Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nitrogen management during decarbonization

Abstract

Decarbonization is crucial to combat climate change. However, some decarbonization strategies could profoundly impact the nitrogen cycle. In this Review, we explore the nitrogen requirements of five major decarbonization strategies to reveal the complex interconnections between the carbon and nitrogen cycles and identify opportunities to enhance their mutually sustainable management. Some decarbonization strategies require substantial new nitrogen production, potentially leading to increased nutrient pollution and exacerbation of eutrophication in aquatic systems. For example, the strategy of substituting 44% of fossil fuels used in marine shipping with ammonia-based fuels could reduce CO2 emissions by up to 0.38 Gt CO2-eq yr−1 but would require a corresponding increase in new nitrogen synthesis of 212 Tg N yr−1. Similarly, using biofuels to achieve 0.7 ± 0.3 Gt CO2-eq yr−1 mitigation would require new nitrogen inputs to croplands of 21–42 Tg N yr−1. To avoid increasing nitrogen losses and exacerbating eutrophication, decarbonization efforts should be designed to provide carbon–nitrogen co-benefits. Reducing the use of carbon-intensive synthetic nitrogen fertilizer is one example that can simultaneously reduce both nitrogen inputs by 14 Tg N yr−1 and CO2 emissions by 0.04 (0.03–0.06) Gt CO2-eq yr−1. Future research should guide decarbonization efforts to mitigate eutrophication and enhance nitrogen use efficiency in agriculture, food and energy systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical trends of CO2 emissions and nitrogen (N) inputs from human activities.
Fig. 2: Interconnections and human perturbations of the carbon and nitrogen cycle.
Fig. 3: Decarbonization strategies (DS) and their impact on nitrogen and carbon cycling.
Fig. 4: The food–feed–fuel triangle.
Fig. 5: CO2 mitigation potential of each decarbonization strategy and the impact on N inputs per kg CO2 reduction.

Similar content being viewed by others

Data availability

All data are available in the article and its Supplementary information. The data and associated R scripts for Fig. 1 are openly available in Zenodo at https://zenodo.org/records/11097254 (ref. 176). The data for Fig. 5 is available in Supplementary Table 1.

References

  1. Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

    Article  Google Scholar 

  2. Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).

  3. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science https://doi.org/10.1126/science.1259855 (2015).

  4. IPCC. Climate Change 2021: The Physical Science Basis. Summary for Policymakers Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  5. Dhakal, S. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 2 (Cambridge Univ. Press, 2022).

  6. McKay, D. I. A. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  CAS  Google Scholar 

  7. Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357, 405–408 (2017).

    Article  CAS  Google Scholar 

  8. Suddick, E. C., Whitney, P., Townsend, A. R. & Davidson, E. A. The role of nitrogen in climate change and the impacts of nitrogen-climate interactions in the United States: foreword to thematic issue. Biogeochemistry https://doi.org/10.1007/s10533-012-9795-z (2013).

  9. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  CAS  Google Scholar 

  10. Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. & Smith, S. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat. Energy 7, 1112–1114 (2022).

    Article  CAS  Google Scholar 

  11. Glibert, P. M. Eutrophication, harmful algae and biodiversity — challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).

    Article  CAS  Google Scholar 

  12. Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).

    Article  CAS  Google Scholar 

  13. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article  Google Scholar 

  14. de Raús Maúre, E., Terauchi, G., Ishizaka, J., Clinton, N. & DeWitt, M. Globally consistent assessment of coastal eutrophication. Nat. Commun. https://doi.org/10.1038/s41467-021-26391-9 (2021).

  15. Zhou, X. et al. Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions. Nat. Commun. https://doi.org/10.1038/s41467-024-46452-z (2024).

  16. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  CAS  Google Scholar 

  17. Nabuurs, G.-J. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 7 (Cambridge Univ. Press, 2022).

  18. Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article  CAS  Google Scholar 

  19. Liang, X. et al. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2, 962–971 (2019).

    Article  Google Scholar 

  20. Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).

    Article  Google Scholar 

  21. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  22. David, F. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130164 (2013).

    Article  Google Scholar 

  23. Ludemann, C. I. et al. A global FAOSTAT reference database of cropland nutrient budgets and nutrient use efficiency (1961-2020): nitrogen, phosphorus and potassium. Earth Syst. Sci. Data https://doi.org/10.5194/essd-16-525-2024 (2024).

  24. Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles https://doi.org/10.1029/2018GB006060 (2020).

  25. Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).

    Article  CAS  Google Scholar 

  26. Guo, Y. et al. Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth 5, 268–282 (2022).

    Article  Google Scholar 

  27. Scientific Panel on Responsible Plant Nutrition. Achieving nature-positive plant nutrition: fertilizers and biodiversity. SPRPN Issue Brief Issue Brief 02 (2021).

  28. Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    Article  CAS  Google Scholar 

  29. Kanter, D. R. et al. Improving the social cost of nitrous oxide. Nat. Clim. Change 11, 1008–1010 (2021).

    Article  Google Scholar 

  30. Billen, G., Lassaletta, L. & Garnier, J. A biogeochemical view of the global agro-food system: nitrogen flows associated with protein production, consumption and trade. Glob. Food Secur. 3, 209–219 (2014).

    Article  Google Scholar 

  31. Marconi, P. & Rosa, L. Global potential nitrogen recovery from anaerobic digestion of agricultural residues. Environ. Res. Lett. 19, 054050 (2024).

    Article  Google Scholar 

  32. Bai, Z. et al. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population. Nat. Food 3, 152–160 (2022).

    Article  CAS  Google Scholar 

  33. Spiegal, S. et al. Manuresheds: advancing nutrient recycling in US agriculture. Agric. Syst. 182, 102813 (2020).

    Article  Google Scholar 

  34. Sabo, R. D., Clark, C. M. & Compton, J. E. Considerations when using nutrient inventories to prioritize water quality improvement efforts across the us. Environ. Res. Commun. 3, 045005 (2021).

    Article  Google Scholar 

  35. Sabo, R. D. et al. Decadal shift in nitrogen inputs and fluxes across the contiguous United States: 2002–2012. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2019JG005110 (2019).

  36. International Energy Agency. Ammonia technology roadmap (IEA, 2021).

  37. Gao, Y. & Cabrera Serrenho, A. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nat. Food 4, 170–178 (2023).

    Google Scholar 

  38. Menegat, S., Ledo, A. & Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 12, 14490 (2022).

    Article  CAS  Google Scholar 

  39. Rosa, L. & Gabrielli, P. Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions. Environ. Res. Lett. 18, 014008 (2023).

    Article  CAS  Google Scholar 

  40. Lange, J. P. Towards circular carbo-chemicals-the metamorphosis of petrochemicals. Energy Environ. Sci. https://doi.org/10.1039/D1EE00532D (2021).

  41. Gabrielli, P. et al. Net-zero emissions chemical industry in a world of limited resources. One Earth 6, 682–704 (2023).

    Article  Google Scholar 

  42. Rosa, L. & Gabrielli, P. Achieving net-zero emissions in agriculture: a review. Environ. Res. Lett. 18, 063002 (2023).

    Article  Google Scholar 

  43. Tonelli, D. et al. Global land and water limits to electrolytic hydrogen production using wind and solar resources. Nat. Commun. 14, 5532 (2023).

    Article  CAS  Google Scholar 

  44. Arnaiz del Pozo, C. & Cloete, S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Convers. Manag. 255, 115312 (2022).

    Article  CAS  Google Scholar 

  45. Cardoso, J. S. et al. Ammonia as an energy vector: current and future prospects for low-carbon fuel applications in internal combustion engines. J. Clean Prod. 296, 126562 (2021).

    Article  CAS  Google Scholar 

  46. Chehade, G. & Dincer, I. Progress in green ammonia production as potential carbon-free fuel. Fuel 299, 120845 (2021).

    Article  CAS  Google Scholar 

  47. Salmon, N. & Bañares-Alcántara, R. Green ammonia as a spatial energy vector: a review. Sustain. Energy Fuels https://doi.org/10.1039/D1SE00345C (2021).

  48. Lee, B. et al. Pathways to a green ammonia future. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.2c01615 (2022).

  49. Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).

    Article  CAS  Google Scholar 

  50. Ashida, Y. et al. Catalytic nitrogen fixation using visible light energy. Nat. Commun. 13, 7263 (2022).

    Article  CAS  Google Scholar 

  51. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  CAS  Google Scholar 

  52. Tonelli, D., Rosa, L., Gabrielli, P., Parente, A. & Contino, F. Cost-competitive decentralized ammonia fertilizer production can increase food security. Nat. Food 5, 469–479 (2024).

    Article  Google Scholar 

  53. Davidson, E. A. et al. Nutrients in the nexus. J. Environ. Stud. Sci. 6, 25–38 (2016).

    Article  Google Scholar 

  54. Burney, J. A., Davis, S. J. & Lobell, D. B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl Acad. Sci. USA 107, 12052–12057 (2010).

    Article  CAS  Google Scholar 

  55. Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article  Google Scholar 

  56. Zhang, X., Mauzerall, D. L., Davidson, E. A., Kanter, D. R. & Cai, R. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture. J. Env. Qual. 44, 312–324 (2015).

    Article  CAS  Google Scholar 

  57. Li, T. et al. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions. J. Clean Prod. 241, 118295 (2019).

    Article  CAS  Google Scholar 

  58. Quan, Z. et al. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: a global analysis on field 15N tracer studies. Earths Future https://doi.org/10.1029/2020EF001514 (2021).

  59. Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).

    Article  CAS  Google Scholar 

  60. Cui, X. et al. The global potential for mitigating nitrous oxide emissions from croplands. One Earth 7, 401–420 (2024).

    Article  Google Scholar 

  61. Zhao, S. et al. A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production. Nat. Food 3, 741–752 (2022).

    Article  CAS  Google Scholar 

  62. Bhattacharjee, R. B., Singh, A. & Mukhopadhyay, S. N. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl. Microbiol. Biotechnol. 80, 199–209 (2008).

    Article  CAS  Google Scholar 

  63. Mus, F. et al. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl. Environ. Microbiol. 82, 3698–3710 (2016).

    Article  CAS  Google Scholar 

  64. Yan, D. et al. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. Plant Biotechnol. J. 20, 2135–2148 (2022).

    Article  CAS  Google Scholar 

  65. Chadwick, D. et al. Manure management: implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 166167, 514–531 (2011).

    Article  Google Scholar 

  66. Zhang, X. & Lassaletta, L. Manure management benefits climate with limits. Nat. Food 3, 312–313 (2022).

    Article  CAS  Google Scholar 

  67. Basso, B., Jones, J. W., Antle, J., Martinez-Feria, R. A. & Verma, B. Enabling circularity in grain production systems with novel technologies and policy. Agric. Syst. 193, 103244 (2021).

    Article  Google Scholar 

  68. Billen, G. et al. Reshaping the European agro-food system and closing its nitrogen cycle: the potential of combining dietary change, agroecology, and circularity. One Earth 4, 839–850 (2021).

    Article  Google Scholar 

  69. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention (FAO, 2011).

  70. Gustavsson, J., Cederberg, C., Sonesson, U. & Emanuelsson A. The methodology of the FAO study: “Global Food Losses and Food Waste — extent, causes and prevention” — FAO, 2011 (SIK, 2013).

  71. Chatzimpiros, P. & Harchaoui, S. Sevenfold variation in global feeding capacity depends on diets, land use and nitrogen management. Nat. Food 4, 372–383 (2023).

    Article  CAS  Google Scholar 

  72. Liu, Y. et al. Biofuels for a sustainable future. Cell 184, 1636–1647 (2021).

    Article  CAS  Google Scholar 

  73. Lark, T. J. et al. Environmental outcomes of the US renewable fuel standard. Proc. Natl Acad. Sci. USA 119, e2101084119 (2022).

    Article  CAS  Google Scholar 

  74. Scully, M. J., Norris, G. A., Alarcon Falconi, T. M. & MacIntosh, D. L. Carbon intensity of corn ethanol in the United States: state of the science. Environ. Res. Lett. 16, 043001 (2021).

    Article  CAS  Google Scholar 

  75. Lee, R. A. & Lavoie, J. M. From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 3, 6–11 (2013).

    Article  Google Scholar 

  76. Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008).

    Article  CAS  Google Scholar 

  77. Delucchi, M. A. Impacts of biofuels on climate change, water use, and land use. Ann. N. Y. Acad. Sci. 1195, 28–45 (2010).

    Article  CAS  Google Scholar 

  78. Jeswani, H. K., Chilvers, A. & Azapagic, A. Environmental sustainability of biofuels: a review: environmental sustainability of biofuels. Proc. Math. Phys. Eng. Sci. 476, 20200351 (2020).

    Google Scholar 

  79. US Environmental Protection Agency. Renewable Fuel Standard Program (RFS2) regulatory impact analysis (USEPA, 2010).

  80. US Environmental Protection Agency. Model comparison exercise technical document (USEPA, 2023).

  81. Shalaby, E. A. in Liquid, Gaseous and Solid Biofuels—Conversion Techniques (ed. Fang, Z.) (IntechOpen, 2013).

  82. Shurson, G. C., Tilstra, H. & Kerr, B. J. in Biofuel Co-products as Livestock FeedOpportunities and Challenges Ch. 3 (FAO, 2012).

  83. Algren, M., Landis, A. E. & Costello, C. Estimating virtual nitrogen inputs to integrated U.S. corn ethanol and animal food systems. Environ. Sci. Technol. 55, 8393–8400 (2021).

    Article  CAS  Google Scholar 

  84. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

    Article  Google Scholar 

  85. Ates, A. M. & Liefert, O. Feed outlook: October 2023 (report no. FDS-23j) (USDA, 2023).

  86. Nanda, S., Rana, R., Sarangi, P. K., Dalai, A. K. & Kozinski, J. A. in Recent Advancements Biofuels Bioenergy Utilization Ch. 1 (Springer, 2018).

  87. Dragone, G., Fernandes, B., Vicente, A. & Teixeira, J. in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology Ch. 2 (Formatex Research Center, 2010).

  88. Bhuneshwar & Vaishnav, A. The third-generation biofuel production from algae. AGRIALLIS 3, AL202190 (2021).

  89. Nguyen, L. N. et al. Nutrient removal by algae-based wastewater treatment. Curr. Pollut. Rep. https://doi.org/10.1007/s40726-022-00230-x (2022).

  90. Sacchi, R. et al. How to make climate-neutral aviation fly. Nat. Commun. 14, 3989 (2023).

    Article  CAS  Google Scholar 

  91. Nishina, K. New ammonia demand: ammonia fuel as a decarbonization tool and a new source of reactive nitrogen. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac4b74 (2022).

  92. International Energy Agency. Net zero roadmap: a global pathway to keep the 1.5 °C goal in reach (IEA, 2023).

  93. Stolz, B., Held, M., Georges, G. & Boulouchos, K. Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe. Nat. Energy 7, 203–212 (2022).

    Article  Google Scholar 

  94. Raucci C., McKinlay C. & Karan A. The future of maritime fuels: what you need to know (Lloyd’s Register, 2023).

  95. Al-Breiki, M. & Bicer, Y. Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses. Int. J. Hydrog. Energy 45, 34927–34937 (2020).

    Article  CAS  Google Scholar 

  96. Hauglustaine, D. et al. Climate benefit of a future hydrogen economy. Commun. Earth Environ. https://doi.org/10.1038/s43247-022-00626-z (2022).

  97. Van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99–103 (2018).

    Article  Google Scholar 

  98. Bertagni, M. B. et al. Minimizing the impacts of the ammonia economy on the nitrogen cycle and climate. Proc. Natl Acad. Sci. USA 120, e2311728120 (2023).

    Article  CAS  Google Scholar 

  99. International Renewable Energy Agency & Ammonia Energy Association. Innovation outlook: renewable ammonia (IRENA-AEA, 2022).

  100. Glenk, G., Holler, P. & Reichelstein, S. Advances in power-to-gas technologies: cost and conversion efficiency. SSRN Electron. J. https://doi.org/10.2139/ssrn.4300331 (2022).

    Article  Google Scholar 

  101. Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

    Article  Google Scholar 

  102. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  103. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  Google Scholar 

  104. Zheng, F. et al. Linking soil microbial community traits and organic carbon accumulation rate under long-term conservation tillage practices. Soil Tillage Res. 220, 105360 (2022).

    Article  Google Scholar 

  105. Oldfield, E. E., Lavallee, J. M., Kyker-Snowman, E. & Sanderman, J. The need for knowledge transfer and communication among stakeholders in the voluntary carbon market. Biogeochemistry https://doi.org/10.1007/s10533-022-00950-8 (2022).

  106. Davidson, E. A. Is the transactional carbon credit tail wagging the virtuous soil organic matter dog? Biogeochemistry https://doi.org/10.1007/s10533-022-00969-x (2022).

  107. Kopittke, P. M., Dalal, R. C., Finn, D. & Menzies, N. W. Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural production. Glob. Chang Biol. 23, 2509–2519 (2017).

    Article  Google Scholar 

  108. Schlesinger, W. H. Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry 161, 9–17 (2022).

    Article  Google Scholar 

  109. Van Groenigen, J. W. et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b01427 (2017).

  110. FAO. Food and Agriculture Data (FAOSTAT Online Database, accessed October 2023); https://www.fao.org/faostat/en/#data/EMN.

  111. Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Article  Google Scholar 

  112. Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289, 1922–1925 (2000).

    Article  CAS  Google Scholar 

  113. Via, S. Increasing soil health and sequestering carbon in agricultural soils: a natural climate solution (Izaak Walton League of America and National Wildlife Federation, 2021).

  114. Davidson, E. A. & Firestone, M. K. Microbiological Basis of NO and N2O Production and Consumption in Soil 7–21 (Wiley, 1989).

  115. Powlson, D. S. & Galdos, M. V. Challenging claimed benefits of soil carbon sequestration for mitigating climate change and increasing crop yields: heresy or sober realism? Glob. Chang Biol. 29, 2381–2383 (2023).

    Article  CAS  Google Scholar 

  116. Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021).

    Article  CAS  Google Scholar 

  117. Moinet, G. Y. K., Hijbeek, R., van Vuuren, D. P. & Giller, K. E. Carbon for soils, not soils for carbon. Glob. Chang. Biol. 29, 2384–2398 (2023).

    Article  CAS  Google Scholar 

  118. de Blécourt, M., Gröngröft, A., Baumann, S. & Eschenbach, A. Losses in soil organic carbon stocks and soil fertility due to deforestation for low-input agriculture in semi-arid southern Africa. J. Arid Environ. 165, 88–96 (2019).

    Article  Google Scholar 

  119. Hickman, J. E., Tully, K. L., Groffman, P. M., Diru, W. & Palm, C. A. A potential tipping point in tropical agriculture: avoiding rapid increases in nitrous oxide fluxes from agricultural intensification in Kenya. J. Geophys. Res. Biogeosci. https://doi.org/10.1002/2015JG002913 (2015).

  120. Eagle, A. J. et al. Quantifying on-farm nitrous oxide emission reductions in food supply chains. Earths Future https://doi.org/10.1002/essoar.10502712.1 (2020).

  121. Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).

    Article  CAS  Google Scholar 

  122. Houghton, R. A. & Nassikas, A. A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Chang. Biol. 24, 350–359 (2018).

    Article  Google Scholar 

  123. West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    Article  CAS  Google Scholar 

  124. Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).

    Article  CAS  Google Scholar 

  125. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  CAS  Google Scholar 

  126. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  CAS  Google Scholar 

  127. Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    Article  Google Scholar 

  128. Rosa, L. et al. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 13, 104002 (2018).

    Article  Google Scholar 

  129. Beltran-Pea, A., Rosa, L. & D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 15, 095004 (2020).

    Article  Google Scholar 

  130. Rosa, L. Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environ. Res. Lett. 17, 063008 (2022).

    Article  Google Scholar 

  131. Russo, T. A., Tully, K., Palm, C. & Neill, C. Leaching losses from Kenyan maize cropland receiving different rates of nitrogen fertilizer. Nutr. Cycl. Agroecosyst. 108, 195–209 (2017).

    Article  CAS  Google Scholar 

  132. Kreidenweis, U. et al. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Glob. Chang. Biol. 24, 3199–3213 (2018).

    Article  Google Scholar 

  133. Oenema, O., De Klein, C. & Alfaro, M. Intensification of grassland and forage use: driving forces and constraints. Crop Pasture Sci. 65, 524 (2014).

    Article  CAS  Google Scholar 

  134. Paudel, S. et al. Intensification differentially affects the delivery of multiple ecosystem services in subtropical and temperate grasslands. Agric. Ecosyst. Environ. 348, 108398 (2023).

    Article  Google Scholar 

  135. Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 3, 92–98 (2014).

    Article  Google Scholar 

  136. Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl Acad. Sci. USA 115, 201717072 (2018).

    Article  Google Scholar 

  137. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    Article  CAS  Google Scholar 

  138. Lam, S. K. et al. Mitigating soil greenhouse-gas emissions from land-use change in tropical peatlands. Front. Ecol. Environ. https://doi.org/10.1002/fee.2497 (2022).

  139. Saha, D., Basso, B. & Robertson, G. P. Machine learning improves predictions of agricultural nitrous oxide (N2O) emissions from intensively managed cropping systems. Environ. Res. Lett. 16, 024004 (2021).

    Article  CAS  Google Scholar 

  140. Akbarzadeh, Z., Maavara, T., Slowinski, S. & Van Cappellen, P. Effects of damming on river nitrogen fluxes: a global analysis. Glob. Biogeochem. Cycles https://doi.org/10.1029/2019GB006222 (2019).

  141. Davidson, E. A. & Winiwarter, W. Urgent abatement of industrial sources of nitrous oxide. Nat. Clim. Change 13, 599–601 (2023).

    Article  Google Scholar 

  142. Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1 (2020).

  143. Spears, B. M., Brownlie, W. J., Cordell, D., Hermann, L. & Mogollón, J. M. Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector. Commun. Mater. 3, 14 (2022).

    Article  Google Scholar 

  144. Sánchez, P. A. Tripling crop yields in tropical Africa. Nat. Geosci. 3, 299–300 (2010).

    Article  Google Scholar 

  145. Zou, T., Zhang, X. & Davidson, E. A. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81–87 (2022).

    Article  CAS  Google Scholar 

  146. Hirel, B., Tétu, T., Lea, P. J. & Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3, 1452–1485 (2011).

    Article  CAS  Google Scholar 

  147. Gollehon, N., Kellog, R. & Moffitt, D. Estimates of recoverable and non-recoverable manure nutrients based on the census of agriculture — 2012 results (USDA, 2016).

  148. Dinda, S. Environmental Kuznets curve hypothesis: a survey. Ecol. Econ. 49, 431–455 (2004).

    Article  Google Scholar 

  149. Nepstad, D. et al. Frontier governance in Amazonia. Science 295, 629–631 (2002).

    Article  CAS  Google Scholar 

  150. Northrup, D. L., Basso, B., Wang, M. Q., Morgan, C. L. S. & Benfey, P. N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc. Natl Acad. Sci. USA 118, e2022666118 (2021).

    Article  CAS  Google Scholar 

  151. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  CAS  Google Scholar 

  152. Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).

    Article  Google Scholar 

  153. Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).

    Article  Google Scholar 

  154. Lim, T. et al. Increasing the value of animal manure for farmers (USDA, 2023).

  155. Dou, Z., Toth, J. D. & Westendorf, M. L. Food waste for livestock feeding: feasibility, safety, and sustainability implications. Glob. Food Secur. 17, 154–161 (2018).

    Article  Google Scholar 

  156. Bergtold, J. S., Ramsey, S., Maddy, L. & Williams, J. R. A review of economic considerations for cover crops as a conservation practice. Renew. Agr. Food Syst. 34, 1–15 (2019).

    Article  Google Scholar 

  157. Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. https://doi.org/10.1038/s41598-019-42271-1 (2019).

  158. Cammarano, D. et al. Modeling spatial and temporal optimal N fertilizer rates to reduce nitrate leaching while improving grain yield and quality in malting barley. Comput. Electron. Agric. 182, 105997 (2021).

    Article  Google Scholar 

  159. Brilli, L. et al. Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci. Total Environ. 598, 445–470 (2017).

    Article  CAS  Google Scholar 

  160. Del Grosso, S. J. et al. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Glob. Planet. Change 67, 44–50 (2009).

    Article  Google Scholar 

  161. Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).

    Article  CAS  Google Scholar 

  162. Lassaletta, L. et al. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11, 095007 (2016).

    Article  Google Scholar 

  163. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    Article  CAS  Google Scholar 

  164. Doelman, J. C. et al. Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environ. Res. Lett. 17, 045004 (2022).

    Article  Google Scholar 

  165. Kyle, P. et al. Assessing multi-dimensional impacts of achieving sustainability goals by projecting the sustainable agriculture matrix into the future. Earths Future https://doi.org/10.1029/2022EF003323 (2023).

  166. Li, T. et al. A hierarchical framework for unpacking the nitrogen challenge. Earths Future https://doi.org/10.1029/2022EF002870 (2022).

  167. Ma, L. et al. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 39, 1279–1289 (2010).

    Article  CAS  Google Scholar 

  168. Nazari Sharabian, M., Ahmad, S. & Karakouzian, M. Climate change and eutrophication: a short review. Eng. Technol. Appl. Sci. Res. 8, 3668–3672 (2018).

    Article  Google Scholar 

  169. Meerhoff, M. et al. Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back. Inland Waters https://doi.org/10.1080/20442041.2022.2029317 (2022).

  170. Popp, J. et al. Biofuels and their co-products as livestock feed: global economic and environmental implications. Molecules 21, 285 (2016).

    Article  Google Scholar 

  171. Baker, J., Murray, B., McCarl, B., Rose, S. & Schneck, J. Greenhouse gas emissions and nitrogen use in U.S. agriculture: historic trends, future projections, and biofuel policy impacts (Duke University Nicholas Institute for Environmental Policy Solutions, 2011).

  172. Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model. Dev. https://doi.org/10.5194/gmd-10-2057-2017 (2017).

  173. Hoesly, R. M. et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model. Dev. 11, 369–408 (2018).

  174. Gütschow, J. et al. The PRIMAP-hist national historical emissions time series. Earth Syst. Sci. Data https://doi.org/10.5194/essd-2016-12 (2016).

  175. Crippa, M. et al. GHG emissions of all world countries (Publications Office of the European Union, 2023).

  176. Zhang, X. et al. Decarbonization in a eutrophic world. Zenodo https://zenodo.org/doi/10.5281/zenodo.11097253 (2024).

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation (OISE-2330502, CNS-1739823, CBET-2047165 and CBET-2025826) and the Belmont Forum. The views expressed in this article are those of the author(s) and do not necessarily represent the views or policies of the US Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceptualized the article. All authors contributed to the review of five decarbonization strategies (DS), with L.R. leading DS1, R.S. and W.Y. leading DS2, P.K. and H.N. leading DS3, E.A.D. leading DS4, and X.Z. leading DS5. X.Z., J.S.B. and W.Y. led the data synthesis and visualization. H.N. and E.A.D. led the development of Fig. 2 and its caption. All authors reviewed, revised and approved the final version of the draft.

Corresponding author

Correspondence to Xin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Kazuya Nishina, Deli Chen and William Sagues for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

International Energy Agency: https://www.iea.org/reports/global-ev-outlook-2023

National Oceanic and Atmospheric Administration: https://gml.noaa.gov/ccgg/trends/data.html

Nutrien: https://www.nutrien.com/investors/news-releases/2022-nutrien-announces-intention-build-worlds-largest-clean-ammonia

Roundtable on Sustainable Palm Oil: https://rspo.org/

The Cool Down: https://www.thecooldown.com/green-tech/clean-ammonia-container-ship-norway/

United Nations Department of Economic and Social Affairs: https://sdgs.un.org/partnerships/4-1000-initiative-and-its-implementation

United Nations Framework Convention on Climate Change: https://unfccc.int/topics/land-use/workstreams/reddplus

US Department of Agriculture: https://www.ers.usda.gov/amber-waves/2019/october/dried-distillers-grains-ddgs-have-emerged-as-a-key-ethanol-coproduct/

US Department of Agriculture Economic Research Service: https://www.ers.usda.gov/data-products/u-s-bioenergy-statistics/

US Department of Energy: https://afdc.energy.gov/fuels/properties

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Sabo, R., Rosa, L. et al. Nitrogen management during decarbonization. Nat Rev Earth Environ 5, 717–731 (2024). https://doi.org/10.1038/s43017-024-00586-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00586-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology