Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global seafood production practices and trade patterns contribute to disparities in exposure to methylmercury

Abstract

Seafood consumption is a major pathway for exposure to methylmercury (MeHg), a globally pervasive neurotoxin. Yet, how upstream processes in the seafood value chain influence MeHg exposure remains poorly understood. Here we quantified MeHg in seafood production, trade and consumption in 2019 around the world. We found that countries with seafood-MeHg exposures beyond the recommended threshold by the World Health Organization were predominately high-income countries. These countries experienced a tenfold increase in exposure levels compared with low-income countries, due to greater consumption and long-overlooked higher MeHg concentrations in seafood inherited from production. Notably, 43% of seafood MeHg in production was redistributed through seafood trade, marked by inequality, as exports from high-income to lower-income countries contained higher seafood-MeHg concentrations. These exposures may have resulted in 61,800 global premature deaths and economic losses of around US$2.87 trillion, underscoring the need to change seafood production practices and trade patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MeHg concentrations in wild-caught seafood by country and ocean.
Fig. 2: MeHg concentrations and masses in the seafood value chain of key countries.
Fig. 3: MeHg concentrations in imported seafood in import-dominated countries.
Fig. 4: MeHg in seafood consumption globally.
Fig. 5: Inequality analyses of seafood-MeHg exposure by income levels.

Similar content being viewed by others

Data availability

All Hg-related data generated from this study are available in the Supplementary Information. The seafood quantity data are publicly available via the FAO FishStatJ online database at www.fao.org/fishery/en/topic/166235?lang=en. Source data are provided with this paper.

Code availability

The R codes for data analyses and visualization are available upon request to S.W. at shxw@tsinghua.edu.cn or qrwu@tsinghua.edu.cn.

References

  1. Zhang, Y. X. et al. Global health effects of future atmospheric mercury emissions. Nat. Commun. 12, 10 (2021).

    ADS  CAS  Google Scholar 

  2. Streets, D. G. et al. Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos. Environ. 201, 417–427 (2019).

    Article  ADS  CAS  Google Scholar 

  3. Global Mercury Assessment 2018 (UNEP, 2019).

  4. Streets, D. G. et al. Total mercury released to the environment by human activities. Environ. Sci. Technol. 51, 5969–5977 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Seco, J. et al. Mercury biomagnification in a Southern Ocean food web. Environ. Pollut. 275, 116620 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A. & Campbell, L. M. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ. Sci. Technol. 47, 13385–13394 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bose-O’Reilly, S., McCarty, K. M., Steckling, N. & Lettmeier, B. Mercury exposure and children’s health. Curr. Probl. Pediatr. Adolesc. Health Care 40, 186–215 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Zhang, H., Feng, X. B., Larssen, T., Qiu, G. L. & Vogt, R. D. In Inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Perspect. 118, 1183–1188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, M. et al. Significant elevation of human methylmercury exposure induced by the food trade in Beijing, a developing megacity. Environ. Int. 135, 105392 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, M. D. et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nat. Commun. 10, 5164 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Polak-Juszczak, L. Total mercury and methylmercury in garfish (Belone belone) of different body weights, sizes, ages, and sexes. J. Trace Elem. Med. Biol. 79, 127220 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Zampetti, C. J. & Brandt, J. E. Co-considering selenium concentrations alters mercury-based fish and seafood consumption advice: a data compilation and critical assessment. Environ. Sci. Technol. Lett. 10, 179–185 (2023).

    Article  CAS  Google Scholar 

  13. Bjørklund, G., Dadar, M., Mutter, J. & Aaseth, J. The toxicology of mercury: current research and emerging trends. Environ. Res. 159, 545–554 (2017).

    Article  PubMed  Google Scholar 

  14. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation (FAO,2022).

  15. Xing, Z. et al. International trade shapes global mercury–related health impacts. PNAS Nexus 2, pgad128 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Sci. Rep. 8, 6705 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Evaluation of Certain Food Additives and Contaminants: Sixty-First Report of the Joint FAO/WHO Expert Committee on Food Additives (WHO, 2003).

  18. Xie, J. et al. Mercury and selenium in squids from the Pacific Ocean and Indian Ocean: the distribution and human health implications. Mar. Pollut. Bull. 173, 112926 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Médieu, A., Lorrain, A. & Point, D. Are tunas relevant bioindicators of mercury concentrations in the global ocean? Ecotoxicology 32, 994–1009 (2023).

    Article  PubMed  Google Scholar 

  20. Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Jiskra, M. et al. Mercury stable isotopes constrain atmospheric sources to the ocean. Nature 597, 678–682 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Chen, L. et al. Trans-provincial health impacts of atmospheric mercury emissions in China. Nat. Commun. 10, 1484 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Giang, A. & Selin, N. E. Benefits of mercury controls for the United States. Proc. Natl Acad. Sci. USA 113, 286–291 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A. & Landing, W. M. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Glob. Biogeochem. Cycles 23, GB2010 (2009).

  25. Bratkic, A. et al. Mercury presence and speciation in the South Atlantic Ocean along the 40°S transect. Glob. Biogeochem. Cycles 30, 105–119 (2016).

    Article  ADS  CAS  Google Scholar 

  26. Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–907 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Pauly, D. et al. China’s distant-water fisheries in the 21st century. Fish Fish. 15, 474–488 (2014).

    Article  Google Scholar 

  28. Liu, M. et al. Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environ. Int. 120, 333–344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Springmann, M., Kennard, H., Dalin, C. & Freund, F. International food trade contributes to dietary risks and mortality at global, regional and national levels. Nat. Food 4, 886–893 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trade map. ITC https://www.trademap.org/Index.aspx (2023).

  31. Muir, D. C. G. Toxic chemical exposure from global fish trade. Nat. Food 1, 259–259 (2020).

    Article  CAS  Google Scholar 

  32. Xu, Y. J., Li, J., Bo, Y. & Wang, R. P. Comparison of feeding behaviour characteristics between wild-caught and captive-reared Hippocampus kuda Bleeker. Appl. Anim. Behav. Sci. 259, 105850 (2023).

    Article  Google Scholar 

  33. Govzman, S. et al. A systematic review of the determinants of seafood consumption. Br. J. Nutr. 126, 66–80 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Sharma, B. M., Sáňka, O., Kalina, J. & Scheringer, M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environ. Int. 125, 300–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Calder, R. S. D., Bromage, S. & Sunderland, E. M. Risk tradeoffs associated with traditional food advisories for Labrador Inuit. Environ. Res. 168, 496–506 (2019).

    Article  PubMed  Google Scholar 

  36. Technical Background Report for the Global Mercury Assessment 2018 (AMAP/UNEP, 2019).

  37. Murray, G. D. et al. Seafood consumption and the management of shellfish aquaculture. Mar. Policy 150, 105534 (2023).

    Article  Google Scholar 

  38. Racine, P. et al. A case for seaweed aquaculture inclusion in US nutrient pollution management. Mar. Policy 129, 104506 (2021).

    Article  Google Scholar 

  39. Zhang, J., Wu, W., Li, Y., Liu, Y. & Wang, X. Environmental effects of mariculture in China: an overall study of nitrogen and phosphorus loads. Acta Oceanolog. Sin. 41, 4–11 (2022).

    Article  Google Scholar 

  40. Sumaila, U. R. et al. Illicit trade in marine fish catch and its effects on ecosystems and people worldwide. Sci. Adv. 6, eaaz3801 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peterson, S. A., Van Sickle, J., Herlihy, A. T. & Hughes, R. M. Mercury concentration in fish from streams and rivers throughout the western United States. Environ. Sci. Technol. 41, 58–65 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Nowosad, J. et al. Dynamics of mercury content in adult sichel (Pelecus cultratus L.) tissues from the Baltic Sea before and during spawning. Mar. Environ. Res. 148, 75–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Erasmus, V. N., Hamutenya, S., Iitembu, J. A. & Gamatham, J. C. Mercury concentrations in muscles and liver tissues of Cape monkfish (Lophius vomerinus) from the Northern Benguela, Namibia. Mar. Pollut. Bull. 135, 1101–1106 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Jinadasa, K. K., Herbello-Hermelo, P., Peña-Vázquez, E., Bermejo-Barrera, P. & Moreda-Piñeiro, A. Mercury speciation in edible seaweed by liquid chromatography—inductively coupled plasma mass spectrometry after ionic imprinted polymer-solid phase extraction. Talanta 224, 121841 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Global production by production source 1950-2021 (FishStatJ). FAO https://www.fao.org/fishery/en/statistics/software/fishstatj (2023).

  46. Global aquatic trade statistics – Global aquatic trade – by partner country. FAO https://www.fao.org/fishery/en/collection/global_commodity_prod (2023).

  47. Rodrigues, E. T., Coelho, J. P., Pereira, E. & Pardal, M. A. Are mercury levels in fishery products appropriate to ensure low risk to high fish-consumption populations? Mar. Pollut. Bull. 186, 114464 (2023).

  48. Perugini, M. et al. Effect of cooking on total mercury content in Norway lobster and European hake and public health impact. Mar. Pollut. Bull. 109, 521–525 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Food balance sheets of aquatic products 1961–2019 (FishStatJ) v2023.1.0. FAO https://www.fao.org/fishery/en/collection/global_fish_consump (2023).

  50. Anderson, G. Error propagation by the Monte Carlo method in geochemical calculations. Geochim. Cosmochim. Acta 40, 1533–1538 (1976).

    Article  ADS  CAS  Google Scholar 

  51. Taylor, J. Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements (University Science Books, 1997).

  52. Soerensen, A. L., Faxneld, S., Pettersson, M. & Sköld, M. Fish tissue conversion factors for mercury, cadmium, lead and nine per- and polyfluoroalkyl substances for use within contaminant monitoring. Sci. Total Environ. 858, 159740 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Boalt, E., Miller, A. & Dahlgren, H. Distribution of cadmium, mercury, and lead in different body parts of Baltic herring (Clupea harengus) and perch (Perca fluviatilis): implications for environmental status assessments. Mar. Pollut. Bull. 78, 130–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Rice, G. E., Hammitt, J. K. & Evans, J. S. A probabilistic characterization of the health benefits of reducing methyl mercury intake in the United States. Environ. Sci. Technol. 44, 5216–5224 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is funded by National Natural Science Foundation of China (grant no. 42407138, Q.C.; grant no. 22222604, Q.W.; and grant no. 42394094, Q.W.), International Postdoctoral Exchange Fellowship Program (Talent Introduction Program) (grant no. YJ20210103, Q.C.), Shuimu Scholar Fellowship from Tsinghua University (grant no. 2020SM075, Q.C.), Special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (grant no. 22L02ESPC, S.W.) and New Cornerstone Science Foundation through the XPLORER PRIZE (S.W.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Q.C., Q.W. and S.W. conceived the idea. Q.C. compiled the seafood Hg concentration database, conducted the statistical analysis and drafted and revised the manuscript. Y.C. performed the health and economic damage modelling. Q.W. and S.W. provided expertise in interpreting results and provided important critiques, supervised the project and were in charge of the overall study. All authors contributed to the discussion, revision and editing of the manuscript.

Corresponding authors

Correspondence to Qingru Wu or Shuxiao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Jessica Brandt, Ping Li, Zhencheng Xing and Jun Xu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Supplementary Tables 1–5.

Reporting Summary

Source data

Source Data

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wu, Q., Cui, Y. et al. Global seafood production practices and trade patterns contribute to disparities in exposure to methylmercury. Nat Food 6, 491–502 (2025). https://doi.org/10.1038/s43016-025-01136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01136-9

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene