Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Adoption of plant-based diets across Europe can improve food resilience against the Russia–Ukraine conflict

Abstract

Crises related to extreme weather events, COVID-19 and the Russia–Ukraine conflict have revealed serious problems in global food (inter)dependency. Here we demonstrate that a transition towards the EAT-Lancet’s planetary health diet in the European Union and the United Kingdom alone would almost compensate for all production deficits from Russia and Ukraine while yielding improvements in blue water use (4.1 Gm3 yr−1), greenhouse gas emissions (0.22 GtCO2e yr−1) and carbon sequestration (17.4 GtCO2e).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crop change due to dietary change in the European Union and the United Kingdom and total production of crops in Ukraine and Russia.
Fig. 2: Per-capita changes in net blue water consumption, net GHG emissions and net carbon sequestration due to dietary change in the European Union and the United Kingdom after replacing all UA + RU crops (S2).

Similar content being viewed by others

Data availability

All secondary, spatially explicit datasets used in this study and an earlier version of the MRIO tables are open access. The FABIO database is freely available via Zenodo (https://doi.org/10.5281/zenodo.2577067), SPAM data can be downloaded from https://www.mapspam.info/ and FBSs are available from FAOSTAT (https://www.fao.org/faostat/en/#data). The source data for Figs. 1 and 2 are available in the Supplementary Information. The MRIO tables and the spatially explicit results from this work are available upon request.

Code availability

The computer code used in this work is available upon request. Code for working with FABIO data in general is available at: https://github.com/fineprint-global/fabio

References

  1. Laborde, D., Herforth, A., Headey, D. & de Pee, S. COVID-19 pandemic leads to greater depth of unaffordability of healthy and nutrient-adequate diets in low- and middle-income countries. Nat. Food 2, 473–475 (2021).

    Article  CAS  Google Scholar 

  2. Laborde, D., Martin, W., Swinnen, J. & Vos, R. COVID-19 risks to global food security. Science 369, 500–502 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Salih, A. A., Baraibar, M., Mwangi, K. K. & Artan, G. Climate change and locust outbreak in East Africa. Nat. Clim. Change 10, 584–585 (2020).

    Article  ADS  Google Scholar 

  4. Lang, T. & McKee, M. The reinvasion of Ukraine threatens global food supplies. Brit. Med. J. 376, 0676 (2022).

    Article  Google Scholar 

  5. The Importance of Ukraine and the Russian Federation for Global Agricultural Markets and the Risks Associated with the Current Conflict (FAO, 2022).

  6. Sandström, V. et al. Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. Nat. Food 3, 729–740 (2022).

    Article  Google Scholar 

  7. Why banning food exports does not work. The Economist (25 May 2022).

  8. Kornher, L. V. B., Joachim & Algieri, B. Speculation Risks in Food Commodity Markets in the Context of the 2022 Price Spikes—Implications for Policy. ZEF Policy Brief 40 (2022).

  9. Safeguarding Food Security and Reinforcing the Resilience of Food Systems (European Commission, 2022).

  10. Pörtner, L. M. et al. We need a food system transformation—in the face of the Russia–Ukraine war, now more than ever. One Earth 5, 470–472 (2022).

    Article  ADS  Google Scholar 

  11. Behrens, P. et al. Evaluating the environmental impacts of dietary recommendations. Proc. Natl Acad. Sci. USA 114, 13412–13417 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357–23362 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, Z., Behrens, P., Tukker, A., Bruckner, M. & Scherer, L. Global human consumption threatens key biodiversity areas. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.2c00506 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sun, Z., Behrens, P., Tukker, A., Bruckner, M. & Scherer, L. Shared and environmentally just responsibility for global biodiversity loss. Ecol. Econ. 194, 107339 (2022).

    Article  Google Scholar 

  15. Scherer, L., Behrens, P. & Tukker, A. Opportunity for a dietary win–win–win in nutrition, environment, and animal welfare. One Earth 1, 349–360 (2019).

    Article  ADS  Google Scholar 

  16. Sun, Z. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat. Food 3, 29–37 (2022).

    Article  CAS  Google Scholar 

  17. Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Change 62, 101926 (2020).

    Article  Google Scholar 

  18. Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).

    Article  Google Scholar 

  19. Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Osendarp, S. et al. Act now before Ukraine war plunges millions into malnutrition. Nature 604, 620–624 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Mustafa, M. A., Mabhaudhi, T. & Massawe, F. Building a resilient and sustainable food system in a changing world—a case for climate-smart and nutrient dense crops. Glob. Food Sec. 28, 100477 (2021).

    Article  Google Scholar 

  22. Springmann, M. & Freund, F. Options for reforming agricultural subsidies from health, climate, and economic perspectives. Nat. Commun. 13, 82 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tribaldos, T. & Kortetmäki, T. Just transition principles and criteria for food systems and beyond. Environ. Innov. Soc. Transit. 43, 244–256 (2022).

    Article  Google Scholar 

  24. McGreevy, S. R. et al. Sustainable agrifood systems for a post-growth world. Nat. Sustain. https://doi.org/10.1038/s41893-022-00933-5 (2022).

  25. Agriculture in the United Kingdom 2021 (Department for Environment Food and Rural Affairs, 2022).

  26. Strange, N., Geldmann, J., Burgess, N. D. & Bull, J. W. Policy responses to the Ukraine crisis threaten European biodiversity. Nat. Ecol. Evol. 6, 1048–1049 (2022).

    Article  PubMed  Google Scholar 

  27. Luckmann, J., Chemnitz, C. & Luckmann, O. Effects of a Change to Fallow land in the EU on the Global Grain Market (Heinrich Böll Foundation, 2022).

  28. Rohr, J. R. et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2, 445–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Van Boeckel Thomas, P. et al. Reducing antimicrobial use in food animals. Science 357, 1350–1352 (2017).

    Article  ADS  PubMed  Google Scholar 

  30. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  31. Semba, R. D. et al. Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nat. Food 1, 481–484 (2020).

    Article  Google Scholar 

  32. Hayek, M. N., Harwatt, H., Ripple, W. J. & Mueller, N. D. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. https://doi.org/10.1038/s41893-020-00603-4 (2020).

  33. Coudard, A., Corbin, E., de Koning, J., Tukker, A. & Mogollón, J. M. Global water and energy losses from consumer avoidable food waste. J. Clean. Prod. 326, 129342 (2021).

    Article  Google Scholar 

  34. Laroche, P. C. S. J., Schulp, C. J. E., Kastner, T. & Verburg, P. H. in Global Environmental Change Vol. 62, 102066 (Elsevier, 2020).

  35. Bruckner, M. et al. FABIO—the construction of the Food and Agriculture Biomass Input–Output Model. Environ. Sci. Technol. 53, 11302–11312 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mekonnen, M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article  ADS  Google Scholar 

  37. Mekonnen, M. M. & Hoekstra, A. Y. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption. Value of Water Research Report Series No. 50 (UNESCO-IHE Institute for Water Education, 2011).

  38. Water Use of Livestock Production Systems and Supply Chains—Guidelines for Assessment (FAO, 2018).

  39. Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level (International Fertilizer Association, 2013).

  40. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data https://doi.org/10.1038/s41597-020-0444-4 (2020).

  41. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).

    Article  ADS  CAS  Google Scholar 

  42. IFPRI Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 1.1. Harvard Dataverse, v.3 (IFPRI, 2019); https://doi.org/10.7910/DVN/PRFF8V

  43. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles https://doi.org/10.1029/2007GB002952 (2008).

    Article  Google Scholar 

  44. Sloat, L. L. et al. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change 8, 214–218 (2018).

    Article  ADS  Google Scholar 

  45. Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson, J. A., Runge, C. F., Senauer, B., Foley, J. & Polasky, S. Global agriculture and carbon trade-offs. Proc. Natl Acad. Sci. USA 111, 12342–12347 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z.S. was funded by the National Natural Science Foundation of China (grant number 52200222), and Q.Z. was funded by the National Natural Science Foundation of China (grant numbers 42271274 and 51861125101).

Author information

Authors and Affiliations

Authors

Contributions

P.B. designed the study. Z.S. performed the analysis. Z.S. and P.B. led the writing, with contributions from L.S. and Q.Z. All authors provided input into the final manuscript.

Corresponding authors

Correspondence to Qian Zhang or Paul Behrens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Gidon Eshel, Manfred Lenzen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13.

Reporting Summary

Supplementary Tables 1–4

Supplementary Table 1. Food and energy composition of the EAT-Lancet diet, Supplementary Table 2. Per-capita daily food difference between national average diet and EAT-Lancet diet, Supplementary Table 3. Mapping relationship between FABIO sectors and EAT-Lancet diet groups, Supplementary Table 4. Country Code and ISO3 for countries of FABIO, Supplementary Table 5. Percentage of food waste

Source data

Source Data Fig. 1

Crop change due to dietary change in the EU+UK and total production of crops in Ukraine and Russia.

Source Data Fig. 2

Per capita changes in net water consumption, net GHG emissions and net carbon sequestration due to dietary change in EU+UK after replacing all UA+RU crops.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Scherer, L., Zhang, Q. et al. Adoption of plant-based diets across Europe can improve food resilience against the Russia–Ukraine conflict. Nat Food 3, 905–910 (2022). https://doi.org/10.1038/s43016-022-00634-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-022-00634-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing