Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

China’s animal-protein-rich diets are increasingly reliant on Brazil’s land and water resources

Abstract

China’s shift towards greater consumption of animal proteins drove substantial changes in global agricultural dynamics and particularly affected Brazil, a leading exporter of animal feed proteins. Here we examine the environmental consequences of the Sino-Brazilian soybean trade by focusing on land and water resources and the associated deforestation risk. We estimate that Brazil supplies 10% of total protein and 24–29% of animal proteins in the Chinese diet. China’s reliance on Brazilian soybeans to feed its livestock corresponded to 17.8 Mha of virtually imported Brazilian land in 2020. Irrigation is minimal, while rainwater represents an important share of virtual water trade. Although direct deforestation linked to soybean production decreased, indirect deforestation persists and soybean cultivation keeps expanding—often displacing other land uses. These findings underscore the complex interplay between global dietary shifts and environmental burdens. China’s increasing demand for animal proteins drives Brazil’s agricultural expansion and exacerbates environmental pressures in vulnerable ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatiotemporal dynamics of soybean production and export in Brazil from 2004 to 2020.
Fig. 2: Soybean supply and trade.
Fig. 3: Livestock and soybean supply.
Fig. 4: Local and virtual land use for soybean production in Brazil and the importing partners.
Fig. 5: Local and virtual water use for soybean production in Brazil and the importing partners.
Fig. 6: Soybean, deforestation and the main players.
Fig. 7: Protein analysis between China and Brazil.

Data availability

All input data used in this study were retrieved from publicly available sources cited in the paper (for example, Trase29,60, FAOSTAT2, ComexStat74, Chiarelli et al.61). Intermediate analyses that are not included in the text or in Supplementary Information are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

The main algorithm used in the study is described in Methods and Supplementary Information. The remaining analyses were performed using MS Excel spreadsheets; therefore, no additional custom code is available. The RStudio (v.2023.06.1) scripts used to generate selected figures are available from Zenodo via https://doi.org/10.5281/zenodo.16986729 (ref. 78).

References

  1. Klein, H. S. & Luna, F. V. Feeding the World: Brazil’s Transformation into a Modern Agricultural Economy (Cambridge Univ. Press, 2018); https://doi.org/10.1017/9781108569101

  2. Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) (FAOSTAT and FAO, 2023); http://www.fao.org/faostat/en/#data/QC/visualize

  3. Zhao, H. et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 4, 1042–1051 (2021).

    Article  Google Scholar 

  4. Han, Z., Zheng, X., Hou, L., Xiao, N. & Deng, X. Changes in China’s food security driven by nutrition security and resource constraints. Environ. Dev. Sustain. 26, 7927–7945 (2024).

    Article  Google Scholar 

  5. Zhao, H. et al. China’s holistic food system innovation strategies can close 80% of domestic protein gaps while reducing global environmental impacts. Nat. Food 5, 581–591 (2024).

    Article  PubMed  Google Scholar 

  6. Cattelan, A. J. & Dall’Agnol, A. The rapid soybean growth in Brazil. OCL Oilseeds Fats Crops Lipids 25, D102 (2018).

    Google Scholar 

  7. Maranhão, R. L. A. et al. The spatiotemporal dynamics of soybean and cattle production in Brazil. Sustainability 11, 2150 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  8. Catálogo de Publicações Periódicas do IBGE (Fundação Instituto Brasileiro de Geografia e Estatística, 2023).

  9. Gale, F., Valdes, C. & Ash, M. Interdependence of China, United States, and Brazil in Soybean Trade 1–48 (USDA Economic Research Service, 2019).

  10. Fuchs, R. et al. US–China trade war imperils Amazon rainforest. Nature 567, 451–454 (2018).

    Article  ADS  Google Scholar 

  11. Torres, S. M., Moran, E. F., da Silva, R. F. B. & Silva, R. Property rights and the soybean revolution: shaping how China and Brazil are telecoupled. Sustainability 9, 954 (2017).

    Article  ADS  Google Scholar 

  12. Fearnside, P. M., Figueiredo, A. M. R. & Bonjour, S. C. M. Amazonian forest loss and the long reach of China’s influence. Environ. Dev. Sustain. 15, 325–338 (2013).

    Article  Google Scholar 

  13. Fearnside, P. M. & Figueiredo, A. M. R. in China and Sustainable Development in Latin America: The Social and Environmental Dimension (eds Ray, R. et al.) Ch. 7 (Anthem Press, 2017).

  14. Fuchs, V. B. Chinese-driven frontier expansion in the Amazon: four axes of pressure caused by the growing demand for soy trade. Civitas 20, 16–31 (2020).

    Article  Google Scholar 

  15. Nepstad, D. & Shimada, J. Soybeans in the Brazilian Amazon and the Case of the Brazilian Soy Moratorium (World Bank, 2018); https://www.profor.info/content/soybeans-brazilian-amazon-and-case-brazilian-soy-moratorium

  16. Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. C. D. M. M. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gibbs, H. K. et al. Brazil’s Soy Moratorium. Science 347, 377–378 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Gollnow, F., Hissa, L., de, B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).

    Article  Google Scholar 

  19. Vale, P. et al. The expansion of intensive beef farming to the Brazilian Amazon. Glob. Environ. Change 57, 101922 (2019).

    Article  Google Scholar 

  20. Jackson, R. B. & Hoffmann, W. A. Vegetation–climate feedbacks in the conversion of tropical savanna to grassland. J. Clim. 13, 1593–1602 (2000).

    Article  ADS  Google Scholar 

  21. Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).

    Article  ADS  Google Scholar 

  23. Van Benthem, L. Soybean and Maize Production in Brazil: Production Processes & Profitability Comparisons Between Transgenic and Conventional Varieties in Mato Grosso and Paranà 1–28 (USDA Economic Research Service, 2013).

  24. Flach, R., Ran, Y., Godar, J., Karlberg, L. & Suavet, C. Towards more spatially explicit assessments of virtual water flows: linking local water use and scarcity to global demand of Brazilian farming commodities. Environ. Res. Lett. 11, 075003 (2016).

    Article  ADS  Google Scholar 

  25. Govoni, C. Dynamics and Potential Environmental Implications of Soybean Expansion and Beef Production in Brazil: Fires, Deforestation and Water Scarcity. Master thesis, Politecnico di Milano (2020).

  26. Zu Ermgassen, E. K. H. J. H. J. et al. The origin, supply chain, and deforestation risk of Brazil’s beef exports. Proc. Natl Acad. Sci. USA 117, 31770–31779 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Battisti, R. & Sentelhas, P. C. Characterizing Brazilian soybean-growing regions by water deficit patterns. F. Crop. Res. 240, 95–105 (2019).

    Article  Google Scholar 

  28. MapBiomas Project—Collection 7. Annual Land Use Land Cover Maps of Brazil (MapBiomas, 2023); http://brasil.mapbiomas.org

  29. Commodity Deforestation Exposure and Carbon Emissions Assessment (Trase, 2022); https://doi.org/10.48650/GE7V-Q043

  30. Liu, J., Herzberger, A. J., Kapsar, K. & Carlson, A. K. in Telecoupling: Exploring Land-Use Change in a Globalised World (eds Friis, C. & Nielsen, J. Ø.) Ch. 2 (Palgrave Macmillan, 2019).

  31. da Silva, R. F. B. et al. The Sino-Brazilian telecoupled soybean system and cascading effects for the exporting country. Land 6, 53 (2017).

    Article  Google Scholar 

  32. Song, X. P. et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. 4, 784–792 (2021).

    Article  Google Scholar 

  33. Flach, R., Fader, M., Folberth, C., Skalský, R. & Jantke, K. The effects of cropping intensity and cropland expansion of Brazilian soybean production on green water flows. Environ. Res. Commun. 2, 071001 (2020).

    Article  Google Scholar 

  34. Announcement of the State Council Tariff Commission on Imposing Additional Tariffs on Some Imported Goods Originating from the United States (Office of the Tariff Commission of the State Council, Ministry of Finance of the People’s Republic of China, 2025); https://gss.mof.gov.cn/gzdt/zhengcefabu/202503/t20250304_3959228.htm

  35. Ministry of Agriculture and Livestock of Brazil Notification regarding non-conformities dsetected in soybean shipments by five Brazilian companies. Secretaria de Comunicação Social https://www.gov.br/secom/en/latest-news/2025/01/notification-regarding-non-conformities-detected-in-soybean-shipments-by-five-brazilian-companies (2025).

  36. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Rattis, L. et al. Climatic limit for agriculture in Brazil. Nat. Clim. Change 11, 1098–1104 (2021).

    Article  ADS  Google Scholar 

  38. Yao, G., Zhang, X., Davidson, E. A. & Taheripour, F. The increasing global environmental consequences of a weakening US–China crop trade relationship. Nat. Food 2, 578–586 (2021).

    Article  PubMed  Google Scholar 

  39. Xie, W. et al. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature 616, 300–305 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. He, R. et al. How the trade barrier changes environmental costs of agricultural production: an implication derived from China’s demand for soybean caused by the US-China trade war. J. Clean. Prod. 227, 578–588 (2019).

    Article  Google Scholar 

  41. Sustainability Report 2023—Raising Sustainability Ambitions (COFCO International, 2023); https://www.cofcointernational.com/media/bmtaiwxx/cofco_2023_sustainability_report.pdf

  42. Haddad, E. A. et al. Economic drivers of deforestation in the Brazilian Legal Amazon. Nat. Sustain. https://doi.org/10.1038/s41893-024-01387-7 (2024).

  43. Villoria, N., Garrett, R., Gollnow, F. & Carlson, K. Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil. Nat. Commun. 13, 5476 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gollnow, F. & Lakes, T. Policy change, land use, and agriculture: the case of soy production and cattle ranching in Brazil, 2001–2012. Appl. Geogr. 55, 203–211 (2014).

    Article  Google Scholar 

  45. Zu Ermgassen, E. K. H. J. et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 15, 035003 (2020).

    Article  ADS  Google Scholar 

  46. Garrett, R. D. et al. Intensification in agriculture-forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).

    Article  Google Scholar 

  47. Govoni, C., Chiarelli, D. D., Luciano, A., Pinotti, L. & Rulli, M. C. Global assessment of land and water resource demand for pork supply. Environ. Res. Lett. 17, 074003 (2022).

    Article  ADS  Google Scholar 

  48. Govoni, C. et al. Global assessment of natural resources for chicken production. Adv. Water Resour. 154, 103987 (2021).

    Article  Google Scholar 

  49. Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).

    Article  CAS  Google Scholar 

  50. Lathuillière, M. J., Coe, M. T., Castanho, A., Graesser, J. & Johnson, M. S. Evaluating water use for agricultural intensification in southern Amazonia using the water footprint sustainability assessment. Water 10, 349 (2018).

    Article  Google Scholar 

  51. Govoni, C., Ottoboni, M., Manoni, M., Pinotti, L. & Rulli, M. C. Upcycling former food products in livestock diets: a one health approach to prevent resource-depleting farming systems. Resour. Conserv. Recycl. 223, 108536 (2025).

    Article  Google Scholar 

  52. Marchioni, D. M., Cacau, L. T., De Carli, E., de Carvalho, A. M. & Rulli, M. C. Low adherence to the EAT-Lancet Sustainable Reference Diet in the Brazilian population: findings from the National Dietary Survey 2017–2018. Nutrients 14, 1187 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Swaminathan, M. S. in Combating Hunger and Achieving Food Security (ed. Swaminathan, M. S.) Ch. 6 (Cambridge Univ. Press, 2016).

  54. Folke, C. et al. Transnational corporations and the challenge of biosphere stewardship. Nat. Ecol. Evol. 3, 1396–1403 (2019).

    Article  PubMed  Google Scholar 

  55. Yao, H. et al. Tradeoff analysis of the pork supply and food security under the influence of African swine fever and the COVID-19 outbreak in China. Geogr. Sustain. 3, 32–43 (2022).

    Google Scholar 

  56. Notice of the General Office of the Ministry of Agriculture and Rural Affairs on Issuing the Three-Year Action Plan for Reducing and Substituting Soybean Meal for Feed [in Chinese] (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2023); https://www.gov.cn/zhengce/zhengceku/2023-04/14/content_5751409.htm

  57. Patton, D. Food Security Drives China to Cut Soymeal Use in Animal Feed (Thomson Reuters Foundation, 2023); https://www.reuters.com/world/china/food-security-drives-china-cut-soymeal-use-animal-feed-2023-04-14/

  58. Gu, H. & Patton, D. Reshaping Grain Trade? China Moves to Change Animal Feed Recipes (Thomson Reuters Foundation, 2021); https://www.reuters.com/world/china/reshaping-grain-trade-china-moves-change-animal-feed-recipes-2021-04-21/

  59. Lumsden, C. L., Jägermeyr, J., Ziska, L. & Fanzo, J. Critical overview of the implications of a global protein transition in the face of climate change: key unknowns and research imperatives. One Earth 7, 1187–1201 (2024).

    Article  Google Scholar 

  60. SEI-PCS Brazil Soy v.2.6 Supply Chain Map: Data Sources and Methods 31 (Trase, 2022); https://doi.org/10.48650/X24R-YK29

  61. Chiarelli, D. D. et al. The green and blue crop water requirement WATNEEDS model and its global gridded outputs. Sci. Data 7, 273 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Govoni, C., Chiarelli, D. D. & Rulli, M. C. A global dataset of the national green and blue water footprint of livestock feeds. Sci. Data 11, 1419 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Galli, N., Nanesha, H., Tolazzi, A., Chiarelli, D. D. & Rulli, M. C. The AIDA 1 km resolution crop-specific rainfed and irrigated areas and green and blue water demands for Italy. Sci. Data 12, 1041 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: a study for China (1978–2008). Water Res. 94, 73–85 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Ji, X. et al. Water footprints, intra-national virtual water flows, and associated sustainability related to pork production and consumption: a case for China. Water Resour. Res. 58, e2021WR029809 (2022).

    Article  ADS  Google Scholar 

  66. Zhuo, L. et al. Water for maize for pigs for pork: an analysis of inter-provincial trade in China. Water Res. 166, 115074 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. FAO Fisheries and Aquaculture—Global Statistical Collections (FishStat) FAO Fisheries and Aquaculture Division (FAO, 2023); https://www.fao.org/fishery/en/statistics

  68. Ministry of Agriculture and Rural Affairs, PRC. China Livestock Yearbooks 2005–2013 (China Agriculture Press, 2005–2013).

  69. Ministry of Agriculture and Rural Affairs, PRC. China Animal Husbandry and Veterinary Yearbooks 2014–2021 (China Agriculture Press, 2014–2021).

  70. Instructions on Promoting the Sustainable and Healthy Development of Animal Husbandry by State Council 4 (The State Council, the People’s Republic of China, 2007).

  71. Gilbert, M. et al. Income disparities and the global distribution of intensively farmed chicken and pigs. PLoS ONE 10, e0133381 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Malek, Ž., Romanchuk, Z., Yashchun, O. & See, L. A harmonized data set of ruminant livestock presence and grazing data for the European Union and neighbouring countries. Sci. Data 11, 1136 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Global Agricultural Information Network—GAIN Report (USDA Foreign Agricultural Service, 2023); https://gain.fas.usda.gov/#/home

  74. ComexStat: Exportação e Importação Municípios (Secretaria de Comércio Exterior (SECEX), 2023); http://comexstat.mdic.gov.br/pt/municipio

  75. National Data (National Bureau of Statistics of China, 2023); https://data.stats.gov.cn/english/easyquery.htm?cn=E0103

  76. China Feed Industry Yearbook (China National Knowledge Infrastructure, 2017); https://navi.cnki.net/index/

  77. Chilonda, P. & Otte, J. Indicators to monitor trends in livestock production at national, regional and international levels. Livest. Res. Rural Dev. 18, 117 (2006).

    Google Scholar 

  78. Govoni, C. et al. Data related to “China’s animal protein-rich diets are increasingly reliant on Brazil’s land and water resources”. Zenodo https://doi.org/10.5281/zenodo.16986729 (2025).

  79. GADM Database of Global Administrative Areas, Version 4.1 (Global Administrative Areas, 2023); https://gadm.org

Download references

Acknowledgements

M.C.R. and C.G. are funded by Cariplo Foundation (SUSFEED project 0737 CUP D49H170000300007), Regione Lombardia (RUD0CONV01/ASSO project D44I20002000002) and the European Union Next-GenerationEU (National Recovery and Resilience Plan NRRP, Mission 4, Component 2, Investment 1.3 D.D. 1243 2/8/2022, PE0000005) within the RETURN Extended Partnership. L.Z. is funded by Cyrus Tang Foundation (K4050723175).

Author information

Authors and Affiliations

Authors

Contributions

C.G. and M.C.R. designed the research. C.G. performed the analysis. L.Z. performed the analysis on the Chinese trade. C.G. drafted the article. All authors conducted review and editing.

Corresponding author

Correspondence to C. Govoni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Richard Fuchs, Zhan Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–3 and Figs. 1–6.

Reporting Summary

Source data

Source Data Fig. 2

Data related to Fig. 2.

Source Data Fig. 3

Data related to Fig. 3.

Source Data Fig. 4

Data related to Fig. 4.

Source Data Fig. 5

Data related to Fig. 5.

Source Data Fig. 6

Data related to Fig. 6.

Source Data Fig. 7

Data related to Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govoni, C., Zhuo, L., Marchioni, D.M. et al. China’s animal-protein-rich diets are increasingly reliant on Brazil’s land and water resources. Nat Food (2025). https://doi.org/10.1038/s43016-025-01238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43016-025-01238-4

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene