Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Foregone carbon sequestration dominates greenhouse gas footprint in aquaculture associated with coastal wetland conversion

Abstract

Coastal wetlands offer large carbon sequestration benefits but their conversion to aquaculture systems could result in substantial carbon losses. Here we show that the conversion of Spartina alterniflora salt marsh to mariculture ponds in China generated a greenhouse gas (GHG) footprint of 20.3 Mg CO2 equivalent per ha per year. Around two-thirds of the footprint can be attributed to foregone salt marsh GHG mitigation capacity, whereas direct carbon dioxide, methane and nitrous oxide emissions in mariculture ponds account for only ~10%, with the remaining ~20% arising from feed, fertilizer and energy consumption. Aquaculture can offer comparatively lower GHG footprints than other animal protein sources, such as terrestrial beef and small ruminants’ production on a kg CO2 equivalent per kg protein basis, but this assumption may not be accurate when considering landscape-scale changes in GHG budgets, particularly in relation to the expansion of aquaculture within blue carbon ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study area on the Yellow Sea, Yancheng City, Jiangsu Province, China.
Fig. 2: Temporal variation of greenhouse gas fluxes in S. alterniflora salt marsh and mariculture ponds.
Fig. 3: Annual greenhouse gas emissions from S. alterniflora salt marsh and mariculture ponds with different culturing ages.
Fig. 4: The schematic diagram highlights GHG footprint associated with conversion of coastal salt marsh to mariculture ponds.
Fig. 5: Comparison of GHG footprint from aquaculture and meat production.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions are present in the paper and/or in the Supplementary Information. Emissions factors for applied fertilizers, feeds and energy in Chinese aquaculture systems, and those for commercial feed ingredients, were primarily derived via the China Products Carbon Footprint Factors Database (CPCD) at https://lca.cityghg.com/. Source data are provided with this paper.

Code availability

Code used to reproduce findings of this work can be obtained via Code Ocean at https://doi.org/10.24433/CO.6642099.v2.

References

  1. Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  3. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    Article  ADS  CAS  Google Scholar 

  4. Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ma, Z. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  8. Murdiyarso, D. et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Change 5, 1089–1092 (2015).

    Article  ADS  CAS  Google Scholar 

  9. Ren, C. et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinform. 82, 101902 (2019).

    Google Scholar 

  10. FAO The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO Fisheries and Aquaculture Department, 2020).

  11. FAO The State of World Fisheries and Aquaculture 2014: Opportunities and Challenges (FAO Fisheries and Aquaculture Department, 2014).

  12. Kauffman, J. B., Heider, C., Norfolk, J. & Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527 (2014).

    Article  PubMed  Google Scholar 

  13. Cao, L., Diana, J. S., Keoleian, G. A. & Lai, Q. Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales. Environ. Sci. Technol. 45, 6531–6538 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Hargreaves, J. A. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166, 181–212 (1998).

    Article  CAS  Google Scholar 

  15. Yuan, J. et al. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Change 9, 318–322 (2019).

    Article  ADS  Google Scholar 

  16. Yang, P. et al. Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions. Estuarine Coastal Shelf Sci. 199, 125–131 (2017).

    Article  ADS  CAS  Google Scholar 

  17. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis (Cambridge University Press, Cambridge, 2013).

  18. Verdegem, M. C. J. & Bosma, R. H. Water withdrawal for brackish and inland aquaculture, and options to produce more fish in ponds with present water use. Water Policy 11, 52–68 (2009).

    Article  Google Scholar 

  19. Wang, J. et al. Ecosystem carbon exchange across China’s coastal wetlands: spatial patterns, mechanisms, and magnitudes. Agric. For. Meteorol. 345, 109859 (2024).

    Article  Google Scholar 

  20. Zhang, D. et al. Carbon dioxide fluxes from two typical mariculture polyculture systems in coastal China. Aquaculture 521, 735041 (2020).

    Article  CAS  Google Scholar 

  21. Yang, P. et al. Insights into the farming-season carbon budget of coastal earthen aquaculture ponds in southeastern China. Agric. Ecosyst. Environ. 335, 107995 (2022).

    Article  CAS  Google Scholar 

  22. Kosten, S. et al. Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Sci. Total Environ. 748, 141247 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).

    Article  ADS  CAS  Google Scholar 

  24. Zhang, J., Song, C. & Wenyan, Y. Tillage effects on soil carbon fractions in the Sanjiang Plain, Northeast China. Soil Tillage Res. 93, 102–108 (2007).

    Article  Google Scholar 

  25. Zhang, K., Tian, X., Dong, S., Feng, J. & He, R. An experimental study on the budget of organic carbon in polyculture systems of swimming crab with white shrimp and short-necked clam. Aquaculture 451, 58–64 (2016).

    Article  Google Scholar 

  26. Ström, L., Ekberg, A., Mastepanov, M. & Christensen, T. R. The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob. Change Biol. 9, 1185–1192 (2003).

    Article  ADS  Google Scholar 

  27. Tokida, T. et al. Falling atmospheric pressure as a trigger for methane ebullition from peatland. Glob. Biogeochem. Cycles 21, GB2003 (2007).

    Article  ADS  Google Scholar 

  28. Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).

    Article  ADS  Google Scholar 

  29. Al-Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol. 26, 2988–3005 (2020).

    Article  ADS  Google Scholar 

  30. Moseman-Valtierra, S. et al. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmos. Environ. 45, 4390–4397 (2011).

    Article  ADS  CAS  Google Scholar 

  31. Miller, M. N. et al. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 40, 2553–2562 (2008).

    Article  CAS  Google Scholar 

  32. Avnimelech, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176, 227–235 (1999).

    Article  CAS  Google Scholar 

  33. Hu, Z. et al. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Sci. Total Environ. 470, 193–200 (2014).

    Article  ADS  PubMed  Google Scholar 

  34. Liu, S. et al. Methane and nitrous oxide emissions reduced following conversion of rice paddies to inland crab-fish aquaculture in Southeast China. Environ. Sci. Technol. 50, 633–642 (2016).

    Article  ADS  PubMed  Google Scholar 

  35. Yang, P. et al. Spatial variations of N O fluxes across the water–air interface of mariculture ponds in a subtropical estuary in Southeast China. J. Geophys. Res. Biogeosciences 125, e2019JG005605 (2020).

    Article  ADS  CAS  Google Scholar 

  36. Ma, Y. et al. A comparison of methane and nitrous oxide emissions from inland mixed-fish and crab aquaculture ponds. Sci. Total Environ. 637–638, 517–523 (2018).

    Article  ADS  PubMed  Google Scholar 

  37. Murray, R. H., Erler, D. V. & Eyre, B. D. Nitrous oxide fluxes in estuarine environments: response to global change. Glob. Change Biol. 21, 3219–3245 (2015).

    Article  ADS  Google Scholar 

  38. Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Williams, J. & Crutzen, P. Nitrous oxide from aquaculture. Nat. Geosci. 3, 14 (2010).

    Article  Google Scholar 

  40. Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    Article  Google Scholar 

  41. Yang, P. et al. Assessing nutrient budgets and environmental impacts of coastal land-based aquaculture system in southeastern China. Agric. Ecosyst. Environ. 322, 107662 (2021).

    Article  CAS  Google Scholar 

  42. Yuan, J. et al. Methane and nitrous oxide have separated production zones and distinct emission pathways in freshwater aquaculture ponds. Water Res. 190, 116739 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Ondiek, R. et al. Influence of land-use change and season on soil greenhouse gas emissions from a tropical wetland: a stepwise explorative assessment. Sci. Total Environ. 787, 147701 (2021).

    Article  CAS  Google Scholar 

  44. Meijide, A. et al. Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat. Commun. 11, 1089 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maxwell, S. L. et al. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci. Adv. 5, eaax2546 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosentreter, J. A., Al-Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and nitrous oxide emissions complicate coastal blue carbon assessments. Glob. Biogeochem. Cycles 35, e2020GB006858 (2021).

    Article  ADS  CAS  Google Scholar 

  47. Schutte, C. A., Moore, W. S., Wilson, A. M. & Joye, S. B. Groundwater-driven methane export reduces salt marsh blue carbon potential. Glob. Biogeochem. Cycles 34, e2020GB006587 (2020).

    Article  ADS  CAS  Google Scholar 

  48. Maher, D. T., Call, M., Santos, I. R. & Sanders, C. J. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biol. Lett. 14, 20180200 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. MacLeod, M. J., Hasan, M. R., Robb, D. H. & Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 10, 11679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, C. et al. Habitat changes for breeding waterbirds in Yancheng National Nature Reserve, China: a remote sensing study. Wetlands 30, 879–888 (2010).

    Article  Google Scholar 

  51. Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    Article  ADS  Google Scholar 

  52. Kroon, P. S. et al. Uncertainties in eddy covariance flux measurements assessed from CH4 and N2O observations. Agric. For. Meteorol. 150, 806–816 (2010).

    Article  ADS  Google Scholar 

  53. Yuan, J. et al. Exotic Spartina alterniflora invasion alters ecosystem–atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob. Change Biol. 21, 1567–1580 (2015).

    Article  ADS  Google Scholar 

  54. Chang, C. C., Chang, K. C., Lin, W. C. & Wu, M. H. Carbon footprint analysis in the aquaculture industry: assessment of an ecological shrimp farm. J. Cleaner Prod. 168, 1101–1107 (2017).

    Article  Google Scholar 

  55. China City Greenhouse Gas Working Group China Products Carbon Footprint Factors Database (2022) (Beijing, 2022).

  56. Ray, N. E., Maguire, T. J., Al-Haj, A. N., Henning, M. C. & Fulweiler, R. W. Low greenhouse gas emissions from oyster aquaculture. Environ. Sci. Technol. 53, 9118–9127 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grants 42322709, 42177301, U24A20628), the Natural Science Foundation (BK20230050) and Carbon Peak and Carbon Neutral Science and Technology Innovation Project of Jiangsu Province (BK20220020) and the Chinese Academy of Sciences Project for Young Scientists in Basic Research (YSBR-089).

Author information

Authors and Affiliations

Authors

Contributions

W.D., J.Y. and D.L. designed the research. J.Y., Y.D., J.L., J.X., T.H. and H.K. performed the data extraction and analysis. J.Y. wrote the first draft of the paper, with all authors contributing to the revisions.

Corresponding author

Correspondence to Weixin Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Shuijin Hu, Shuwei Liu and Nicholas Ray for their contribution to the peer review process.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1, Figs. 1–4 and Tables 1–9.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figs. 2–4.

Source data

Source Data Fig. 2

Source data for Fig. 2a–f.

Source Data Fig. 3

Source data for Fig. 3a–d.

Source Data Fig. 5

Source data for Fig. 5a–c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Dong, Y., Li, J. et al. Foregone carbon sequestration dominates greenhouse gas footprint in aquaculture associated with coastal wetland conversion. Nat Food 6, 587–596 (2025). https://doi.org/10.1038/s43016-025-01156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01156-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene