. 35, e21331 (2021).

    Article  PubMed  CAS  Google Scholar 

  57. Nolan, K. E. et al. Metabolic shifts modulate lung injury caused by infection with H1N1 influenza A virus. Virology 559, 111–119 (2021).

    Article  PubMed  CAS  Google Scholar 

  58. Melchor, S. J. et al. T. gondii infection induces IL-1R dependent chronic cachexia and perivascular fibrosis in the liver and skeletal muscle. Sci. Rep. 10, 15724 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kohlgruber, A. C. et al. γ∆ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hu, B. et al. γ∆ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610–614 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kong, X. et al. IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158, 69–83 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lai, N., Kummitha, C., Drumm, M. & Hoppel, C. Alterations of skeletal muscle bioenergetics in a mouse with F508del mutation leading to a cystic fibrosis-like condition. Am. J. Physiol.-Endocrinol. Metab. 317, E327–E336 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pant, M. et al. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy. PloS ONE 10, e0123875 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rocco, A. B., Levalley, J. C., Eldridge, J. A., Marsh, S. A. & Rodgers, B. D. A novel protocol for assessing exercise performance and dystropathophysiology in the mdx mouse. Muscle Nerve 50, 541–548 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. Maricelli, J. W. et al. Sexually dimorphic skeletal muscle and cardiac dysfunction in a mouse model of limb girdle muscular dystrophy 2i. J. Appl. Physiol. 123, 1126–1138 (2017).

    Article  PubMed  CAS  Google Scholar 

  66. Meng, X. et al. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders. eLife 5, e14199 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stojakovic, A. et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer’s disease pathology and cognition in APP/PS1 female mice. Commun. Biol. 4, 61 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dufour, B. D. & McBride, J. L. Normalizing glucocorticoid levels attenuates metabolic and neuropathological symptoms in the R6/2 mouse model of Huntington’s disease. Neurobiol. Dis. 121, 214–229 (2019).

    Article  PubMed  CAS  Google Scholar 

  69. Speakman, J. R., Selman, C., McLaren, J. S. & Harper, E. J. Living fast, dying when? The link between aging and energetics. J. Nutr. 132, 1583S–1597S (2002).

    Article  PubMed  CAS  Google Scholar 

  70. Nicholls, H. T., Krisko, T. I., LeClair, K. B., Banks, A. S. & Cohen, D. E. Regulation of adaptive thermogenesis by the gut microbiome. FASEB J. 30, 854.852 (2016).

    Article  Google Scholar 

  71. López, P. et al. Long‐term genistein consumption modifies gut microbiota, improving glucose metabolism, metabolic endotoxemia, and cognitive function in mice fed a high‐fat diet. Mol. Nutr. Food Res. 62, 1800313 (2018).

  72. Sharma, V. et al. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism. Cell Rep. 24, 3087–3098 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest 117, 143–152 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. Škop, V. et al. Beyond day and night: the importance of ultradian rhythms in mouse physiology. Mol. Metab. 84, 101946 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brager, A. J. et al. Homeostatic effects of exercise and sleep on metabolic processes in mice with an overexpressed skeletal muscle clock. Biochimie 132, 161–165 (2017).

    Article  PubMed  CAS  Google Scholar 

  76. Yajima, K. et al. Effects of nutrient composition of dinner on sleep architecture and energy metabolism during sleep. J. Nutr. Sci. Vitaminol. 60, 114–121 (2014).

    Article  PubMed  CAS  Google Scholar 

  77. Wang, Y. et al. Chronic sleep fragmentation promotes obesity in young adult mice. Obesity 22, 758–762 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Nestoridi, E., Kvas, S., Kucharczyk, J. & Stylopoulos, N. Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice. Endocrinology 153, 2234–2244 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Harris, D. A. et al. Sleeve gastrectomy enhances glucose utilization and remodels adipose tissue independent of weight loss. Am. J. Physiol. Endocrinol. Metab. 318, E678–E688 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. McLean, J. & Tobin, G. Animal and Human Calorimetry (Cambridge University Press, 1987).

  82. Gavrilova, O. et al. Torpor in mice is induced by both leptin-dependent and-independent mechanisms. Proc. Natl Acad. Sci. USA 96, 14623–14628 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gilbert, R. E. et al. SIRT1 activation ameliorates hyperglycaemia by inducing a torpor-like state in an obese mouse model of type 2 diabetes. Diabetologia 58, 819–827 (2015).

    Article  PubMed  CAS  Google Scholar 

  84. Wahlang, B. et al. A compromised liver alters polychlorinated biphenyl-mediated toxicity. Toxicology 380, 11–22 (2017).

    Article  PubMed  CAS  Google Scholar 

  85. Somani, S. M., Husain, K., Asha, T. & Helfert, R. Interactive and delayed effects of pyridostigmine and physical stress on biochemical and histological changes in peripheral tissues of mice. J. Appl. Toxicol. 20, 327–334 (2000).

    Article  PubMed  CAS  Google Scholar 

  86. Field, D. et al. The Genomic Standards Consortium. PLoS Biol. 9, e1001088 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Even, P. C. & Nadkarni, N. A. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R459–476 (2012).

    Article  PubMed  CAS  Google Scholar 

  89. Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    Article  CAS  Google Scholar 

  90. White, C. R. & Seymour, R. S. Allometric scaling of mammalian metabolism. J. Exp. Biol. 208, 1611–1619 (2005).

    Article  PubMed  CAS  Google Scholar 

  91. Heusner, A. A. Size and power in mammals. J. Exp. Biol. 160, 25–54 (1991).

    Article  PubMed  CAS  Google Scholar 

  92. Speakman, J. R. et al. The international atomic energy agency international doubly labelled water database: aims, scope and procedures. Ann. Nutr. Metab. 75, 114–118 (2019).

    Article  PubMed  CAS  Google Scholar 

  93. Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. McPherron, A. C. & Lee, S.-J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Investig. 109, 595–601 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Westbrook, R., Bonkowski, M. S., Strader, A. D. & Bartke, A. Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J. Gerontol. A Biol. Sci. Med Sci. 64, 443–451 (2009).

    Article  PubMed  Google Scholar 

  96. Longo, K. A. et al. Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency. Growth Horm. IGF Res. 20, 73–79 (2010).

    Article  PubMed  CAS  Google Scholar 

  97. Meyer, C. W., Klingenspor, M., Rozman, J. & Heldmaier, G. Gene or size: metabolic rate and body temperature in obese growth hormone-deficient dwarf mice. Obes. Res. 12, 1509–1518 (2004).

    Article  PubMed  CAS  Google Scholar 

  98. Himms-Hagen, J. On raising energy expenditure in ob/ob mice. Science 276, 1132–1133 (1997).

    Article  PubMed  CAS  Google Scholar 

  99. Krashes, M. J., Lowell, B. B. & Garfield, A. S. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19, 206–219 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233 (2018).

    Article  PubMed  CAS  Google Scholar 

  101. Westbrook, R. M. et al. Aged interleukin-10tm1Cgn chronically inflamed mice have substantially reduced fat mass, metabolic rate, and adipokines. PloS ONE 12, e0186811 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mina, A. I. et al. CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab. 28, 656–666 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. El-Haschimi, K., Pierroz, D. D., Hileman, S. M., Bjørbæk, C. & Flier, J. S. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Investig. 105, 1827–1832 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Corrigan, J. K. et al. A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. eLife 9, e53560 (2020).

  105. Taicher, G. Z., Tinsley, F. C., Reiderman, A. & Heiman, M. L. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal. Bioanal. Chem. 377, 990–1002 (2003).

    Article  PubMed  CAS  Google Scholar 

  106. Packard, G. C. & Boardman, T. J. The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 122, 37–44 (1999).

    Article  Google Scholar 

  107. Grobe, J. L. in The Renin-Angiotensin-Aldosterone System: Methods and Protocols (ed Sean E. Thatcher) 123–146 (Springer, 2017).

  108. Kaiyala, K. J. & Schwartz, M. W. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60, 17–23 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Licholai, J. A. et al. Why do mice overeat high-fat diets? How high-fat diet alters the regulation of daily caloric intake in mice. Obesity 26, 1026–1033 (2018).

    Article  PubMed  CAS  Google Scholar 

  110. Rubio, W. B., Cortopassi, M. D. & Banks, A. S. Indirect calorimetry to assess energy balance in mice: measurement and data analysis. Methods Mol. Biol. 2662, 103–115 (2023).

    Article  PubMed  CAS  Google Scholar 

  111. Rubio, W. B. et al. Not so fast: paradoxically increased variability in the glucose tolerance test due to food withdrawal in continuous glucose-monitored mice. Mol. Metab. 77, 101795 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Schipper, L. et al. Grain versus AIN: common rodent diets differentially affect health outcomes in adult C57BL/6j mice. PloS ONE 19, e0293487 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Glendinning, J. I. et al. Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol. Behav. 101, 331–343 (2010).

    Article  PubMed  CAS  Google Scholar 

  114. Kim, A. K., Hamadani, C., Zeidel, M. L. & Hill, W. G. Urological complications of obesity and diabetes in males and females of three mouse models: temporal manifestations. Am. J. Physiol. Ren. Physiol. 318, F160–F174 (2020).

    Article  CAS  Google Scholar 

  115. Bertaggia, E. et al. Cyp8b1 ablation prevents Western diet-induced weight gain and hepatic steatosis because of impaired fat absorption. Am. J. Physiol. Endocrinol. Metab. 313, E121–E133 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Weir, J. B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 109, 1–9 (1949).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists. (Oxford University Press, 2019).

  118. Raubenheimer, D. & Simpson, S. Analysis of covariance: an alternative to nutritional indices. Entomol. Exp. Appl. 62, 221–231 (1992).

    Article  Google Scholar 

  119. Kronmal, R. A. Spurious correlation and the fallacy of the ratio standard revisited. J. R. Stat. Soc. 156, 379–392 (1993).

    Article  Google Scholar 

  120. Albrecht, G. H., Gelvin, B. R. & Hartman, S. E. Ratios as a size adjustment in morphometrics. Am. J. Phys. Anthropol. 91, 441–468 (1993).

    Article  PubMed  CAS  Google Scholar 

  121. Allison, D., Paultre, F., Goran, M., Poehlman, E. & Heymsfield, S. Statistical considerations regarding the use of ratios to adjust data. Int. J. Obes. Relat. Metab. Disord. 19, 644–652 (1995).

    PubMed  CAS  Google Scholar 

  122. Raubenheimer, D. Problems with ratio analysis in nutritional studies. Funct. Ecol. 9, 21–29 (1995).

    Article  Google Scholar 

  123. Speakman, J. R., Fletcher, Q. & Vaanholt, L. The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure. Dis. Model. Mech. 6, 293–301 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Arch, J., Hislop, D., Wang, S. & Speakman, J. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int. J. Obes. 30, 1322–1331 (2006).

    Article  CAS  Google Scholar 

  125. Packard, G. C. & Boardman, T. J. The misuse of ratios, indices, and percentages in ecophysiological research. Physiol. Zool. 61, 1–9 (1988).

    Article  Google Scholar 

  126. Kaiyala, K. J. et al. Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59, 1657–1666 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kaiyala, K. J. Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure. PloS ONE 9, e103301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Poehlman, E. T. & Toth, M. J. Mathematical ratios lead to spurious conclusions regarding age-and sex-related differences in resting metabolic rate. Am. J. Clin. Nutr. 61, 482–485 (1995).

    Article  PubMed  CAS  Google Scholar 

  129. Tschöp, M. H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2012).

    Article  Google Scholar 

  130. Fernandez-Verdejo, R., Ravussin, E., Speakman, J. R. & Galgani, J. E. Progress and challenges in analyzing rodent energy expenditure. Nat. Methods 16, 797–799 (2019).

    Article  PubMed  CAS  Google Scholar 

  131. Muller, T. D., Klingenspor, M. & Tschop, M. H. Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1134–1136 (2021).

    Article  PubMed  Google Scholar 

  132. D’Alonzo, K. T. The Johnson–Neyman procedure as an alternative to ANCOVA. West. J. Nurs. Res. 26, 804–812 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Toyama, K. S. J. Nplots: an R package to visualize outputs from the Johnson–Neyman technique for categorical and continuous moderators, including options for phylogenetic regressions. Evolut. Ecol. 38, 371–385 (2024).

    Article  Google Scholar 

  134. Virtue, S., Lelliott, C. J. & Vidal-Puig, A. What is the most appropriate covariate in ANCOVA when analysing metabolic rate? Nat. Metab. 3, 1585–1585 (2021).

    Article  PubMed  Google Scholar 

  135. Selman, C., Lumsden, S., Bünger, L., Hill, W. G. & Speakman, J. R. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J. Exp. Biol. 204, 777–784 (2001).

    Article  PubMed  CAS  Google Scholar 

  136. Drucker, D. J. Never waste a good crisis: confronting reproducibility in translational research. Cell Metab. 24, 348–360 (2016).

    Article  PubMed  CAS  Google Scholar 

  137. Cobey, K. D. et al. Biomedical researchers’ perspectives on the reproducibility of research. PLoS Biol. 22, e3002870 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Sciences, N. A. o. et al. Reproducibility and Replicability in Science. (National Academies Press, 2019).

  139. Gabelica, M., Bojčić, R. & Puljak, L. Many researchers were not compliant with their published data sharing statement: a mixed-methods study. J. Clin. Epidemiol. 150, 33–41 (2022).

    Article  PubMed  Google Scholar 

  140. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Rozman, J. et al. Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nat. Commun. 9, 288 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gailus-Durner, V. et al. Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat. Methods 2, 403–404 (2005).

    Article  PubMed  CAS  Google Scholar 

  143. Bogue, M. A., Churchill, G. A. & Chesler, E. J. Collaborative cross and diversity outbred data resources in the mouse phenome database. Mamm. Genome 26, 511–520 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Ayala, J. E. et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis. Model. Mech. 3, 525–534 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Bachmann, A. M. et al. Genetic background and sex control the outcome of high-fat diet feeding in mice. iScience 25, 104468 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Blessing, W. & Ootsuka, Y. Timing of activities of daily life is jaggy: how episodic ultradian changes in body and brain temperature are integrated into this process. Temperature 3, 371–383 (2016).

    Article  Google Scholar 

  148. Deaton, A. M. et al. Rare loss of function variants in the hepatokine gene INHBE protect from abdominal obesity. Nat. Commun. 13, 4319 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Howard-Hill, T. H. Early modern printers and the standardization of english spelling. Mod. Lang. Rev. 101, 16–29 (2006).

    Article  Google Scholar 

  150. Loipfinger, S. et al. Calopy — an advanced framework for the integration and analysis of indirect calorimetry data. Nat. Metab. 7, 1093–1095 (2025).

    Article  PubMed  Google Scholar 

  151. Grein, S. et al. Shiny-Calorie: a context-aware application for indirect calorimetry data analysis and visualization using R. Preprint at bioRxiv https://doi.org/10.1101/2025.04.24.648116 (2025).

  152. Hashimoto, O. et al. Activin E controls energy homeostasis in both brown and white adipose tissues as a hepatokine. Cell Rep. 25, 1193–1203 (2018).

    Article  PubMed  CAS  Google Scholar 

  153. Koncarevic, A. et al. A novel therapeutic approach to treating obesity through modulation of TGFβ signaling. Endocrinology 153, 3133–3146 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Wilkes, J. J., Lloyd, D. J. & Gekakis, N. Loss-of-function mutation in myostatin reduces tumor necrosis factor α production and protects liver against obesity-induced insulin resistance. Diabetes 58, 1133–1143 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Shen, J. J. et al. Deficiency of growth differentiation factor 3 protects against diet-induced obesity by selectively acting on white adipose. Mol. Endocrinol. 23, 113–123 (2009).

    Article  PubMed  CAS  Google Scholar 

  157. Yogosawa, S., Mizutani, S., Ogawa, Y. & Izumi, T. Activin receptor-like kinase 7 suppresses lipolysis to accumulate fat in obesity through downregulation of peroxisome proliferator-activated receptor gamma and C/EBPalpha. Diabetes 62, 115–123 (2013).

    Article  PubMed  CAS  Google Scholar 

  158. Tangseefa, P., Jin, H., Zhang, H., Xie, M. & Ibáñez, C. F. Human ACVR1C missense variants that correlate with altered body fat distribution produce metabolic alterations of graded severity in knock-in mutant mice. Mol. Metab. 81, 101890 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kumari, R. Role of SMAD2 and SMAD3 on Adipose Tissue Development and Function. (The University of Tennessee Health Science Center, 2021).

  160. Kumari, R. et al. SMAD2 and SMAD3 differentially regulate adiposity and the growth of subcutaneous white adipose tissue. FASEB J. 35, e22018 (2021).

    Article  PubMed  CAS  Google Scholar 

  161. Zhao, M. et al. Targeting activin receptor–like kinase 7 ameliorates adiposity and associated metabolic disorders. JCI Insight 8, e161229 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Srivastava, R. K., Lee, E. S., Sim, E., Sheng, N. C. & Ibáñez, C. F. Sustained anti-obesity effects of life-style change and anti-inflammatory interventions after conditional inactivation of the activin receptor ALK7. FASEB J. 35, e21759 (2021).

    Article  PubMed  CAS  Google Scholar 

  163. Guo, T. et al. Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. eLife 3, e03245 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Choi, S. J. et al. Increased energy expenditure and leptin sensitivity account for low fat mass in myostatin-deficient mice. Am. J. Physiol. Endocrinol. Metab. 300, E1031–E1037 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Wang, H. et al. Myostatin regulates energy homeostasis through autocrine- and paracrine-mediated microenvironment communication. J. Clin. Invest. 134, e178303 (2024).

  166. Akpan, I. et al. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int. J. Obes. 33, 1265–1273 (2009).

    Article  CAS  Google Scholar 

  167. Abreu-Vieira, G., Xiao, C., Gavrilova, O. & Reitman, M. L. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol. Metab. 4, 461–470 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Funding is provided by NIH grants R01DK133948 and P30DK135043 (A.S.B.), P30DK056350 (S.R.S.), U2CDK135074 (K.L.), U2CDK135073 (J.A. and L.L.), U2CDK135066 (C.E.), U2CDK134901 (G.S.) and FAPESP grant #2013/07607-8 (L.A.V.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

In hopes of creating a set of global standards for preclinical indirect calorimetry experiments, we assembled the International Indirect Calorimetry Consensus Committee (IICCC). The initial composition includes 79 members in 18 countries. The effort and initial draft grew from the NIH-funded Mouse Metabolic Phenotyping Centers Reproducibility Working Group. Input was then solicited from calorimetry leaders within the NIDDK-Diabetes Research Centers, NIDDK-Nutrition Obesity Research Centers, International Mouse Phenotyping Consortium and additional experts at independent sites. All members enthusiastically support the need for greater standards in indirect calorimetry research and will continue to actively promote and maintain these standards. A draft of the guide was shared by the IICCC chair (A.S.B.). Written comments and suggestions from committee members were received, including revision assistance by C.D.H. Virtual discussion meetings were held. The submitted manuscript reflects changes from these discussions, editorial suggestions from Nature Metabolism and peer reviewers.

Corresponding author

Correspondence to Alexander S. Banks.

Ethics declarations

Competing interests

M.D., K.S. and J.R.Z. organized an indirect calorimetry course, and travel was provided to C.D.H. as an indirect calorimetry course guest lecturer by Sable Systems International. J.R.S. consults for TSE International. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Dominik Lutter, Jae Myoung Suh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alfredo Giménez-Cassina, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banks, A.S., Allison, D.B., Alquier, T. et al. A consensus guide to preclinical indirect calorimetry experiments. Nat Metab 7, 1765–1780 (2025). https://doi.org/10.1038/s42255-025-01360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-025-01360-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing