Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global exploration of drought-tolerant bacteria in the wheat rhizosphere reveals microbiota shifts and functional taxa enhancing plant resilience

Abstract

Drought stress impacts plant–microbe interactions, reshaping microbial community composition and biogeochemical cycling, thereby reducing crop productivity and threatening food security. However, the specific microbial responses and roles of plant-derived metabolites remain underexplored. Here we reveal that drought stress shifts the composition of wheat-associated microbiota across the phyllosphere, rhizosphere and root endosphere by favouring Actinobacteria and Ascomycota while depleting Proteobacteria and Basidiomycota. Targeted single-cell sorting and sequencing identified 21 active drought-tolerant bacteria (DTB) enriched in genes related to plant fitness and nutrient cycling. These DTB showed significant positive correlations with drought-enriched plant phytochemicals such as jasmonic acid and pipecolic acid. Moreover, the inoculation of synthetic community including four identified drought-tolerant taxa significantly stimulates the wheat growth under drought stress. A global exploration confirmed the widespread distribution of DTB, underscoring their promising potential to enhance crop resilience. This study provides new insights into drought-induced microbiome shifts and highlights microbial candidates for improving crop resilience in a changing climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Responses of wheat physiologies to drought.
Fig. 2: The effect of drought on wheat microbiome.
Fig. 3: Raman-based phenotypic profiling of drought tolerance in the rhizosphere.
Fig. 4: Genomic functions of drought-tolerant bacteria in the rhizosphere.
Fig. 5: Effects of DTB on wheat growth under drought stress.
Fig. 6: Global distribution of soil DTB.
Fig. 7: Proposed model illustrating a potential bacterial solution for enhancing drought resilience in wheat.

Similar content being viewed by others

Data availability

All raw sequences were deposited in the National Center for Biotechnology Information Sequence Read Archive under accession number PRJNA1155890. All relevant metabolomic data, Raman data and R scripts, including those for microbial co-occurrence network construction and DTB phenotypic-level visualization, are available via GitHub at https://github.com/Lab-qlchen/Global-exploration-of-drought-tolerant-bacteria-in-wheat-rhizosphere. Source data are provided with this paper.

References

  1. Dietz, K. J., Zörb, C. & Geilfus, C. M. Drought and crop yield. Plant Biol. 23, 881–893 (2021).

    Article  PubMed  Google Scholar 

  2. Vadez, V. et al. Crop traits and production under drought. Nat. Rev. Earth Environ. 5, 211–225 (2024).

    Article  ADS  Google Scholar 

  3. Liu, H., Li, J. & Singh, B. K. Harnessing co-evolutionary interactions between plants and streptomyces to combat drought stress. Nat. Plants 10, 1159–1171 (2024).

    Article  PubMed  Google Scholar 

  4. Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, H., Brettell, L. E., Qiu, Z. & Singh, B. K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25, 733–743 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Veach, A. M. et al. Plant hosts modify belowground microbial community response to extreme drought. mSystems 5, e00092–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duan, P. et al. Application of coronarin enhances maize drought tolerance by affecting interactions between rhizosphere fungal community and metabolites. Comput. Struct. Biotechnol. J. 21, 5273–5284 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Barazani, O. & Friedman, J. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 25, 2397–2406 (1999).

    Article  CAS  Google Scholar 

  12. Bei, Q. et al. Extreme summers impact cropland and grassland soil microbiomes. ISME J. 17, 1589–1600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl Acad. Sci. USA 116, 123–128 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. van Dijk, A. I. J. M. et al. The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

    Article  ADS  Google Scholar 

  16. Li, H. Z. et al. Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics. Proc. Natl Acad. Sci. USA 119, e2201473119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. No, J. H. et al. Raman-deuterium isotope probing and metagenomics reveal the drought tolerance of the soil microbiome and its promotion of plant growth. mSystems 7, e01249–01221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, H. Z. et al. Single-cell exploration of active phosphate-solubilizing bacteria across diverse soil matrices for sustainable phosphorus management. Nat. Food. 5, 673–683 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Li, M., Xu, J., Romero-Gonzalez, M., Banwart, S. A. & Huang, W. E. Single cell raman spectroscopy for cell sorting and imaging. Curr. Opin. Biotechnol. 23, 56–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Yin, J. et al. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain. 6, 259–272 (2023).

    Article  Google Scholar 

  21. Anjum, S. A. et al. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6, 2026–2032 (2011).

    Google Scholar 

  22. Ahmad, Z. et al. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol. Plant. 40, 80 (2018).

    Article  Google Scholar 

  23. Ruehr, N. K. et al. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950–961 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Yadav, B., Jogawat, A., Rahman, M. S. & Narayan, O. P. Secondary metabolites in the drought stress tolerance of crop plants: a review. Gene Rep. 23, 101040 (2021).

    Article  CAS  Google Scholar 

  25. Vergara-Diaz, O. et al. Metabolome profiling supports the key role of the spike in wheat yield performance. Cells 9, 1025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, P. et al. A novel role of pipecolic acid biosynthetic pathway in drought tolerance through the antioxidant system in tomato. Antioxidants 10, 1923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Yu, P. et al. Plant flavones enrich rhizosphere oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 7, 481–499 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Cushnie, T. P. T., Cushnie, B. & Lamb, A. J. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 44, 377–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Carvalhais, L. C. et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol. Plant-Microbe Interact. 28, 1049–1058 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y., Mostafa, S., Zeng, W. & Jin, B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 22, 8568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arellano-Wattenbarger, G. L., Montiel, S., Aguirre-Von-Wobeser, E., de la Torre, M. & Rocha, J. Contribution of seed-endophytic bacteria to drought tolerance in early developmental stages of native maize landraces from arid milpas. Plant Soil 500, 213–232 (2023).

    Article  Google Scholar 

  33. Wink, M. in Modern Alkaloids: Structure, Isolation, Synthesis and Biology (eds Fattorusso, E. & Taglialatela-Scafati, O.) 1–24 (Wiley-VCH, 2008).

  34. de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    Article  ADS  PubMed  Google Scholar 

  35. Haskett, T. L., Tkacz, A. & Poole, P. S. Engineering rhizobacteria for sustainable agriculture. ISME J. 15, 949–964 (2021).

    Article  PubMed  Google Scholar 

  36. Fan, K. et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 15, 550–561 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Jiao, S., Lu, Y. & Wei, G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob. Change Biol. 28, 140–153 (2021).

    Article  ADS  Google Scholar 

  38. Vilchez, J. I., Garcia-Fontana, C., Roman-Naranjo, D., Gonzalez-Lopez, J. & Manzanera, M. Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front. Microbiol. 7, 1577 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sunita, K., Mishra, I., Mishra, J., Prakash, J. & Arora, N. K. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Front. Microbiol. 11, 567768 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moreno, J. C. & Al-Babili, S. Are carotenoids the true colors of crop improvement? New Phytol. 237, 1946–1950 (2023).

    Article  PubMed  Google Scholar 

  41. Xu, L. et al. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nat. Commun. 12, 3209 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wolińska, A. & Stępniewska, Z. Dehydrogenase activity in the soil environment. Dehydrogenases 10, 183–210 (2012).

    Google Scholar 

  43. Chen, C. et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci. Rep. 7, 41564 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kour D. et al. in Plant Growth Promoting Rhizobacteria for Sustainable Stress Management: Vol. 1: Rhizobacteria in Abiotic Stress Management (eds Sayyed R. Z. et al.) 255–308 (Springer, 2019).

  45. Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one fastq preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Noguchi, H., Park, J. & Takagi, T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34, 5623–5630 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Ma, B. et al. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat. Commun. 14, 7318 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Z. et al. Root hair developmental regulators orchestrate drought triggered microbiome changes and the interaction with beneficial rhizobiaceae. Nat. Commun. 15, 10068 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. Mixomics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  55. Wickham, H., Chang, W. & Wickham, M. H. ggplot2: Create elegant data visualisations using the grammar of graphics. R package version 2 (2016); https://CRAN.R-project.org/package=ggplot2

  56. Oksanen J. et al. vegan: Community ecology package. R package version 2 (2018); https://CRAN.R-project.org/package=vegan

  57. Roberts, D. W. & Roberts, M. D. W. labdsv: Ordination and multivariate analysis for ecology. R package version 1.8‑0 (2016); https://CRAN.R-project.org/package=labdsv

Download references

Acknowledgements

We acknowledge the funds of the Natural Science Foundation of Fujian Province (grant number 2023J02029 to Q.-L.C), National Natural Science Foundation of China (grant number 42207143 to Q.X.) and the fellowship of China Postdoctoral Science Foundation (grant number BX2021293 to Q.X.).

Author information

Authors and Affiliations

Authors

Contributions

Q.X., Q.-L.C. and Y.-G.Z. conceived and designed the research. Q.X. and K.Y. performed the experiments and analysed the data with the help of B.M. and C.-Y.L. Q.X. and K.Y. wrote the paper with the assistance of all the co-authors. All authors read and approved the paper.

Corresponding author

Correspondence to Qing-Lin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Josep Peñuelas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary results (Texts 1–3), methods (Texts 4–6) and Figs. 1–20.

Reporting Summary

Source data

Source Data Fig. 1

Wheat metabolome data and the statistical source data for Fig. 1e,f.

Source Data Fig. 3

Statistical source data for Fig. 3a (normalized C–D ratio, DTB percentage and drought-tolerant level) and Fig. 3b (active DTB with normalized C–D ratios > 1.6).

Source Data Fig. 4

Statistical source data for Fig. 4c, showing the correlations between DTB and upregulated phytochemicals in leaf and root tissues.

Source Data Fig. 5

Statistical source data for Fig. 5a,c, showing the effect of DTB on wheat growth parameters under drought.

Source Data Fig. 6

Statistical source data for Fig. 6a,b, including the data of DTB abundance, Shannon index of DT, standardized precipitation evapotranspiration index, and the latitude and longitude of samples.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Yang, K., Cui, L. et al. Global exploration of drought-tolerant bacteria in the wheat rhizosphere reveals microbiota shifts and functional taxa enhancing plant resilience. Nat Food (2025). https://doi.org/10.1038/s43016-025-01248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43016-025-01248-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing