Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Temperature responses of ecosystem respiration

Abstract

Terrestrial ecosystems release ~106–130 PgC yr–1 into the atmosphere through respiration, counterbalancing photosynthetic carbon uptake and determining the strength of the land carbon sink. The effect of anthropogenic warming on the land carbon sink will depend on the temperature response of respiration. In this Review, we explore the relationships between temperature and ecosystem respiration from experimental and observational data at leaf, microbial, ecosystem and global scales. Contrary to the assumed monotonic increase in respiration with increasing temperature derived from Earth system models, empirical findings indicate a unimodal temperature response with a peak in respiration at an optimal temperature (Topt). This unimodality is observed across a range of organization levels with Topt values of 40–60 °C at the leaf and plant level, 11–46 °C at a microbial level and 6.5–33.3 °C at the global scale. Various mechanisms contribute to this unimodal pattern including enzyme deactivation, the thermodynamics of enzyme-catalysed reactions and changes in temperature-dependent factors such as soil moisture, nutrient availability and vegetation physiology. Incorporating the unimodality of these observed temperature responses of ecosystem respiration into Earth system models could facilitate attribution studies to identify the mechanisms responsible for the peaked response and increase the accuracy of carbon sequestration predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temperature responses of respiration.
Fig. 2: Short-term temperature response of leaf respiration.
Fig. 3: Variation of the optimal temperature of ecosystem respiration.
Fig. 4: Comparing the observed and modelled temperature responses of ecosystem respiration.

Similar content being viewed by others

Data availability

The data for Fig. 2 are available from M.H. The observational data used to make Fig. 4 were obtained from FLUXNET data sets (https://fluxnet.org/).

References

  1. Friedlingstein, P. et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  2. Climate Change 2022 — Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2023). https://doi.org/10.1017/9781009157926.

  3. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon–cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  CAS  Google Scholar 

  4. Davidson, E. A., Janssens, I. A. & Luo, Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).

    Article  Google Scholar 

  5. Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).

    Article  CAS  Google Scholar 

  6. Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    Article  CAS  Google Scholar 

  7. Lasslop, G. et al. Global ecosystems and fire: multi-model assessment of fire-induced tree-cover and carbon storage reduction. Glob. Change Biol. 26, 5027–5041 (2020).

    Article  Google Scholar 

  8. Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 9, 948–953 (2019).

    Article  CAS  Google Scholar 

  9. Booth, B. B. B. et al. High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett. 7, 024002 (2012).

    Article  Google Scholar 

  10. Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017).

    Article  Google Scholar 

  11. Farquhar, G. D., Caemmerer, S. & Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article  CAS  Google Scholar 

  12. Atkin, O. K. et al. Leaf respiration in terrestrial biosphere models. in Plant Respiration: Metabolic Fluxes and Carbon Balance, Advances in Photosynthesis and Respiration Ch. 6, 107–142 (Springer, 2017).

  13. Arcus, V. L. et al. On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55, 1681–1688 (2016).

    Article  CAS  Google Scholar 

  14. Hobbs, J. K. et al. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 8, 2388–2393 (2013).

    Article  CAS  Google Scholar 

  15. Prentice, E. et al. The inflection point hypothesis: the relationship between the temperature dependence of enzyme catalyzed reaction rates and microbial growth rates. Biochemistry 59, 3562–3569 (2020).

    Article  CAS  Google Scholar 

  16. Ratkowsky, D. A., Olley, J. & Ross, T. Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J. Theor. Biol. 233, 351–362 (2005).

    Article  CAS  Google Scholar 

  17. Corkrey, R. et al. Universality of thermodynamic constants governing biological growth rates. PLoS ONE 7, e32003 (2012).

    Article  CAS  Google Scholar 

  18. García, F. C. et al. The temperature dependence of microbial community respiration is amplified by changes in species interactions. Nat. Microbiol. 8, 272–283 (2023).

    Article  Google Scholar 

  19. Alster, C. J. et al. Quantifying thermal adaptation of soil microbial respiration. Nat. Commun. 14, 5459 (2023).

    Article  CAS  Google Scholar 

  20. Kruse, J., Rennnenberg, H. & Adams, M. A. Three physiological parameters capture variation in leaf respiration of Eucalyptus grandis, as elicited by short-term changes in ambient temperature, and differing nitrogen supply. Plant Cell Environ. https://doi.org/10.1111/pce.13162 (2018).

  21. Liang, L. L. et al. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Glob. Change Biol. 24, 1538–1547 (2018).

    Article  Google Scholar 

  22. O’Sullivan, O. S. et al. High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant. Cell Environ. 36, 1268–1284 (2013).

    Article  Google Scholar 

  23. O’sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Glob. Change Biol. 23, 209–223 (2017).

    Article  Google Scholar 

  24. Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).

    Article  CAS  Google Scholar 

  25. Numa, K. B., Robinson, J. M., Arcus, V. L. & Schipper, L. A. Separating the temperature response of soil respiration derived from soil organic matter and added labile carbon compounds. Geoderma 400, 115128 (2021).

    Article  CAS  Google Scholar 

  26. Schipper, L. A., Hobbs, J. K., Rutledge, S. & Arcus, V. L. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob. Change Biol. 20, 3578–3586 (2014).

    Article  Google Scholar 

  27. Chen, W. et al. Evidence for widespread thermal optimality of ecosystem respiration. Nat. Ecol. Evol. 7, 1379–1387 (2023).

    Article  Google Scholar 

  28. Varney, R. M., Chadburn, S. E., Burke, E. J. & Cox, P. M. Evaluation of soil carbon simulation in CMIP6 Earth system models. Biogeosciences 19, 4671–4704 (2022).

    Article  CAS  Google Scholar 

  29. Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).

    Article  Google Scholar 

  30. Hou, E. et al. Across-model spread and shrinking in predicting peatland carbon dynamics under global change. Glob. Change Biol. 29, 2759–2775 (2023).

    Article  CAS  Google Scholar 

  31. Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. für Physikalische Chem. 4U, 96–116 (1889).

    Article  Google Scholar 

  32. Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

    Article  Google Scholar 

  33. Davidson, E. A., Savage, K. E. & Finzi, A. C. A big-microsite framework for soil carbon modeling. Glob. Change Biol. 20, 3610–3620 (2014).

    Article  Google Scholar 

  34. Del Grosso, S. J. et al. Modeling soil CO2 emissions from ecosystems. Biogeochemistry 73, 71–91 (2005).

    Article  Google Scholar 

  35. Arroyo, J. I., Díez, B., Kempes, C. P., West, G. B. & Marquet, P. A. A general theory for temperature dependence in biology. Proc. Natl Acad. Sci. USA 119, e2119872119 (2022).

    Article  CAS  Google Scholar 

  36. Tang, J. & Riley, W. J. A reanalysis of the foundations of the macromolecular rate theory. Biogeosci. Discuss. https://doi.org/10.5194/bg-2023-77 (2023).

  37. Zhang, W. et al. Soil moisture and atmospheric aridity impact spatio-temporal changes in evapotranspiration at a global scale. J. Geophys. Res. Atmos. 128, e2022JD038046 (2023).

    Article  Google Scholar 

  38. Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The Dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384 (2012).

    Article  Google Scholar 

  39. Bunnell, F. L., Tait, D. E. N., Flanagan, P. W. & Van Clever, K. Microbial respiration and substrate weight loss — I: a general model of the influences of abiotic variables. Soil. Biol. Biochem. 9, 33–40 (1977).

    Article  CAS  Google Scholar 

  40. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  41. Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    Article  CAS  Google Scholar 

  42. Michaletz, S. T. & Garen, J. C. Hotter is not (always) better: embracing unimodal scaling of biological rates with temperature. Ecol. Lett. 27, e14381 (2024).

    Article  Google Scholar 

  43. Smith, J. M. Group selection and kin selection. Nature 201, 1145–1147 (1964).

    Article  Google Scholar 

  44. Atkin, O. K., Scheurwater, I. & Pons, T. L. Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. N. Phytol. 174, 367–380 (2007).

    Article  CAS  Google Scholar 

  45. Ryan, M. G., Linder, S., Vose, J. M. & Hubbard, R. M. Dark respiration of pines. Ecol. Bull. 43, 50–63 (1994).

    Google Scholar 

  46. Bruhn, D. et al. Nocturnal plant respiration is under strong non-temperature control. Nat. Commun. 13, 5650 (2022).

    Article  CAS  Google Scholar 

  47. Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl Acad. Sci. USA 113, 3832–3837 (2016).

    Article  CAS  Google Scholar 

  48. Zhu, L. et al. Acclimation of leaf respiration temperature responses across thermally contrasting biomes. N. Phytol. 229, 1312–1325 (2021).

    Article  CAS  Google Scholar 

  49. Tjoelker, M. G., Oleksyn, J. & Reich, P. B. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob. Change Biol. 7, 223–230 (2001).

    Article  Google Scholar 

  50. Kurepin, L. V. et al. Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature. Plant. Cell Environ. 41, 1331–1345 (2018).

    Article  CAS  Google Scholar 

  51. Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).

    Article  CAS  Google Scholar 

  52. Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).

    Article  Google Scholar 

  53. Amthor, J. S. The role of maintenance respiration in plant growth. Plant Cell Environ. 7, 561–569 (1984).

    Article  Google Scholar 

  54. Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 221, 32–49 (2019).

    Article  CAS  Google Scholar 

  55. Scafaro, A. P. et al. Responses of leaf respiration to heatwaves. Plant Cell Environ. 44, 2090–2101 (2021).

    Article  CAS  Google Scholar 

  56. Hüve, K., Bichele, I., Rasulov, B. & Niinemets, U. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ. 34, 113–126 (2011).

    Article  Google Scholar 

  57. Hüve, K. et al. Temperature responses of dark respiration in relation to leaf sugar concentration. Physiol. Plant 144, 320–334 (2012).

    Article  Google Scholar 

  58. Schmiege, S. C., Heskel, M., Fan, Y. & Way, D. A. It’s only natural: plant respiration in unmanaged systems. Plant Physiol. 192, 710–727 (2023).

    Article  CAS  Google Scholar 

  59. Zhu, J., Wu, Q., Wu, F. & Ni, X. Partitioning of root, litter and microbial respiration by plant input manipulation in forests. Environ. Res. Lett. 18, 024043 (2023).

    Article  Google Scholar 

  60. Bond-Lamberty, B. et al. Twenty years of progress, challenges, and opportunities in measuring and understanding soil respiration. J. Geophys. Res. Biogeosci. 129, e2023JG007637 (2024).

    Article  Google Scholar 

  61. Wang, X. et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 20, 3229–3237 (2014).

    Article  Google Scholar 

  62. Patel, K. F. et al. Carbon flux estimates are sensitive to data source: a comparison of field and lab temperature sensitivity data. Environ. Res. Lett. 17, 113003 (2022).

    Article  Google Scholar 

  63. Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).

    Article  Google Scholar 

  64. Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).

    Article  Google Scholar 

  65. Yergeau, E. et al. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J. 6, 692–702 (2012).

    Article  CAS  Google Scholar 

  66. Luo, C. et al. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Appl. Environ. Microbiol. 80, 1777–1786 (2014).

    Article  Google Scholar 

  67. Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    Article  CAS  Google Scholar 

  68. Kirschbaum, M. U. F. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob. Change Biol. 10, 1870–1877 (2004).

    Article  Google Scholar 

  69. Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).

    Article  CAS  Google Scholar 

  70. Conant, R. T. et al. Sensitivity of organic matter decomposition to warming varies with its quality. Glob. Change Biol. 14, 868–877 (2008).

    Article  Google Scholar 

  71. Li, Y. et al. Microbial community responses reduce soil carbon loss in Tibetan alpine grasslands under short-term warming. Glob. Change Biol. 25, 3438–3449 (2019).

    Article  Google Scholar 

  72. Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil. Sci. Soc. Am. J. 51, 1173–1179 (1987).

    Article  CAS  Google Scholar 

  73. Liu, Y. et al. The optimum temperature of soil microbial respiration: patterns and controls. Soil Biol. Biochem. 121, 35–42 (2018).

    Article  CAS  Google Scholar 

  74. Parker, L. W., Miller, J., Steinberger, Y. & Whitford, W. G. Soil respiration in a chihuahuan desert rangeland. Soil Biol. Biochem. 15, 303–309 (1983).

    Article  Google Scholar 

  75. Richardson, J., Chatterjee, A. & Darrel Jenerette, G. Optimum temperatures for soil respiration along a semi-arid elevation gradient in southern California. Soil Biol. Biochem. 46, 89–95 (2012).

    Article  CAS  Google Scholar 

  76. Pietikäinen, J., Pettersson, M. & Bååth, E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 52, 49–58 (2005).

    Article  Google Scholar 

  77. Balser, T. C. & Wixon, D. L. Investigating biological control over soil carbon temperature sensitivity. Glob. Change Biol. 15, 2935–2949 (2009).

    Article  Google Scholar 

  78. Makita, N., Fujimoto, R. & Tamura, A. The contribution of roots, mycorrhizal hyphae, and soil free-living microbes to soil respiration and its temperature sensitivity in a larch forest. Forests 12, 1410 (2021).

    Article  Google Scholar 

  79. Lellei-Kovács, E. et al. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. Eur. J. Soil Biol. 47, 247–255 (2011).

    Article  Google Scholar 

  80. Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D. & von Fischer, J. C. Temperature sensitivity of soil microbial communities: an application of macromolecular rate theory to microbial respiration. J. Geophys. Res. Biogeosci. 121, 1420–1433 (2016).

    Article  Google Scholar 

  81. Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26, 3221–3229 (2020).

    Article  Google Scholar 

  82. Trumbore, S. Carbon respired by terrestrial ecosystems — recent progress and challenges. Glob. Change Biol. 12, 141–153 (2006).

    Article  Google Scholar 

  83. Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    Article  Google Scholar 

  84. Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).

    Article  Google Scholar 

  85. Davidson, E. A., Richardson, A. D., Savage, K. E. & Hollinger, D. Y. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Glob. Change Biol. 12, 230–239 (2006).

    Article  Google Scholar 

  86. Barba, J. et al. Comparing ecosystem and soil respiration: review and key challenges of tower-based and soil measurements. Agric. For. Meteorol. 249, 434–443 (2018).

    Article  Google Scholar 

  87. Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    Article  CAS  Google Scholar 

  88. Drewitt, G. et al. Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agric. For. Meteorol. 110, 299–317 (2002).

    Article  Google Scholar 

  89. Lafleur, P. M., Moore, T., Roulet, N. & Frolking, S. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8, 619–629 (2005).

    Article  CAS  Google Scholar 

  90. Ma, W. et al. Carbon budgets and environmental controls in alpine ecosystems on the Qinghai-Tibet Plateau. Catena 229, 107224 (2023).

    Article  CAS  Google Scholar 

  91. Lin, X. et al. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agric. For. Meteorol. 151, 792–802 (2011).

    Article  Google Scholar 

  92. Wen, X. et al. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agric. For. Meteorol. 137, 166–175 (2006).

    Article  Google Scholar 

  93. Wagle, P. Confounding effects of soil moisture on the relationship between ecosystem respiration and soil temperature in switchgrass. BioEnergy Res. 7, 789–798 (2014).

    Article  CAS  Google Scholar 

  94. Jia, X. et al. Seasonal and interannual variations in ecosystem respiration in relation to temperature, moisture, and productivity in a temperate semi-arid shrubland. Sci. Total Environ. 709, 136210 (2020).

    Article  CAS  Google Scholar 

  95. Gu, L., Hanson, P. J., Mac Post, W. & Liu, Q. A novel approach for identifying the true temperature sensitivity from soil respiration measurements. Glob. Biogeochem. Cycles 22, GB4009 (2008).

    Article  Google Scholar 

  96. Xu, X. et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob. Change Biol. 21, 3846–3853 (2015).

    Article  Google Scholar 

  97. Wu, D. et al. Evaluation of the intrinsic temperature sensitivity of ecosystem respiration in typical ecosystems of an endorheic river basin. Agric. For. Meteorol. 333, 109393 (2023).

    Article  Google Scholar 

  98. Kirschbaum, M. U. F. Seasonal variations in the availability of labile substrate confound the temperature dependence of organic matter decomposition. Soil Biol. Biochem. 57, 568–576 (2013).

    Article  CAS  Google Scholar 

  99. Smith, N. G. & Dukes, J. S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Glob. Change Biol. 23, 4840–4853 (2017).

    Article  Google Scholar 

  100. Atkin, O. K., Scheurwater, I. & Pons, T. L. High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob. Change Biol. 12, 500–515 (2006).

    Article  Google Scholar 

  101. Cable, J. M. et al. The temperature responses of soil respiration in deserts: a seven desert synthesis. Biogeochemistry 103, 71–90 (2011).

    Article  Google Scholar 

  102. Vanderwel, M. C. et al. Global convergence in leaf respiration from estimates of thermal acclimation across time and space. N. Phytol. 207, 1026–1037 (2015).

    Article  Google Scholar 

  103. Wen, X.-F., Wang, H.-M., Wang, J.-L., Yu, G.-R. & Sun, X.-M. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007. Biogeosciences 7, 357–369 (2010).

    Article  CAS  Google Scholar 

  104. Fanin, N. et al. Soil enzymes in response to climate warming: mechanisms and feedbacks. Funct. Ecol. 36, 1378–1395 (2022).

    Article  CAS  Google Scholar 

  105. Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).

    Article  Google Scholar 

  106. Liu, T., Xu, Z.-Z., Hou, Y.-H. & Zhou, G.-S. Effects of warming and changing precipitation rates on soil respiration over two years in a desert steppe of northern China. Plant Soil 400, 15–27 (2016).

    Article  CAS  Google Scholar 

  107. Tucker, C. L. & Reed, S. C. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry 128, 155–169 (2016).

    Article  Google Scholar 

  108. Crous, K. Y., Uddling, J. & De Kauwe, M. G. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. N. Phytol. 234, 353–374 (2022).

    Article  CAS  Google Scholar 

  109. Yang, Z. et al. Recent photosynthates are the primary carbon source for soil microbial respiration in subtropical forests. Geophys. Res. Lett. 49, e2022GL101147 (2022).

    Article  CAS  Google Scholar 

  110. Wang, B. et al. Dryness limits vegetation pace to cope with temperature change in warm regions. Glob. Change Biol. 29, 4750–4757 (2023).

    Article  CAS  Google Scholar 

  111. Baldocchi, D. D. How eddy covariance flux measurements have contributed to our understanding of global change biology. Glob. Change Biol. 26, 242–260 (2020).

    Article  Google Scholar 

  112. Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article  Google Scholar 

  113. Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).

    Article  CAS  Google Scholar 

  114. Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).

    Article  Google Scholar 

  115. Wright, I. J. et al. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. N. Phytol. 169, 309–319 (2006).

    Article  CAS  Google Scholar 

  116. Tjoelker, M. G., Oleksyn, J., Lorenc-Plucinska, G. & Reich, P. B. Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. N. Phytol. 181, 218–229 (2009).

    Article  CAS  Google Scholar 

  117. Mujawamariya, M. et al. Complete or overcompensatory thermal acclimation of leaf dark respiration in African tropical trees. N. Phytol. 229, 2548–2561 (2021).

    Article  CAS  Google Scholar 

  118. Luo, Y. et al. Matrix approach to land carbon cycle modeling. J. Adv. Model. Earth Syst. 14, e2022MS003008 (2022).

    Article  Google Scholar 

  119. Wei, N. et al. Evolution of uncertainty in terrestrial carbon storage in Earth System Models from CMIP5 to CMIP6. J. Clim. 35, 5483–5499 (2022).

    Article  Google Scholar 

  120. Guenet, B. et al. Spatial biases reduce the ability of Earth System Models to simulate soil heterotrophic respiration fluxes. EGUsphere https://doi.org/10.5194/egusphere-2023-922 (2023).

  121. Xia, J. et al. Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J. Geophys. Res. Biogeosci. 122, 430–446 (2017).

    Article  CAS  Google Scholar 

  122. Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Article  Google Scholar 

  123. Cox, P. Description of the TRIFFID dynamic global vegetation model. Hadley Centre Technical Note 24 (2001).

  124. Lawrence, D. M. et al. The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Article  Google Scholar 

  125. Xia, J., Wang, J. & Niu, S. Research challenges and opportunities for using big data in global change biology. Glob. Change Biol. 26, 6040–6061 (2020).

    Article  Google Scholar 

  126. Ping, J. et al. Enhanced causal effect of ecosystem photosynthesis on respiration during heatwaves. Sci. Adv. 9, eadi6395 (2023).

    Article  CAS  Google Scholar 

  127. Xia, J., Luo, Y., Wang, Y.-P. & Hararuk, O. Traceable components of terrestrial carbon storage capacity in biogeochemical models. Glob. Change Biol. 19, 2104–2116 (2013).

    Article  Google Scholar 

  128. Wei, N. et al. Nutrient limitations lead to a reduced magnitude of disequilibrium in the global terrestrial carbon cycle. J. Geophys. Res. Biogeosci. 127, e2021JG006764 (2022).

    Article  CAS  Google Scholar 

  129. Luo, Y. & Schuur, E. A. G. Model parameterization to represent processes at unresolved scales and changing properties of evolving systems. Glob. Change Biol. 26, 1109–1117 (2020).

    Article  Google Scholar 

  130. Li, Q. et al. Variation of parameters in a flux-based ecosystem model across 12 sites of terrestrial ecosystems in the conterminous USA. Ecol. Model. 336, 57–69 (2016).

    Article  CAS  Google Scholar 

  131. Tao, F. et al. Deep learning optimizes data-driven representation of soil organic carbon in Earth System Model over the conterminous United States. Front. Big Data 3, 17 (2020).

    Article  Google Scholar 

  132. Liang, J. et al. More replenishment than priming loss of soil organic carbon with additional carbon input. Nat. Commun. 9, 3175 (2018).

    Article  Google Scholar 

  133. Liao, C. et al. Microbe–iron interactions control lignin decomposition in soil. Soil Biol. Biochem. 173, 108803 (2022).

    Article  CAS  Google Scholar 

  134. Luo, Y. et al. Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest Face Data. Ecol. Monogr. 71, 357–376 (2001).

    Google Scholar 

  135. Luo, Y. Terrestrial carbon–cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).

    Article  Google Scholar 

  136. Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).

    Article  Google Scholar 

  137. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  CAS  Google Scholar 

  138. Nottingham, A. T., Gloor, E., Bååth, E. & Meir, P. Soil carbon and microbes in the warming tropics. Funct. Ecol. 36, 1338–1354 (2022).

    Article  CAS  Google Scholar 

  139. Nottingham, A. et al. Microbial diversity declines in warmed tropical soil and respiration rise exceed predictions as communities adapt. Nat. Microbiol. 7, 1–11 (2022).

    Article  Google Scholar 

  140. Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. N. Phytol. 206, 614–636 (2015).

    Article  CAS  Google Scholar 

  141. Jagadish, S. V. K., Way, D. A. & Sharkey, T. D. Scaling plant responses to high temperature from cell to ecosystem. Plant Cell Environ. 44, 1987–1991 (2021).

    Article  CAS  Google Scholar 

  142. Luo, Y. et al. Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Glob. Biogeochem. Cycles 17, 1021 (2003).

    Article  Google Scholar 

  143. Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol. Biochem. 59, 72–85 (2013).

    Article  CAS  Google Scholar 

  144. Linn, D. M. & Doran, J. W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48, 1267–1272 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31988102), the National Key Technology R & D Program of China (2022YFF0802102) and the International Partnership Program of the Chinese Academy of Science (177GJHZ2022020BS).

Author information

Authors and Affiliations

Authors

Contributions

S.N. conceived the ideas and designed the study framework. S.N., W.C., L.L.L., C.A.S., J.X., M.H., K.F.P. and B.B.-L. led the writing of the manuscript. S.W. and J.W. assisted with data collation and figures. M.U.F.K., O.K.A., G.Y.-D., Y.H. and Y.L. helped to improve the writing of the paper and contributed to the revisions. All authors contributed to the drafts and revision.

Corresponding author

Correspondence to Shuli Niu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Mark Tjoelker, Holger Lange and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Apparent temperature response

The overall observed or measured changes in respiration rate as a function of temperature, including the effects of external factors such as soil water content, substrate and nutrient supply, which also vary with temperature.

Autotrophic respiration

Respiration from plant growth and maintenance.

Ecosystem respiration

The release of CO2 into the atmosphere from the collective metabolic processes of living organisms within an ecosystem.

Heterotrophic respiration

Respiration from the decomposition of litter and soil organic matter by soil microorganisms.

Intrinsic temperature response

The isolated effect of temperature on respiration rate, assuming all covarying factors remain constant. It is obtained from field or laboratory experiments in which all environmental factors except temperature are held constant and non-limiting.

Optimal temperature

Topt. The temperature at which the rate of respiration is maximized.

Q 10 factor

The factor by which the respiration rate changes for a 10° change in temperature, used as a measure of the relative temperature sensitivity.

Q 10 function

A strictly monotonic increasing function used to describe the temperature response of respiration as f(T) = aebT, in which T is the temperature, a is a fitted constant and b = ln(Q10)/10.

Temperature sensitivity

The change of respiration per unit change in temperature in the apparent or intrinsic temperature response of respiration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Chen, W., Liáng, L.L. et al. Temperature responses of ecosystem respiration. Nat Rev Earth Environ 5, 559–571 (2024). https://doi.org/10.1038/s43017-024-00569-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00569-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing