Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconciling regional nitrogen boundaries with global food security

An Author Correction to this article was published on 03 May 2022

This article has been updated

Abstract

While nitrogen inputs are crucial to agricultural production, excess nitrogen contributes to serious ecosystem damage and water pollution. Here, we investigate this trade-off using an integrated modelling framework. We quantify how different nitrogen mitigation options contribute to reconciling food security and compliance with regional nitrogen surplus boundaries. We find that even when respecting regional nitrogen surplus boundaries, hunger could be substantially alleviated with 590 million fewer people at risk of hunger from 2010 to 2050, if all nitrogen mitigation options were mobilized simultaneously. Our scenario experiments indicate that when introducing regional N targets, supply-side measures such as the nitrogen use efficiency improvement are more important than demand-side efforts for food security. International trade plays a key role in sustaining global food security under nitrogen boundary constraints if only a limited set of mitigation options is deployed. Policies that respect regional nitrogen surplus boundaries would yield a substantial reduction in non-CO2 GHG emissions of 2.3 GtCO2e yr−1 in 2050, which indicates a necessity for policy coordination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of modelled N flows and their magnitudes in 2010.
Fig. 2: Spatial variation in a regional N risk indicator for the year 2010.
Fig. 3: Projections of relative changes in global agricultural production and international trade for crop (in dry matter) and animal products (in protein).
Fig. 4: Projections of indicators related to food security and associated N cycles and non-CO2 GHG emissions.
Fig. 5: Population at risk of hunger by 2050 in selected world regions under different N management and climate scenarios.

Similar content being viewed by others

Data availability

The main data that support the findings of this study are available at the public Data Repository of the International Institute of Applied Systems Analysis (https://dare.iiasa.ac.at/125/ and https://doi.org/10.22022/IBF/07-2021.125). Source data are provided with this paper.

Code availability

The code used for the statistical analysis of the scenario data is available from the corresponding author on request.

Change history

References

  1. Sutton, M. A. et al. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution (Centre for Ecology and Hydrology, 2013).

  2. Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project (WHO, 2013).

  4. Cape, J. N., van der Eerden, L. J., Sheppard, L. J., Leith, I. D. & Sutton, M. A. Evidence for changing the critical level for ammonia. Environ. Pollut. 157, 1033–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).

    Article  ADS  Google Scholar 

  6. Rabalais, N. N., Turner, R. E., Díaz, R. J. & Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528–1537 (2009).

    Article  Google Scholar 

  7. Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).

    Article  PubMed  Google Scholar 

  8. van Grinsven, H. J. M., Rabl, A. & de Kok, T. M. Estimation of incidence and social cost of colon cancer due to nitrate in drinking water in the EU: a tentative cost–benefit assessment. Environ. Health 9, 58 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seitzinger, S. P. et al. Global river nutrient export: a scenario analysis of past and future trends. Glob. Biogeochem. Cycles https://doi.org/10.1029/2009gb003587 (2010).

  10. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472 (2009).

    Article  ADS  PubMed  Google Scholar 

  11. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  12. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).

    Article  PubMed  Google Scholar 

  14. De Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

    Article  Google Scholar 

  15. Lewis, S. We must set planetary boundaries wisely. Nature 485, 417 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).

  17. Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kanter, D. R., Chodos, O., Nordland, O., Rutigliano, M. & Winiwarter, W. Gaps and opportunities in nitrogen pollution policies around the world. Nat. Sustain. 3, 956–963 (2020).

    Article  Google Scholar 

  19. Sinha, E., Michalak, A. M., Calvin, K. V. & Lawrence, P. J. Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. Nat. Commun. 10, 939 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).

    Article  Google Scholar 

  25. Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Article  Google Scholar 

  26. Havlík, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690–5702 (2011).

    Article  Google Scholar 

  27. Kros, J. et al. Uncertainties in model predictions of nitrogen fluxes from agro-ecosystems in Europe. Biogeosciences 9, 4573–4588 (2012).

    Article  ADS  CAS  Google Scholar 

  28. De Vries, W. et al. Comparison of land nitrogen budgets for European agriculture by various modeling approaches. Environ. Pollut. 159, 3254–3268 (2011).

    Article  PubMed  Google Scholar 

  29. Food Security Indicators (FAO, 2016); http://www.fao.org/economic/ess/ess-fs/ess-fadata/en/#.XdcGvjK2lp-

  30. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Article  Google Scholar 

  31. Elleby, C., Domínguez, I. P., Adenauer, M. & Genovese, G. Impacts of the COVID-19 pandemic on the global agricultural markets. Environ. Resour. Econ. 76, 1067–1079 (2020).

    Article  Google Scholar 

  32. Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat. Clim. Change 9, 66–72 (2019).

    Article  ADS  CAS  Google Scholar 

  33. Alexander, R. B. et al. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River basin. Environ. Sci. Technol. 42, 822–830 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).

    Article  ADS  Google Scholar 

  35. Hasegawa, T., Havlík, P., Frank, S., Palazzo, A. & Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2, 826–833 (2019).

    Article  Google Scholar 

  36. Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).

    Article  Google Scholar 

  37. Femenia, F. A Meta-analysis of the Price and Income Elasticities of Food Demand Working Paper SMART—LERECO No. 19-03 (INRAE, 2019).

  38. The Fertilizer Industry, World Food Supplies and the Environment (IFA, UNEP, 1998).

  39. Ammonia Production: Moving Towards Maximum Efficiency and Lower GHG Emissions (IFA, 2014); https://www.fertilizer.org/images/Library_Downloads/2014_ifa_ff_ammonia_emissions_july.pdf

  40. Houlton, B. Z. et al. A world of cobenefits: solving the global nitrogen challenge. Earth’s Future 7, 865–872 (2019).

    Article  ADS  Google Scholar 

  41. Balkovič, J. et al. Global wheat production potentials and management flexibility under the representative concentration pathways. Glob. Planet. Change 122, 107–121 (2014).

    Article  ADS  Google Scholar 

  42. Parton, W. J. et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cycles 7, 785–809 (1993).

    Article  ADS  CAS  Google Scholar 

  43. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kindermann, G. et al. Global cost estimates of reducing carbon emissions through avoided deforestation. Proc. Natl Acad. Sci. USA 105, 10302–10307 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article  ADS  PubMed  Google Scholar 

  46. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  47. Stehfest, E. et al. Key determinants of global land-use projections. Nat. Commun. 10, 2166 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Valin, H. et al. The future of food demand: understanding differences in global economic models. Agric. Econ. 45, 51–67 (2014).

    Article  Google Scholar 

  49. Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Smil, V. Nitrogen in crop production: an account of global flows. Glob. Biogeochem. Cycles 13, 647–662 (1999).

    Article  ADS  CAS  Google Scholar 

  52. Sheldrick, W. F., Syers, J. K. & Lingard, J. A conceptual model for conducting nutrient audits at national, regional, and global scales. Nutr. Cycling Agroecosyst. 62, 61–72 (2002).

    Article  CAS  Google Scholar 

  53. Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bodirsky, B. L. et al. N2O emissions from the global agricultural nitrogen cycle—current state and future scenarios. Biogeosciences 9, 4169–4197 (2012).

    Article  ADS  CAS  Google Scholar 

  55. Uwizeye, A. et al. Nitrogen emissions along global livestock supply chains. Nat. Food 1, 437–446 (2020).

    Article  CAS  Google Scholar 

  56. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5 (2011).

    Article  ADS  Google Scholar 

  58. Collins, W. J. et al. Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  59. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  60. Leclère, D. et al. Climate change induced transformations of agricultural systems: insights from a global model. Environ. Res. Lett. 9, 124018 (2014).

    Article  ADS  Google Scholar 

  61. Havlík, P. et al. in Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade (ed. Elbehri, A.) 177–208 (FAO, 2015).

  62. Müller, C. & Robertson, R. D. Projecting future crop productivity for global economic modeling. Agric. Econ. 45, 37–50 (2014).

    Article  Google Scholar 

  63. Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. De Vries, W. & Schulte-Uebbing, L. Required changes in nitrogen inputs and nitrogen use efficiencies to reconcile agricultural productivity with water and air quality objectives in the EU-27. In Proc. 842 of the International Fertiliser Society 1–39 (nternational Fertiliser Society, Cambridge, 2020).

  65. Camargo, J. A. & Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. Int. 32, 831–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Laane, R. W. P. M. Applying the critical load concept to the nitrogen load of the river Rhine to the Dutch coastal zone. Estuar. Coast. Shelf Sci. 62, 487–493 (2005).

    Article  ADS  CAS  Google Scholar 

  67. Velthof, G. L. et al. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE. J. Environ. Qual. 38, 402–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Dieng, H. B. et al. Total land water storage change over 2003–2013 estimated from a global mass budget approach. Environ. Res. Lett. 10, 124010 (2015).

    Article  ADS  Google Scholar 

  69. Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002).

    Article  ADS  Google Scholar 

  70. Harris, I. C. CRU JRA v1. 1: A Forcings Dataset of Gridded Land Surface Blend of Climatic Research Unit (CRU) and Japanese Reanalysis (JRA) Data 2905th edn, Vol. 2905 (University of East Anglia Climatic Research Unit Centre for Environmental Data Analysis, 2019).

  71. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 17, 3707–3720 (2013).

    Article  ADS  Google Scholar 

  72. Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Sci. Data 9, 927 (2017).

    Article  ADS  Google Scholar 

  73. FAO, IFAD, UNICEF, WFP & WHO The State of Food Security and Nutrition in the World 2019: Safeguarding Against Economic Slowdowns and Downturns (FAO, 2019).

  74. Methodology for the Measurement of Food Deprivation: Updating the Minimum Dietary Energy Requirements (FAO, 2008).

  75. Hasegawa, T., Fujimori, S., Takahashi, K. & Masui, T. Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways. Environ. Res. Lett. 10, 014010 (2015).

    Article  ADS  Google Scholar 

  76. Hasegawa, T. et al. Consequence of climate mitigation on the risk of hunger. Environ. Sci. Technol. 49, 7245–7253 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Energy and Protein Requirements: Report of a Joint FAO/WHO Ad Hoc Expert Committee World Health Organization Technical Report Series No. 522; FAO Nutrition Meetings Report Series No. 52 (WHO, FAO, 1973).

  78. Kc, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Drawing Down N2O to Protect Climate and the Ozone Layer: A UNEP Synthesis Report (United Nations Environment Programme, 2013).

  80. Kanter, D. R. et al. A framework for nitrogen futures in the shared socioeconomic pathways. Glob. Environ. Change 61, 102029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Van Drecht, G., Bouwman, A. F., Harrison, J. & Knoop, J. M. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob. Biogeochem. Cycles https://doi.org/10.1029/2009gb003458 (2009).

  82. Transforming Our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).

  83. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

    Article  ADS  Google Scholar 

  84. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste – Extent, Causes and Prevention (FAO, 2011).

Download references

Acknowledgements

J.C. and M.O. were supported by European Research Council Synergy grant no. ERC-2013-SynG-610028 Imbalance-P. Support from the Global Environment Facility of the United Nations Environment Programme through the project ‘Towards an International Nitrogen Management System’ for the organization of workshops proved essential to the success of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and P.H. designed the study. J.C. carried out the GLOBIOM modelling with help from P.H., D.L., H.V. and A.D. W.d.V. provided the methodology for estimating regional N surplus boundaries. J.C. performed the analysis and wrote an initial draft. All authors contributed substantially to the interpretation of the results and to the text.

Corresponding author

Correspondence to Jinfeng Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Thomas Nesme, Aimable Uwizeye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Tables 1–10 and Figs. 1–8.

Reporting Summary

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Havlík, P., Leclère, D. et al. Reconciling regional nitrogen boundaries with global food security. Nat Food 2, 700–711 (2021). https://doi.org/10.1038/s43016-021-00366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-021-00366-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene