Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Soil acidity remediation in sub-Saharan Africa requires targeted investments

Abstract

Acid soils are widespread across sub-Saharan Africa. Agricultural lime can be used to alleviate production constraints associated with soil acidity, but lime is not widely available in the region, and it is unclear if applying it would be profitable. Using lime requirement models and crop yield responses to soil acidity modelled as plateau–linear decay functions, we estimated the profitability of acid soil remediation through liming. Crop yield loss to soil acidity occurs on 32.7 Mha, or 23% of sub-Saharan Africa’s cropland. The burden of acid soils is US$6.0 billion (6% of the current production value), and 75% of that could be profitably alleviated. Under prevailing conditions, liming would be profitable in the year of application on 6.2 Mha (with an average profitability of US$278 ha−1) and on 8.8 Mha when lime’s long-term effect is considered. Intensification of crop production and lower relative lime/output prices could make liming profitable on more cropland.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of acid soils and lime requirements for acid soil remediation across sub-Saharan Africa.
Fig. 2: Crop yield loss to soil acidity across sub-Saharan Africa.
Fig. 3: Profitability of liming acid soils in sub-Saharan Africa.
Fig. 4: Four-quadrant diagram for the relationships between acidity saturation, the cost of lime needed to reach a crop-specific TAS, yield loss to soil acidity and profitability from liming for a regular sample of 200,000 grid cells across sub-Saharan Africa.
Fig. 5: Methodological approach to assess the economic benefit of liming in sub-Saharan Africa.

Similar content being viewed by others

Data availability

The spatial data and tabular aggregates from our results are available at www.acidsoils.africa. Soil data from Hengl et al.45 can be accessed at https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution. Crop area and production data from IFPRI51 can be accessed at https://doi.org/10.7910/DVN/PRFF8V.

Code availability

The R scripts developed for the analyses presented in the manuscript are available via GitHub at https://github.com/EiA2030-ex-ante/gaia-ex-ante-wow.

References

  1. Sánchez, P. A. Properties and Management of Soils in the Tropics Ch. 9 (Cambridge Univ. Press, 2019).

  2. Sánchez, P. A. & Salinas, J. G. Low-input technology for managing Oxisols and Ultisols in tropical America. Adv. Agron. https://doi.org/10.1016/S0065-2113(08)60889-5 (1981).

  3. Kamprath, E. J. Exchangeable aluminum as a criterion for liming leached mineral soils. Soil Sci. Soc. Am. 11, 1–40 (1970).

    Google Scholar 

  4. Fageria, N. K. & Baligar, V. C. Chapter 7 ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. https://doi.org/10.1016/S0065-2113(08)00407-0 (2008).

  5. Yamada, T. The Cerrado of Brazil: a success story of production on acid soils. Soil Sci. Plant Nutr. 51, 617–620 (2005).

    Article  Google Scholar 

  6. Pauw, E. F. D. The management of acid soils in Africa. Outlook Agric. 23, 11–16 (1994).

    Article  Google Scholar 

  7. Goedert, W. J. Management of the Cerrado soils of Brazil: a review. J. Soil Sci. 34, 405–428 (1983).

    Article  Google Scholar 

  8. Coleman, N. T., Kamprath, E. J. & Weed, S. B. Liming. Adv. Agron. https://doi.org/10.1016/S0065-2113(08)60073-5 (1959).

  9. Vanlauwe, B. et al. Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. SOIL 1, 491–508 (2015).

    Article  ADS  Google Scholar 

  10. Vanlauwe, B. et al. Sustainable intensification and the African smallholder farmer. Curr. Opin. Environ. Sustain. 8, 15–22 (2014).

    Article  Google Scholar 

  11. Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).

    Article  Google Scholar 

  12. Eswaran, H., Almaraz, R., van den Berg, E. & Reich, P. An assessment of the soil resources of Africa in relation to productivity. Geoderma 77, 1–18 (1997).

    Article  Google Scholar 

  13. Pieri, C., Dumanski, J. & Hamblin, A. Y. Land quality indicators (English) World Bank discussion papers (The World Bank, 1995); http://documents.worldbank.org/curated/en/405971468739495480

  14. Mendes, A. P., Farina, M. P. W., Channon, P. & Smith, M. A field evaluation of the differential tolerance to soil acidity of forty-eight South African maize cultivars. S. Afr. J. Plant Soil 2, 215–220 (1985).

    Article  Google Scholar 

  15. Uwiragiye, Y. et al. Spatial prediction of lime requirements by adjusting aluminium saturation in sub-Saharan Africa croplands. Sci. Total Environ. 908, 167989 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Agegnehu, G. et al. Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agric. Scand. B 71, 852–869 (2021).

    Google Scholar 

  17. Gurmessa, B. Soil acidity challenges and the significance of liming and organic amendments in tropical agricultural lands with reference to Ethiopia. Environ. Dev. Sustain. 23, 77 – 99 (2021).

    Article  Google Scholar 

  18. Nduwumuremyi, A. Soil acidification and lime quality: sources of soil acidity, effects on plant nutrients, efficiency of lime and liming requirements. Res. Rev. J. Agric. Allied Sci. 2, 26–34 (2013).

    Google Scholar 

  19. Desalegn, T., Alemu, G., Adella, A., Debele, T. & Gonzalo, J. J. Effect of lime and phosphorus fertilizer on acid soils and barley (Hordeum vulgare L.) performance in the central highlands of Ethiopia. Exp. Agric. 53, 432–444 (2017).

    Article  Google Scholar 

  20. Kisinyo, P. O. et al. Immediate and residual effects of lime and phosphorus fertilizer on soil acidity and maize production in Western Kenya. Exp. Agric. 50, 128–143 (2014).

    Article  Google Scholar 

  21. Farina, M. P. W. & Channon, P. A field comparison of lime requirement indices for maize. Plant Soil 134, 127–135 (1991).

    Article  Google Scholar 

  22. Llewellyn, R. S. & Brown, B. Predicting adoption of innovations by farmers: what is different in smallholder agriculture? Appl. Econ. Perspect. Policy 42, 100–112 (2020).

    Article  Google Scholar 

  23. Shiferaw, B. A., Okello, J. & Reddy, R. V. Adoption and adaptation of natural resource management innovations in smallholder agriculture: reflections on key lessons and best practices. Environ. Dev. Sustain. 11, 601–619 (2009).

    Article  Google Scholar 

  24. Lee, D. R. Agricultural sustainability and technology adoption: issues and policies for developing countries. Am. J. Agric. Econ. 87, 1325–1334 (2005).

    Article  ADS  Google Scholar 

  25. Lollato, R. P., Ochsner, T. E., Arnall, D. B., Griffin, T. W. & Edwards, J. T. From field experiments to regional forecasts: upscaling wheat grain and forage yield response to acidic soils. Agron. J. 111, 287–302 (2019).

    Article  Google Scholar 

  26. Abruña Rodríguez, F., Vicente-Chandler, J., Rivera, E. & Rodríguez, J. Effect of soil acidity factors on yields and foliar composition of tropical root crops. Soil Sci. Soc. Am. J. 46, 1004–1007 (1982).

    Article  ADS  Google Scholar 

  27. von Uexkull, H. R. & Mutert, E. Global extent, development and economic impact of acid soils. Plant Soil 171, 1 – 15 (1995).

    Google Scholar 

  28. Sumner, M. E. & Noble, A. D. in Handbook of Soil Acidity (ed Rengel, Z.) Ch. 1 (Academic Press, 2003).

  29. Fageria, N. K. & Nascente, A. S. Chapter six management of soil acidity of South American soils for sustainable crop production. Adv. Agron. https://doi.org/10.1016/B978-0-12-802139-2.00006-8 (2014).

  30. Silva, J. V. et al. Narrowing maize yield gaps across smallholder farming systems in Zambia: what interventions, where, and for whom? Agron. Sustain. Dev. 43, 26 (2023).

    Article  Google Scholar 

  31. Assefa, B. T., Chamberlin, J., Reidsma, P., Silva, J. V. & van Ittersum, M. K. Unravelling the variability and causes of smallholder maize yield gaps in Ethiopia. Food Secur. 12, 83–103 (2020).

    Google Scholar 

  32. Aramburu-Merlos, F. et al. Adopting yield-improving practices to meet maize demand in Sub-Saharan Africa without cropland expansion. Nat. Commun. 15, 4492 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonilla-Cedrez, C., Chamberlin, J. & Hijmans, R. J. Fertilizer and grain prices constrain food production in sub-Saharan Africa. Nat. Food 2, 766–772 (2021).

    Article  PubMed  Google Scholar 

  34. de Wit, C. T. Resource use efficiency in agriculture. Agric. Syst. 40, 125 151 (1992).

    Google Scholar 

  35. Alemayehu, M., Beuving, J. & Ruben, R. Disentangling poor smallholder farmers’ risk preferences and time horizons: evidence from a field experiment in Ethiopia. Eur. J. Dev. Res. 31, 558–580 (2019).

    Article  Google Scholar 

  36. Karlan, D., Osei, R., Osei-Akoto, I. & Udry, C. Agricultural decisions after relaxing credit and risk constraints. Q. J. Econ. 129, 597–652 (2014).

    Article  Google Scholar 

  37. Giller, K. E. et al. Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agric. Syst. 104, 191–203 (2011).

    Article  Google Scholar 

  38. Holden, S. T., Binswanger, H. P. & Lutz, E. Small-farmer decision-making, market imperfections, and natural resource management in developing countries. in Agriculture and the Environment. Perspectives on Sustainable Rural Development (eds Lutz, E. et al.) 50–70 (The World Bank, 1998).

  39. Cifu, M., Xiaonan, L., Zhihong, C., Zhengyi, H. & Wanzhu, M. Long-term effects of lime application on soil acidity and crop yields on a red soil in Central Zhejiang. Plant Soil 265, 101–109 (2004).

    Article  CAS  Google Scholar 

  40. Mokolobate, M. & Haynes, R. Comparative liming effect of four organic residues applied to an acid soil. Biol. Fertil. Soils 35, 75–89 (2002).

    Google Scholar 

  41. Stromgaard, P. Immediate and long-term effects of fire and ash-fertilization on a Zambian miombo woodland soil. Agric. Ecosyst. Environ. 41, 19–37 (1992).

    Article  Google Scholar 

  42. Chidumayo, E. N. A shifting cultivation land use system under population pressure in Zambia. Agrofor. Syst. 5, 15–25 (1987).

    Article  Google Scholar 

  43. Golla, A. S. Soil acidity and its management options in Ethiopia: a review. Int. J. Sci. Res. Manage. 7, 1429–1440 (2019).

    Google Scholar 

  44. Haynes, R. J. Effects of liming on phosphate availability in acid soils: a critical review. Plant Soil 68, 289–308 (1982).

    Article  CAS  Google Scholar 

  45. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, 1–40 (2017).

    Article  Google Scholar 

  46. Oumer, A. M., Diro, S., Taye, G., Mamo, T. & Jaleta, M. Agricultural lime value chain efficiency for reducing soil acidity in Ethiopia. Soil Security 11, 100092 (2023).

    Article  Google Scholar 

  47. Bonilla Cedrez, C., Chamberlin, J., Guo, Z. & Hijmans, R. J. Spatial variation in fertilizer prices in sub-Saharan Africa. PLoS One 15, 1–20 (2020).

    Article  Google Scholar 

  48. Fertilizer Supply and Costs in Africa. https://doi.org/10.21955/gatesopenres.1115134.1 (Bill and Melinda Gates Foundation, 2007).

  49. Aramburu Merlos, F. limer: acidic soil management for agriculture. R package v.0.1-1 https://github.com/cropmodels/limer (2022).

  50. Hijmans, R. J. Recocrop: estimating environmental suitability for plants. R package v.0.4-0 https://github.com/cropmodels/Recocrop/ (2021).

  51. Global Spatially-Disaggregated Crop Production Statistics Data for 2010, v.2.0 https://doi.org/10.7910/DVN/PRFF8V (IFPRI, 2019).

  52. Aramburu Merlos, F., Silva, J. V., Baudron, F. & Hijmans, R. J. Estimating lime requirements for tropical soils: model comparison and development. Geoderma 432, 116421 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Smyth, T. J. & Cravo, M. S. Aluminum and calcium constraints to continuous crop production in a Brazilian Amazon oxisol. Agron. J. 84, 843–850 (1992).

    Article  CAS  Google Scholar 

  54. Cochrane, T. T., Salinas, J. G. & Sanchez, P. A. An equation for liming acid mineral soils to compensate crop aluminium tolerance. Trop. Agric. 57, 133–140 (1980).

    Google Scholar 

  55. Salinas, J. G. Differential Response of Some Cereal and Bean Cultivars to Al and P Stress in an Oxisol of Central Brazil. Ph.D. thesis, North Carolina State University (1978).

  56. Hijmans, R. J., Barbosa, M., Ghosh, A. & Mandel, A. geodata: download geographic data, R package v.0.5-9 https://CRAN.R-project.org/package=geodata (2023).

  57. Hijmans, R. J. terra: spatial data analysis, R package v.1.6-17 https://CRAN.R-project.org/package=terra (2022).

Download references

Acknowledgements

We gratefully acknowledge support for this study from the Bill & Melinda Gates Foundation, through the Guiding Acid Soil Management Investments in Africa (GAIA) project (grant number INV-068374), and from the OneCGIAR Initiative on Excellence in Agronomy (grant number INV-005431). We thank C. Witt, K. Giller, K. Shepherd, B. Vanlauwe, B. Gérard, M. Walsch and M. Farina for insightful comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.V.S., F.A.-M. and R.J.H. conceptualized the study and developed methodology and software for data acquisition, analysis and visualization. F.B. and J.C. supported the conceptualization of the study, validated methodology and results, and were responsible for funding acquisition and project administration. S.G., T.S.S., V.R., J.M. and M.J. were instrumental in the validation of the methods and the results, supervision of the research work, and project coordination in the respective countries. J.V.S. wrote the original draft. All authors edited and commented on the manuscript, particularly F.A.-M. and R.J.H.

Corresponding author

Correspondence to João Vasco Silva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Yves Uwiragiy, Jianbin Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, J.V., Aramburu-Merlos, F., Baudron, F. et al. Soil acidity remediation in sub-Saharan Africa requires targeted investments. Nat Food 6, 799–808 (2025). https://doi.org/10.1038/s43016-025-01194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01194-z

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene