Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Land-based climate change mitigation measures can affect agricultural markets and food security

A Publisher Correction to this article was published on 30 March 2022

This article has been updated

Abstract

Earlier studies have noted potential adverse impacts of land-related emissions mitigation strategies on food security, particularly due to food price increases—but without distinguishing these strategies’ individual effects under different conditions. Using six global agroeconomic models, we show the extent to which three factors—non-CO2 emissions reduction, bioenergy production and afforestation—may change food security and agricultural market conditions under 2 °C climate-stabilization scenarios. Results show that afforestation (often simulated in the models by imposing carbon prices on land carbon stocks) could have a large impact on food security relative to non-CO2 emissions policies (generally implemented as emissions taxes). Respectively, these measures put an additional 41.9 million and 26.7 million people at risk of hunger in 2050 compared with the current trend scenario baseline. This highlights the need for better coordination in emissions reduction and agricultural market management policies as well as better representation of land use and associated greenhouse gas emissions in modelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representation of climate change mitigation measures and their potential effects on agricultural prices and the risk of hunger.
Fig. 2: Decomposition of three factors.
Fig. 3: Various emissions.
Fig. 4: Regional effects of each land-based mitigation measure on risk of hunger and food price for SSP2.
Fig. 5: Socioeconomic uncertainties in food security indicators.

Similar content being viewed by others

Data availability

Model output data are available at https://doi.org/10.5281/zenodo.5793100. Data derived from the original scenario database, which are shown as figures but are not in the above database, are available upon reasonable request from the corresponding authors. Source data are provided with this paper.

Code availability

All code used for data analysis and creating the figures is available via Zenodo at https://zenodo.org/record/5793100#.YcB0w2jP2Uk.

Change history

References

  1. Blanco, G. et al. Drivers, Trends and Mitigation (Cambridge Univ. Press, 2014).

    Google Scholar 

  2. Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Article  ADS  Google Scholar 

  3. Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  4. Harmsen, J. H. M. et al. Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environ. Sci. Policy 99, 136–149 (2019).

    Article  CAS  Google Scholar 

  5. Hasegawa, T. & Matsuoka, Y. Climate change mitigation strategies in agriculture and land use in Indonesia. Mitig. Adapt. Strateg. Glob. Change 20, 409–424 (2015).

    Article  Google Scholar 

  6. Global Mitigation of Non-CO2 Greenhouse Gases: 2010–2030 (US Environmental Protection Agency, 2013).

  7. Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).

    Article  ADS  Google Scholar 

  8. Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Article  ADS  CAS  Google Scholar 

  9. Gambhir, A., Butnar, I., Li, P.-H., Smith, P. & Strachan, N. A review of criticisms of integrated assessment models and proposed approaches to address these, through the lens of BECCS. Energies 12, 1747 (2019).

    Article  CAS  Google Scholar 

  10. Gough, C. et al. Challenges to the use of BECCS as a keystone technology in pursuit of 1.5 °C. Glob. Sustain. 1, e5 (2018).

    Article  Google Scholar 

  11. Hasegawa, T. et al. Consequence of climate mitigation on the risk of hunger. Environ. Sci. Technol. 49, 7245–7253 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hasegawa, T. et al. Food security under high bioenergy demand toward long-term climate goals. Climatic Change 163, 1587–1601 (2020).

    Article  ADS  Google Scholar 

  13. Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).

    Article  Google Scholar 

  14. Fujimori, S. et al. Inclusive climate change mitigation and food security policy under 1.5 °C climate goal. Environ. Res. Lett. 13, 074033 (2018).

    Article  ADS  Google Scholar 

  15. Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat. Clim. Change 9, 66–72 (2019).

    Article  ADS  CAS  Google Scholar 

  16. Doelman, J. C. et al. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).

    Article  ADS  Google Scholar 

  17. Humpenöder, F. et al. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9, 064029 (2014).

    Article  ADS  Google Scholar 

  18. Golub, A. A. et al. Global climate policy impacts on livestock, land use, livelihoods, and food security. Proc. Natl Acad. Sci. USA 110, 20894–20899 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Hussein, Z., Hertel, T. & Golub, A. Climate change mitigation policies and poverty in developing countries. Environ. Res. Lett. 8, 035009 (2013).

    Article  ADS  Google Scholar 

  20. Peña-Lévano, L. M., Taheripour, F. & Tyner, W. E. Climate change interactions with agriculture, forestry sequestration, and food security. Environ. Resour. Econ. 74, 653–675 (2019).

    Article  Google Scholar 

  21. Fujimori, S. et al. SSP3: AIM implementation of Shared Socioeconomic Pathways. Glob. Environ. Change 42, 268–283 (2017).

    Article  Google Scholar 

  22. Thompson, W. et al. Long-term crop productivity response and its interaction with cereal markets and energy prices. Food Policy 84, 1–9 (2019).

    Article  Google Scholar 

  23. Sands, R. D., Förster, H., Jones, C. A. & Schumacher, K. Bio-electricity and land use in the Future Agricultural Resources Model (FARM). Climatic Change 123, 719–730 (2013).

    Article  ADS  Google Scholar 

  24. Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

    Article  Google Scholar 

  25. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Article  Google Scholar 

  26. van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article  Google Scholar 

  27. Hasegawa, T., Fujimori, S., Takahashi, K. & Masui, T. Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways. Environ. Res. Lett. 10, 014010 (2015).

    Article  ADS  Google Scholar 

  28. Hasegawa, T., Fujimori, S., Takahashi, K., Yokohata, T. & Masui, T. Economic implications of climate change impacts on human health through undernourishment. Climatic Change 136, 189–202 (2016).

    Article  ADS  Google Scholar 

  29. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  30. Stehfest, E. et al. Key determinants of global land-use projections. Nat. Commun. 10, 2166 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Hasegawa, T. et al. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2, 587–595 (2021).

    Article  Google Scholar 

  32. Hasegawa, T., Fujimori, S., Takahashi, K. & Masui, T. Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways. Environ. Res. Lett. 10, 014010 (2015).

    Article  ADS  Google Scholar 

  33. von Lampe, M. et al. Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agric. Econ. 45, 3–20 (2014).

    Article  Google Scholar 

  34. Harmsen, M. et al. The role of methane in future climate strategies: mitigation potentials and climate impacts. Climatic Change 163, 1409–1425 (2020).

    Article  ADS  CAS  Google Scholar 

  35. Gernaat, D. E. H. J. et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33, 142–153 (2015).

    Article  Google Scholar 

  36. Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A. & van Vuuren, D. P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 54, 88–101 (2019).

    Article  Google Scholar 

  37. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  38. Rogelj, J., Meinshausen, M., Schaeffer, M., Knutti, R. & Riahi, K. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming. Environ. Res. Lett. 10, 075001 (2015).

    Article  ADS  Google Scholar 

  39. Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Article  ADS  Google Scholar 

  40. van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Clim. Change 8, 391–397 (2018).

    Article  ADS  Google Scholar 

  41. Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Calvin, K. et al. Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Climatic Change 123, 691–704 (2014).

    Article  ADS  Google Scholar 

  43. Fujimori, S., Hasegawa, T. & Oshiro, K. An assessment of the potential of using carbon tax revenue to tackle poverty. Environ. Res. Lett. 15, 114063 (2020).

    Article  ADS  CAS  Google Scholar 

  44. Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2017).

    Article  ADS  Google Scholar 

  45. Stehfest, E. et al. Climate benefits of changing diet. Climatic Change 95, 83–102 (2009).

    Article  ADS  CAS  Google Scholar 

  46. Hasegawa, T., Havlík, P., Frank, S., Palazzo, A. & Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2, 826–833 (2019).

    Article  Google Scholar 

  47. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article  ADS  PubMed  Google Scholar 

  48. Fujimori, S. et al. Macroeconomic impacts of climate change driven by changes in crop yields. Sustainability 10, 3673 (2018).

    Article  Google Scholar 

  49. Reilly, J., Hohmann, N. & Kane, S. Climate change and agricultural trade. Glob. Environ. Change 4, 24–36 (1994).

    Article  Google Scholar 

  50. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Vitousek, P. M., Menge, D. N. L., Reed, S. C. & Cleveland, C. C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B 368, 20130119 (2013).

    Article  Google Scholar 

  52. Hejazi, M. et al. Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technol. Forecast. Soc. Change 81, 205–226 (2014).

    Article  Google Scholar 

  53. van Vuuren, D. P. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Climatic Change 109, 95–116 (2011).

    Article  ADS  CAS  Google Scholar 

  54. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251 (2017).

    Article  Google Scholar 

  55. Debeljak, M. et al. Potential of multi-objective models for risk-based mapping of the resilience characteristics of soils: demonstration at a national level. Soil Use Manag. 25, 66–77 (2009).

    Article  Google Scholar 

  56. Bai, Z. G., Dent, D. L., Olsson, L. & Schaepman, M. E. Global Assessment of Land Degradation and Improvement: 1. Identification by Remote Sensing (ISRIC—World Soil Information, 2008).

  57. van Zeist, W.-J. et al. Are scenario projections overly optimistic about future yield progress? Glob. Environ. Change 64, 102120 (2020).

    Article  Google Scholar 

  58. Borgonovo, E. Sensitivity analysis with finite changes: an application to modified EOQ models. Eur. J. Oper. Res. 200, 127–138 (2010).

    Article  MATH  Google Scholar 

  59. Borgonovo, E. A methodology for determining interactions in probabilistic safety assessment models by varying one parameter at a time. Risk Anal. 30, 385–399 (2010).

    Article  PubMed  Google Scholar 

  60. Marangoni, G. et al. Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways. Nat. Clim. Change 7, 113–117 (2017).

    Article  ADS  CAS  Google Scholar 

  61. Fujimori, S., Hasegawa, T., Masui, T. & Takahashi, K. Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Sec. 6, 685–699 (2014).

    Article  Google Scholar 

  62. Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [Basic] Manual (Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 2012).

  63. Woltjer, G. B. & Kuiper, M. H. The MAGNET Model: Module Description (LEI Wageningen UR, 2014).

  64. Stehfest, E., van Vuuren, D., Bouwman, L. & Kram, T. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  65. Lucas, P. L., van Vuuren, D. P., Olivier, J. G. J. & den Elzen, M. G. J. Long-term reduction potential of non-CO2 greenhouse gases. Environ. Sci. Policy 10, 85–103 (2007).

    Article  Google Scholar 

  66. Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Kindermann, G. E., Obersteiner, M., Rametsteiner, E. & McCallum, I. Predicting the deforestation-trend under different carbon-prices. Carbon Balance Manag. 1, 15 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kyle, P. et al. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods (Pacific Northwest National Laboratory, 2011).

  69. Calvin, K. et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).

    Article  ADS  CAS  Google Scholar 

  70. Wise, M. & Calvin, K. GCAM 3.0 Agriculture and Land Use: Technical Description of Modeling Approach (PNNL, 2011).

  71. Armington, S. P. A theory of demand for products distinguished by place of production. Staff Papers 16, 159–178 (1969).

    Article  Google Scholar 

  72. Domínguez, I. P. et al. An Economic Assessment of GHG Mitigation Policy Options for EU Agriculture. Report No. JRC101396 (Publications Office of the European Union, 2016).

  73. Sands, R. D., Malcolm, S. A., Suttles, S. A. & Marshall, E. Dedicated Energy Crops and Competition for Agricultural Land (US Department of Agriculture, 2017).

  74. Lanz, B. & Rutherford, T. F. GTAPinGAMS: multiregional and small open economy models. J. Glob. Econ. Anal. 1, 1–77 (2016).

    Article  Google Scholar 

  75. The State of Food Insecurity in the World 2012 (FAO, 2012).

  76. Emissions Database for Global Atmospheric Research (EDGAR) Version 4.2 (Joint Research Centre, European Commission, 2012); http://edgar.jrc.ec.europa.eu

  77. FAO Methodology for the Measurement of Food Deprivation: Updating the Minimum Dietary Energy Requirements (FAO, 2008).

  78. Food Security Indicators (FAO, 2013).

  79. Energy and Protein Requirements (FAO and World Health Organization, 1973).

  80. Shared Socioeconomic Pathways (SSP) Database Version 0.9.3 (International Institute for Applied Systems Analysis, 2012); https://tntcat.iiasa.ac.at/SspDb

Download references

Acknowledgements

S. Fujimori, W.W., T.H. and K.T. are supported by the Environment Research and Technology Development Fund (JPMEERF20202002) of the Environmental Restoration and Conservation Agency of Japan. S. Fujimori, T.H. and K.T. are supported by the Sumitomo Foundation. W.W. was supported by the Japan Society for the Promotion of Science KAKENHI (grant no. JP20K20031). H.v.M., A.T. and W.-J.v.Z. received funding from the Dutch Ministry of Agriculture, Nature and Food Security through the Wageningen University Knowledge Base programme (Circular and Climate Neutral Society, KB-34-003-001 Integrated toolbox for cross-sectoral forward looking assessments and scenarios). S. Frank, P.H. and H.V. received funding from the European Union’s H2020 ENGAGE (grant no. 821471) and NAVIGATE (grant no. 821124). This research was supported by the Economic Research Service of the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

S. Fujimori and W.W. designed the research. W.W. and S. Fujimori carried out analysis of the modelling results. W.W. created figures. S. Fujimori and W.W. wrote the draft of the paper. S. Fujimori, W.W., T.H., J.D., S. Frank, J.H., P.K., R.S., W.-J.v.Z., P.H., I.P.D., A.S., E.S., A.T., H.V. and H.v.M. set up the model. W.W., T.H., J.D., S. Frank, J.H., P.K., R.S. and W.-J.v.Z. simulated the model, and all authors contributed to writing the entire manuscript.

Corresponding authors

Correspondence to Shinichiro Fujimori or Wenchao Wu.

Ethics declarations

Competing interests

The authors declare no competing interests. The findings and conclusions in this publication are those of the authors and should not be construed to represent any official USDA or US government determination or European Commission policy.

Peer review

Peer review information

Nature Food thanks Alexandre Köberle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Tables 1–9.

Reporting Summary.

Source data

Source Data Fig. 2

Source data for Fig. 2 to ensure reproducibility.

Source Data Fig. 3

Source data for Fig. 3 to ensure reproducibility.

Source Data Fig. 4

Source data for Fig. 4 to ensure reproducibility.

Source Data Fig. 5

Source data for Fig. 5 to ensure reproducibility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimori, S., Wu, W., Doelman, J. et al. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat Food 3, 110–121 (2022). https://doi.org/10.1038/s43016-022-00464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-022-00464-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing