Abstract
Decarbonization is crucial to combat climate change. However, some decarbonization strategies could profoundly impact the nitrogen cycle. In this Review, we explore the nitrogen requirements of five major decarbonization strategies to reveal the complex interconnections between the carbon and nitrogen cycles and identify opportunities to enhance their mutually sustainable management. Some decarbonization strategies require substantial new nitrogen production, potentially leading to increased nutrient pollution and exacerbation of eutrophication in aquatic systems. For example, the strategy of substituting 44% of fossil fuels used in marine shipping with ammonia-based fuels could reduce CO2 emissions by up to 0.38 Gt CO2-eq yr−1 but would require a corresponding increase in new nitrogen synthesis of 212 Tg N yr−1. Similarly, using biofuels to achieve 0.7 ± 0.3 Gt CO2-eq yr−1 mitigation would require new nitrogen inputs to croplands of 21–42 Tg N yr−1. To avoid increasing nitrogen losses and exacerbating eutrophication, decarbonization efforts should be designed to provide carbon–nitrogen co-benefits. Reducing the use of carbon-intensive synthetic nitrogen fertilizer is one example that can simultaneously reduce both nitrogen inputs by 14 Tg N yr−1 and CO2 emissions by 0.04 (0.03–0.06) Gt CO2-eq yr−1. Future research should guide decarbonization efforts to mitigate eutrophication and enhance nitrogen use efficiency in agriculture, food and energy systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
All data are available in the article and its Supplementary information. The data and associated R scripts for Fig. 1 are openly available in Zenodo at https://zenodo.org/records/11097254 (ref. 176). The data for Fig. 5 is available in Supplementary Table 1.
References
Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).
Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science https://doi.org/10.1126/science.1259855 (2015).
IPCC. Climate Change 2021: The Physical Science Basis. Summary for Policymakers Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Dhakal, S. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 2 (Cambridge Univ. Press, 2022).
McKay, D. I. A. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357, 405–408 (2017).
Suddick, E. C., Whitney, P., Townsend, A. R. & Davidson, E. A. The role of nitrogen in climate change and the impacts of nitrogen-climate interactions in the United States: foreword to thematic issue. Biogeochemistry https://doi.org/10.1007/s10533-012-9795-z (2013).
Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).
Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. & Smith, S. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat. Energy 7, 1112–1114 (2022).
Glibert, P. M. Eutrophication, harmful algae and biodiversity — challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).
Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).
de Raús Maúre, E., Terauchi, G., Ishizaka, J., Clinton, N. & DeWitt, M. Globally consistent assessment of coastal eutrophication. Nat. Commun. https://doi.org/10.1038/s41467-021-26391-9 (2021).
Zhou, X. et al. Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions. Nat. Commun. https://doi.org/10.1038/s41467-024-46452-z (2024).
Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
Nabuurs, G.-J. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 7 (Cambridge Univ. Press, 2022).
Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).
Liang, X. et al. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2, 962–971 (2019).
Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).
David, F. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130164 (2013).
Ludemann, C. I. et al. A global FAOSTAT reference database of cropland nutrient budgets and nutrient use efficiency (1961-2020): nitrogen, phosphorus and potassium. Earth Syst. Sci. Data https://doi.org/10.5194/essd-16-525-2024 (2024).
Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles https://doi.org/10.1029/2018GB006060 (2020).
Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).
Guo, Y. et al. Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth 5, 268–282 (2022).
Scientific Panel on Responsible Plant Nutrition. Achieving nature-positive plant nutrition: fertilizers and biodiversity. SPRPN Issue Brief Issue Brief 02 (2021).
Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).
Kanter, D. R. et al. Improving the social cost of nitrous oxide. Nat. Clim. Change 11, 1008–1010 (2021).
Billen, G., Lassaletta, L. & Garnier, J. A biogeochemical view of the global agro-food system: nitrogen flows associated with protein production, consumption and trade. Glob. Food Secur. 3, 209–219 (2014).
Marconi, P. & Rosa, L. Global potential nitrogen recovery from anaerobic digestion of agricultural residues. Environ. Res. Lett. 19, 054050 (2024).
Bai, Z. et al. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population. Nat. Food 3, 152–160 (2022).
Spiegal, S. et al. Manuresheds: advancing nutrient recycling in US agriculture. Agric. Syst. 182, 102813 (2020).
Sabo, R. D., Clark, C. M. & Compton, J. E. Considerations when using nutrient inventories to prioritize water quality improvement efforts across the us. Environ. Res. Commun. 3, 045005 (2021).
Sabo, R. D. et al. Decadal shift in nitrogen inputs and fluxes across the contiguous United States: 2002–2012. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2019JG005110 (2019).
International Energy Agency. Ammonia technology roadmap (IEA, 2021).
Gao, Y. & Cabrera Serrenho, A. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nat. Food 4, 170–178 (2023).
Menegat, S., Ledo, A. & Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 12, 14490 (2022).
Rosa, L. & Gabrielli, P. Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions. Environ. Res. Lett. 18, 014008 (2023).
Lange, J. P. Towards circular carbo-chemicals-the metamorphosis of petrochemicals. Energy Environ. Sci. https://doi.org/10.1039/D1EE00532D (2021).
Gabrielli, P. et al. Net-zero emissions chemical industry in a world of limited resources. One Earth 6, 682–704 (2023).
Rosa, L. & Gabrielli, P. Achieving net-zero emissions in agriculture: a review. Environ. Res. Lett. 18, 063002 (2023).
Tonelli, D. et al. Global land and water limits to electrolytic hydrogen production using wind and solar resources. Nat. Commun. 14, 5532 (2023).
Arnaiz del Pozo, C. & Cloete, S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Convers. Manag. 255, 115312 (2022).
Cardoso, J. S. et al. Ammonia as an energy vector: current and future prospects for low-carbon fuel applications in internal combustion engines. J. Clean Prod. 296, 126562 (2021).
Chehade, G. & Dincer, I. Progress in green ammonia production as potential carbon-free fuel. Fuel 299, 120845 (2021).
Salmon, N. & Bañares-Alcántara, R. Green ammonia as a spatial energy vector: a review. Sustain. Energy Fuels https://doi.org/10.1039/D1SE00345C (2021).
Lee, B. et al. Pathways to a green ammonia future. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.2c01615 (2022).
Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).
Ashida, Y. et al. Catalytic nitrogen fixation using visible light energy. Nat. Commun. 13, 7263 (2022).
Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).
Tonelli, D., Rosa, L., Gabrielli, P., Parente, A. & Contino, F. Cost-competitive decentralized ammonia fertilizer production can increase food security. Nat. Food 5, 469–479 (2024).
Davidson, E. A. et al. Nutrients in the nexus. J. Environ. Stud. Sci. 6, 25–38 (2016).
Burney, J. A., Davis, S. J. & Lobell, D. B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl Acad. Sci. USA 107, 12052–12057 (2010).
Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).
Zhang, X., Mauzerall, D. L., Davidson, E. A., Kanter, D. R. & Cai, R. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture. J. Env. Qual. 44, 312–324 (2015).
Li, T. et al. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions. J. Clean Prod. 241, 118295 (2019).
Quan, Z. et al. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: a global analysis on field 15N tracer studies. Earths Future https://doi.org/10.1029/2020EF001514 (2021).
Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).
Cui, X. et al. The global potential for mitigating nitrous oxide emissions from croplands. One Earth 7, 401–420 (2024).
Zhao, S. et al. A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production. Nat. Food 3, 741–752 (2022).
Bhattacharjee, R. B., Singh, A. & Mukhopadhyay, S. N. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl. Microbiol. Biotechnol. 80, 199–209 (2008).
Mus, F. et al. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl. Environ. Microbiol. 82, 3698–3710 (2016).
Yan, D. et al. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. Plant Biotechnol. J. 20, 2135–2148 (2022).
Chadwick, D. et al. Manure management: implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 166–167, 514–531 (2011).
Zhang, X. & Lassaletta, L. Manure management benefits climate with limits. Nat. Food 3, 312–313 (2022).
Basso, B., Jones, J. W., Antle, J., Martinez-Feria, R. A. & Verma, B. Enabling circularity in grain production systems with novel technologies and policy. Agric. Syst. 193, 103244 (2021).
Billen, G. et al. Reshaping the European agro-food system and closing its nitrogen cycle: the potential of combining dietary change, agroecology, and circularity. One Earth 4, 839–850 (2021).
Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention (FAO, 2011).
Gustavsson, J., Cederberg, C., Sonesson, U. & Emanuelsson A. The methodology of the FAO study: “Global Food Losses and Food Waste — extent, causes and prevention” — FAO, 2011 (SIK, 2013).
Chatzimpiros, P. & Harchaoui, S. Sevenfold variation in global feeding capacity depends on diets, land use and nitrogen management. Nat. Food 4, 372–383 (2023).
Liu, Y. et al. Biofuels for a sustainable future. Cell 184, 1636–1647 (2021).
Lark, T. J. et al. Environmental outcomes of the US renewable fuel standard. Proc. Natl Acad. Sci. USA 119, e2101084119 (2022).
Scully, M. J., Norris, G. A., Alarcon Falconi, T. M. & MacIntosh, D. L. Carbon intensity of corn ethanol in the United States: state of the science. Environ. Res. Lett. 16, 043001 (2021).
Lee, R. A. & Lavoie, J. M. From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 3, 6–11 (2013).
Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008).
Delucchi, M. A. Impacts of biofuels on climate change, water use, and land use. Ann. N. Y. Acad. Sci. 1195, 28–45 (2010).
Jeswani, H. K., Chilvers, A. & Azapagic, A. Environmental sustainability of biofuels: a review: environmental sustainability of biofuels. Proc. Math. Phys. Eng. Sci. 476, 20200351 (2020).
US Environmental Protection Agency. Renewable Fuel Standard Program (RFS2) regulatory impact analysis (USEPA, 2010).
US Environmental Protection Agency. Model comparison exercise technical document (USEPA, 2023).
Shalaby, E. A. in Liquid, Gaseous and Solid Biofuels—Conversion Techniques (ed. Fang, Z.) (IntechOpen, 2013).
Shurson, G. C., Tilstra, H. & Kerr, B. J. in Biofuel Co-products as Livestock Feed — Opportunities and Challenges Ch. 3 (FAO, 2012).
Algren, M., Landis, A. E. & Costello, C. Estimating virtual nitrogen inputs to integrated U.S. corn ethanol and animal food systems. Environ. Sci. Technol. 55, 8393–8400 (2021).
Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).
Ates, A. M. & Liefert, O. Feed outlook: October 2023 (report no. FDS-23j) (USDA, 2023).
Nanda, S., Rana, R., Sarangi, P. K., Dalai, A. K. & Kozinski, J. A. in Recent Advancements Biofuels Bioenergy Utilization Ch. 1 (Springer, 2018).
Dragone, G., Fernandes, B., Vicente, A. & Teixeira, J. in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology Ch. 2 (Formatex Research Center, 2010).
Bhuneshwar & Vaishnav, A. The third-generation biofuel production from algae. AGRIALLIS 3, AL202190 (2021).
Nguyen, L. N. et al. Nutrient removal by algae-based wastewater treatment. Curr. Pollut. Rep. https://doi.org/10.1007/s40726-022-00230-x (2022).
Sacchi, R. et al. How to make climate-neutral aviation fly. Nat. Commun. 14, 3989 (2023).
Nishina, K. New ammonia demand: ammonia fuel as a decarbonization tool and a new source of reactive nitrogen. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac4b74 (2022).
International Energy Agency. Net zero roadmap: a global pathway to keep the 1.5 °C goal in reach (IEA, 2023).
Stolz, B., Held, M., Georges, G. & Boulouchos, K. Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe. Nat. Energy 7, 203–212 (2022).
Raucci C., McKinlay C. & Karan A. The future of maritime fuels: what you need to know (Lloyd’s Register, 2023).
Al-Breiki, M. & Bicer, Y. Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses. Int. J. Hydrog. Energy 45, 34927–34937 (2020).
Hauglustaine, D. et al. Climate benefit of a future hydrogen economy. Commun. Earth Environ. https://doi.org/10.1038/s43247-022-00626-z (2022).
Van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99–103 (2018).
Bertagni, M. B. et al. Minimizing the impacts of the ammonia economy on the nitrogen cycle and climate. Proc. Natl Acad. Sci. USA 120, e2311728120 (2023).
International Renewable Energy Agency & Ammonia Energy Association. Innovation outlook: renewable ammonia (IRENA-AEA, 2022).
Glenk, G., Holler, P. & Reichelstein, S. Advances in power-to-gas technologies: cost and conversion efficiency. SSRN Electron. J. https://doi.org/10.2139/ssrn.4300331 (2022).
Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).
Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).
Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).
Zheng, F. et al. Linking soil microbial community traits and organic carbon accumulation rate under long-term conservation tillage practices. Soil Tillage Res. 220, 105360 (2022).
Oldfield, E. E., Lavallee, J. M., Kyker-Snowman, E. & Sanderman, J. The need for knowledge transfer and communication among stakeholders in the voluntary carbon market. Biogeochemistry https://doi.org/10.1007/s10533-022-00950-8 (2022).
Davidson, E. A. Is the transactional carbon credit tail wagging the virtuous soil organic matter dog? Biogeochemistry https://doi.org/10.1007/s10533-022-00969-x (2022).
Kopittke, P. M., Dalal, R. C., Finn, D. & Menzies, N. W. Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural production. Glob. Chang Biol. 23, 2509–2519 (2017).
Schlesinger, W. H. Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry 161, 9–17 (2022).
Van Groenigen, J. W. et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b01427 (2017).
FAO. Food and Agriculture Data (FAOSTAT Online Database, accessed October 2023); https://www.fao.org/faostat/en/#data/EMN.
Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289, 1922–1925 (2000).
Via, S. Increasing soil health and sequestering carbon in agricultural soils: a natural climate solution (Izaak Walton League of America and National Wildlife Federation, 2021).
Davidson, E. A. & Firestone, M. K. Microbiological Basis of NO and N2O Production and Consumption in Soil 7–21 (Wiley, 1989).
Powlson, D. S. & Galdos, M. V. Challenging claimed benefits of soil carbon sequestration for mitigating climate change and increasing crop yields: heresy or sober realism? Glob. Chang Biol. 29, 2381–2383 (2023).
Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021).
Moinet, G. Y. K., Hijbeek, R., van Vuuren, D. P. & Giller, K. E. Carbon for soils, not soils for carbon. Glob. Chang. Biol. 29, 2384–2398 (2023).
de Blécourt, M., Gröngröft, A., Baumann, S. & Eschenbach, A. Losses in soil organic carbon stocks and soil fertility due to deforestation for low-input agriculture in semi-arid southern Africa. J. Arid Environ. 165, 88–96 (2019).
Hickman, J. E., Tully, K. L., Groffman, P. M., Diru, W. & Palm, C. A. A potential tipping point in tropical agriculture: avoiding rapid increases in nitrous oxide fluxes from agricultural intensification in Kenya. J. Geophys. Res. Biogeosci. https://doi.org/10.1002/2015JG002913 (2015).
Eagle, A. J. et al. Quantifying on-farm nitrous oxide emission reductions in food supply chains. Earths Future https://doi.org/10.1002/essoar.10502712.1 (2020).
Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).
Houghton, R. A. & Nassikas, A. A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Chang. Biol. 24, 350–359 (2018).
West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).
Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).
Rosa, L. et al. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 13, 104002 (2018).
Beltran-Pea, A., Rosa, L. & D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 15, 095004 (2020).
Rosa, L. Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environ. Res. Lett. 17, 063008 (2022).
Russo, T. A., Tully, K., Palm, C. & Neill, C. Leaching losses from Kenyan maize cropland receiving different rates of nitrogen fertilizer. Nutr. Cycl. Agroecosyst. 108, 195–209 (2017).
Kreidenweis, U. et al. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Glob. Chang. Biol. 24, 3199–3213 (2018).
Oenema, O., De Klein, C. & Alfaro, M. Intensification of grassland and forage use: driving forces and constraints. Crop Pasture Sci. 65, 524 (2014).
Paudel, S. et al. Intensification differentially affects the delivery of multiple ecosystem services in subtropical and temperate grasslands. Agric. Ecosyst. Environ. 348, 108398 (2023).
Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 3, 92–98 (2014).
Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl Acad. Sci. USA 115, 201717072 (2018).
Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).
Lam, S. K. et al. Mitigating soil greenhouse-gas emissions from land-use change in tropical peatlands. Front. Ecol. Environ. https://doi.org/10.1002/fee.2497 (2022).
Saha, D., Basso, B. & Robertson, G. P. Machine learning improves predictions of agricultural nitrous oxide (N2O) emissions from intensively managed cropping systems. Environ. Res. Lett. 16, 024004 (2021).
Akbarzadeh, Z., Maavara, T., Slowinski, S. & Van Cappellen, P. Effects of damming on river nitrogen fluxes: a global analysis. Glob. Biogeochem. Cycles https://doi.org/10.1029/2019GB006222 (2019).
Davidson, E. A. & Winiwarter, W. Urgent abatement of industrial sources of nitrous oxide. Nat. Clim. Change 13, 599–601 (2023).
Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1 (2020).
Spears, B. M., Brownlie, W. J., Cordell, D., Hermann, L. & Mogollón, J. M. Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector. Commun. Mater. 3, 14 (2022).
Sánchez, P. A. Tripling crop yields in tropical Africa. Nat. Geosci. 3, 299–300 (2010).
Zou, T., Zhang, X. & Davidson, E. A. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81–87 (2022).
Hirel, B., Tétu, T., Lea, P. J. & Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3, 1452–1485 (2011).
Gollehon, N., Kellog, R. & Moffitt, D. Estimates of recoverable and non-recoverable manure nutrients based on the census of agriculture — 2012 results (USDA, 2016).
Dinda, S. Environmental Kuznets curve hypothesis: a survey. Ecol. Econ. 49, 431–455 (2004).
Nepstad, D. et al. Frontier governance in Amazonia. Science 295, 629–631 (2002).
Northrup, D. L., Basso, B., Wang, M. Q., Morgan, C. L. S. & Benfey, P. N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc. Natl Acad. Sci. USA 118, e2022666118 (2021).
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).
Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).
Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).
Lim, T. et al. Increasing the value of animal manure for farmers (USDA, 2023).
Dou, Z., Toth, J. D. & Westendorf, M. L. Food waste for livestock feeding: feasibility, safety, and sustainability implications. Glob. Food Secur. 17, 154–161 (2018).
Bergtold, J. S., Ramsey, S., Maddy, L. & Williams, J. R. A review of economic considerations for cover crops as a conservation practice. Renew. Agr. Food Syst. 34, 1–15 (2019).
Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. https://doi.org/10.1038/s41598-019-42271-1 (2019).
Cammarano, D. et al. Modeling spatial and temporal optimal N fertilizer rates to reduce nitrate leaching while improving grain yield and quality in malting barley. Comput. Electron. Agric. 182, 105997 (2021).
Brilli, L. et al. Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci. Total Environ. 598, 445–470 (2017).
Del Grosso, S. J. et al. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Glob. Planet. Change 67, 44–50 (2009).
Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).
Lassaletta, L. et al. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11, 095007 (2016).
Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).
Doelman, J. C. et al. Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environ. Res. Lett. 17, 045004 (2022).
Kyle, P. et al. Assessing multi-dimensional impacts of achieving sustainability goals by projecting the sustainable agriculture matrix into the future. Earths Future https://doi.org/10.1029/2022EF003323 (2023).
Li, T. et al. A hierarchical framework for unpacking the nitrogen challenge. Earths Future https://doi.org/10.1029/2022EF002870 (2022).
Ma, L. et al. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 39, 1279–1289 (2010).
Nazari Sharabian, M., Ahmad, S. & Karakouzian, M. Climate change and eutrophication: a short review. Eng. Technol. Appl. Sci. Res. 8, 3668–3672 (2018).
Meerhoff, M. et al. Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back. Inland Waters https://doi.org/10.1080/20442041.2022.2029317 (2022).
Popp, J. et al. Biofuels and their co-products as livestock feed: global economic and environmental implications. Molecules 21, 285 (2016).
Baker, J., Murray, B., McCarl, B., Rose, S. & Schneck, J. Greenhouse gas emissions and nitrogen use in U.S. agriculture: historic trends, future projections, and biofuel policy impacts (Duke University Nicholas Institute for Environmental Policy Solutions, 2011).
Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model. Dev. https://doi.org/10.5194/gmd-10-2057-2017 (2017).
Hoesly, R. M. et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model. Dev. 11, 369–408 (2018).
Gütschow, J. et al. The PRIMAP-hist national historical emissions time series. Earth Syst. Sci. Data https://doi.org/10.5194/essd-2016-12 (2016).
Crippa, M. et al. GHG emissions of all world countries (Publications Office of the European Union, 2023).
Zhang, X. et al. Decarbonization in a eutrophic world. Zenodo https://zenodo.org/doi/10.5281/zenodo.11097253 (2024).
Acknowledgements
The authors acknowledge the National Natural Science Foundation (OISE-2330502, CNS-1739823, CBET-2047165 and CBET-2025826) and the Belmont Forum. The views expressed in this article are those of the author(s) and do not necessarily represent the views or policies of the US Environmental Protection Agency.
Author information
Authors and Affiliations
Contributions
X.Z. conceptualized the article. All authors contributed to the review of five decarbonization strategies (DS), with L.R. leading DS1, R.S. and W.Y. leading DS2, P.K. and H.N. leading DS3, E.A.D. leading DS4, and X.Z. leading DS5. X.Z., J.S.B. and W.Y. led the data synthesis and visualization. H.N. and E.A.D. led the development of Fig. 2 and its caption. All authors reviewed, revised and approved the final version of the draft.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Kazuya Nishina, Deli Chen and William Sagues for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
International Energy Agency: https://www.iea.org/reports/global-ev-outlook-2023
National Oceanic and Atmospheric Administration: https://gml.noaa.gov/ccgg/trends/data.html
Roundtable on Sustainable Palm Oil: https://rspo.org/
The Cool Down: https://www.thecooldown.com/green-tech/clean-ammonia-container-ship-norway/
United Nations Department of Economic and Social Affairs: https://sdgs.un.org/partnerships/4-1000-initiative-and-its-implementation
United Nations Framework Convention on Climate Change: https://unfccc.int/topics/land-use/workstreams/reddplus
US Department of Agriculture: https://www.ers.usda.gov/amber-waves/2019/october/dried-distillers-grains-ddgs-have-emerged-as-a-key-ethanol-coproduct/
US Department of Agriculture Economic Research Service: https://www.ers.usda.gov/data-products/u-s-bioenergy-statistics/
US Department of Energy: https://afdc.energy.gov/fuels/properties
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, X., Sabo, R., Rosa, L. et al. Nitrogen management during decarbonization. Nat Rev Earth Environ 5, 717–731 (2024). https://doi.org/10.1038/s43017-024-00586-2
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43017-024-00586-2
This article is cited by
-
Integrated irrigation and nitrogen optimization is a resource-efficient adaptation strategy for US maize and soybean production
Nature Food (2025)
-
Low-carbon ammonia production is essential for resilient and sustainable agriculture
Nature Food (2025)
-
Emerging opportunities and research questions for green ammonia adoption in agriculture and beyond
Nature Reviews Clean Technology (2025)
-
Nitrogen pollution in Brazil: a policy coherence analysis of current nitrogen-related regulations for a potential integrated approach
Environment, Development and Sustainability (2025)