Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Indirect emissions contribute a quarter of air pollution-related health burden of food systems in China

Abstract

Agricultural intensification produces indirect emissions beyond ammonia volatilization from activities such as machinery usage, food processing, transportation, storage and energy inputs. Here we integrate an input–output analysis with air quality modelling approaches, showing that attributable mortality from indirect emissions has risen sixfold in China over the past 37 years. Indirect emissions now account for one-quarter of air pollution-related attributable mortality associated with food consumption. We find a marked redistribution of the indirect health burden, with low-income groups experiencing an additional 58% attributable deaths compared with their expected food consumption burdens, which were initially associated with the food consumption of high-income groups. Targeted strategies using abatement approaches could halve the indirect health burden, thereby mitigating the environmental impact of food consumption amid agricultural intensification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modelling framework for the health burden assessment from indirect emissions in food systems.
Fig. 2: Temporal trends (1981–2017) in air pollution-related attributable mortality.
Fig. 3: Spatial patterns of indirect air pollution-related attributable mortality rates in 2017.
Fig. 4: PM2.5-related health burden transfer from indirect emissions between food production and consumption locations.
Fig. 5: Health burden transfer among different income groups.
Fig. 6: Regional Health benefit potential in optimal intervention schemes.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Population and per capita income data from the National Bureau of Statistics of China are available at http://data.stats.gov.cn/. Multi-year Input–output tables for China are provided by the Chinese Input–Output Association and are available at http://cioa.ruc.edu.cn/zlxz/trccb/7d9453899536434a9004d2db40e4bf6b.htm. Source data are provided with this paper. These data are also available via Zenodo at https://doi.org/10.5281/zenodo.11070822 (ref. 50).

Code availability

Python 3.8 was used in conducting the Environmental Extended Input–Output Analysis and subsequent data analysis. The source codes used in this research are available via Zenodo at https://doi.org/10.5281/zenodo.11070822 (ref. 50).

References

  1. Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).

    Article  PubMed  Google Scholar 

  2. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robinson, T. P. et al. Global Livestock Production Systems (FAO and ILRI, 2011).

  4. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).

    Article  ADS  Google Scholar 

  6. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Clark, M. et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ivanovich, C. C., Sun, T., Gordon, D. R. & Ocko, I. B. Future warming from global food consumption. Nat. Clim. Chang. 13, 297–302 (2023).

    Article  ADS  Google Scholar 

  9. Xu, P. et al. Fertilizer management for global ammonia emission reduction. Nature 626, 792–798 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Domingo, N. G. et al. Air quality–related health damages of food. Proc. Natl Acad. Sci. USA 118, e2013637118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crippa, M., Solazzo, E., Guizzardi, D., Van Dingenen, R. & Leip, A. Air pollutant emissions from global food systems are responsible for environmental impacts, crop losses and mortality. Nat. Food 3, 942–956 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Ma, R. et al. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat. Commun. 12, 6308 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. D’odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earths Future 2, 458–469 (2014).

    Article  ADS  Google Scholar 

  14. Yu, Q., Wu, W. & Tang, H. Increased food-miles and transport emissions. Nat. Food 4, 207–208 (2023).

    Article  PubMed  Google Scholar 

  15. Li, M. et al. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 3, 445–453 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Adalibieke, W. et al. Decoupling between ammonia emission and crop production in China due to policy interventions. Glob. Chang. Biol. 27, 5877–5888 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Li, B. et al. Improved gridded ammonia emission inventory in China. Atmos. Chem. Phys. 21, 15883–15900 (2021).

    Article  ADS  CAS  Google Scholar 

  18. Bai, Z. et al. Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nat. Food 2, 780–791 (2021).

    Article  PubMed  Google Scholar 

  19. Gil, J. D. B. et al. Sustainable development goal 2: improved targets and indicators for agriculture and food security. Ambio 48, 685–698 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. NBS China Statistical Yearbook 2017 (China Statistics Press, 2018).

  21. Lang, J. et al. A high temporal-spatial resolution air pollutant emission inventory for agricultural machinery in China. J. Clean. Prod. 183, 1110–1121 (2018).

    Article  Google Scholar 

  22. Zhao, H. et al. Air pollution health burden embodied in China’s supply chains. Environ. Sci. Ecotechnol. 16, 100264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, S. et al. A multiphase CMAQ version 5.0 adjoint. Geosci. Model Dev. 13, 2925–2944 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geng, G. et al. Efficacy of China’s clean air actions to tackle PM2.5 pollution between 2013 and 2020. Nat. Geosci. 17, 987–994 (2024).

    Article  CAS  Google Scholar 

  26. Huang, X. et al. A high‐resolution ammonia emission inventory in China. Glob. Biogeochem. Cycles 26, GB1030 (2012).

    Article  ADS  Google Scholar 

  27. Zheng, L. et al. Health burden from food systems is highly unequal across income groups. Nat. Food 5, 251–261 (2024).

    Article  ADS  PubMed  Google Scholar 

  28. Zhong, T., Si, Z., Crush, J., Scott, S. & Huang, X. Achieving urban food security through a hybrid public-private food provisioning system: the case of Nanjing, China. Food Secur. 11, 1071–1086 (2019).

    Article  Google Scholar 

  29. He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1, 122–127 (2018).

    Article  Google Scholar 

  30. Zhai, F. et al. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 15, 16–26 (2014).

    Article  PubMed  Google Scholar 

  31. Lam, H.-M., Remais, J., Fung, M.-C., Xu, L. & Sun, S. S.-M. Food supply and food safety issues in China. Lancet 381, 2044–2053 (2013).

    Article  PubMed  Google Scholar 

  32. Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Du, Y. et al. A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nat. Commun. 9, 4133 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Wang, X., Bodirsky, B. L., Müller, C., Chen, K. Z. & Yuan, C. The triple benefits of slimming and greening the Chinese food system. Nat. Food 3, 686–693 (2022).

    Article  PubMed  Google Scholar 

  35. Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, eaar8534 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gu, B. et al. Toward a generic analytical framework for sustainable nitrogen management: application for China. Environ. Sci. Technol. 53, 1109–1118 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. USA 116, 24463–24469 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, Y. et al. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environ. Sci. Technol. 48, 13834–13843 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Huang, T. et al. Spatial and temporal trends in global emissions of nitrogen oxides from 1960 to 2014. Environ. Sci. Technol. 51, 7992–8000 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Huang, Y. et al. Global organic carbon emissions from primary sources from 1960 to 2009. Atmos. Environ. 122, 505–512 (2015).

    Article  ADS  CAS  Google Scholar 

  41. Xu, H. et al. Updated global black carbon emissions from 1960 to 2017: improvements, trends, and drivers. Environ. Sci. Technol. 55, 7869–7879 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Wang, C. et al. A high-resolution ammonia emission inventory for cropland and livestock production in China. Chin. J. EcoAgric. 29, 1973–1980 (2021).

    Google Scholar 

  43. Zhang, H., Xia, M., Su, R. & Lin, C. The compilation of the time series input–output tables in China: 1981–2018. J. Stat. Res. 38, 3–23 (2021).

    Google Scholar 

  44. Burnett, R. & Cohen, A. Relative risk functions for estimating excess mortality attributable to outdoor PM2.5 air pollution: evolution and state-of-the-art. Atmosphere 11, 589 (2020).

    Article  ADS  CAS  Google Scholar 

  45. Hammitt, J. K., Morfeld, P., Tuomisto, J. T. & Erren, T. C. Premature deaths, statistical lives, and years of life lost: identification, quantification, and valuation of mortality risks. Risk Anal. 40, 674–695 (2020).

    Article  PubMed  Google Scholar 

  46. Murray, C. J., Ezzati, M., Lopez, A. D., Rodgers, A. & Vander Hoorn, S. Comparative quantification of health risks: conceptual framework and methodological issues. Popul. Health Metr. 1, 1–20 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hakami, A. et al. The adjoint of CMAQ. Environ. Sci. Technol. 41, 7807–7817 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Rose, A., McKee, J., Urban, M. & Bright, E. LandScan Global (Oak Ridge National Laboratory, 2018).

  49. Naghavi, M. et al. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2100–2132 (2024).

    Article  Google Scholar 

  50. Zheng, L. Indirect emissions contribute a quarter of air pollution-related health burden of food systems in China. Zenodo. https://doi.org/10.5281/zenodo.11070822 (2024).

Download references

Acknowledgements

H.S. acknowledges funding from the Ministry of Science and Technology of the People’s Republic of China (2023YFE0112901) and the National Natural Science Foundation of China (42192512 and 42475108). F.Z. acknowledges funding from the National Natural Science Foundation of China (42225102). L. Zheng acknowledges funding from the National Natural Science Foundation of China (424B2039). H.S. acknowledges funding from the Shenzhen Science and Technology Program (KQTD20240729102048052, JCYJ20241202152804007 and JCYJ20220818100611024). X.Y., T.-M.F. and H.S. acknowledge funding from the Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks (ZDSYS20220606100604008). C.W. acknowledges technical support from Southern University of Science and Technology Core Research Facilities. H.S. acknowledges support from the Center for Computational Science and Engineering at Southern University of Science and Technology, as well as funding from the High-level University Special Fund (G03050K001).

Author information

Authors and Affiliations

Authors

Contributions

H.S., J.M., P.H. and F.Z. conceived and initiated the study. L. Zheng and W.A. developed and analysed the emission inventory and the related health burden datasets. Y.C., P.G., J.H., Y.Z., J.L., W.L. and Y.G. collected and processed the supporting data for the mitigation schemes. P.X., C.W., J.Y. and L. Zhu assisted in developing the integrated model framework. L. Zheng drafted the paper, with critical input from G.S., T.-M.F. and X.Y., who participated in the result discussions. H.S., F.Z., J.M., P.H., S.Z. and A.H. contributed valuable critical revisions.

Corresponding authors

Correspondence to Feng Zhou, Pan He, Jing Meng or Huizhong Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Stefan Reis, Rong Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–7 and Text 1 and 2.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figs. 1–9.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Fig. 6

Statistical source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Adalibieke, W., Zhou, F. et al. Indirect emissions contribute a quarter of air pollution-related health burden of food systems in China. Nat Food 6, 766–776 (2025). https://doi.org/10.1038/s43016-025-01193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01193-0

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene