Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into tectonic hazards since the 2004 Indian Ocean earthquake and tsunami

Abstract

In 2004, an earthquake of moment magnitude Mw 9.1–9.3 ruptured over 1,500 km of the Sunda megathrust under the Indian Ocean, producing a devastating tsunami and resulting in 230,000 fatalities and the displacement of nearly 1.7 million people. In this Review, we explore the lessons learned since the 2004 event, including advances in understanding Sumatran subduction-zone hazards and related disaster preparedness and risk communication. The 2004 earthquake triggered a series of aftershocks, including over 6,000 Mw ≥ 4.5 earthquakes in the first 10 years, two of which were Mw 8.6 and Mw 8.4 events, that ruptured much of the remaining Sumatran subduction interface. Ruptures of the Sumatran subduction interface are often bounded by persistent barriers associated with structural features, including fracture zones and seamounts, on the subducting oceanic plate. Although the entire plate boundary zone should always be prepared for earthquakes and tsunamis, the seismic gap in the Mentawai Islands highlights the need for enhanced preparedness in this region. The lack of tsunami early warning systems in the Indian Ocean before the 2004 tsunami prompted international efforts to help coastal populations protect themselves, which remain ongoing. Future communication efforts should ensure the public understands that no warning system is perfect, and it is safest to evacuate when there is any indication of a potential tsunami.

Key points

  • The 2004 Indian Ocean rupture had the longest length (1,500–1,600 km) and duration (~10 minutes) of any such recorded event. The resulting tsunami had far-reaching global impacts, extending beyond the local communities in Indonesia and surrounding regions.

  • Earthquake ruptures of the Sumatran subduction interface following the 2004 event have occurred through stress transfer by the mainshocks or their postseismic responses, including viscoelastic relaxation, afterslip and/or poroelastic rebound.

  • Ongoing continental-scale postseismic deformation, following three MW ≥ 8 Sumatran subduction earthquakes that occurred since 2004, is caused by long-lasting mantle relaxation.

  • Slow slip events occur along the Sunda megathrust, spanning decades, indicating the need for multidecadal observations to better understand the mechanisms of such events.

  • Increased understanding of partitioning of the plate boundary deformation along the Sumatran subduction zone since 2004 has revealed the importance of distributed shearing across the Wharton Basin and the Sumatran Fault Zone.

  • Advancements in earthquake and tsunami science since 2004 have prompted improvements in early warning systems and risk communication. However, challenges persist especially at locations near the tsunami source, requiring improved risk communication and integration of local knowledge to enhance community resilience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence of large-to-great earthquakes around the Andaman and Sumatran subduction zone.
Fig. 2: Regional and global impacts of the 2004 Indian Ocean earthquake and tsunami.
Fig. 3: Segmentation and rupture history of the Sunda megathrust.
Fig. 4: Fatalities across the Indian Ocean caused by the 2004 earthquake and tsunami.

Similar content being viewed by others

References

  1. Lay, T. et al. The great Sumatra–Andaman earthquake of 26 December 2004. Science 308, 1127–1133 (2005).

    Article  CAS  Google Scholar 

  2. Shearer, P. & Bürgmann, R. Lessons learned from the 2004 Sumatra–Andaman megathrust rupture. Annu. Rev. Earth Planet. Sci. 38, 103–131 (2010).

    Article  CAS  Google Scholar 

  3. Lavigne, F. et al. Reconstruction of tsunami inland propagation on December 26, 2004 in Banda Aceh, Indonesia, through field investigations. Pure Appl. Geophys. 166, 259–281 (2009).

    Article  Google Scholar 

  4. Telford, J. & Cosgrave, J. Joint evaluation of the international response to the Indian Ocean tsunami: synthesis report (Tsunami Evaluation Coalition, 2006).

  5. Newcomb, K. R. & McCann, W. R. Seismic history and seismotectonics of the Sunda arc. J. Geophys. Res. 92, 421–439 (1987).

    Article  Google Scholar 

  6. Zachariasen, J., Sieh, K., Taylor, F. W., Edwards, R. L. & Hantoro, W. S. Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: evidence from coral microatolls. J. Geophys. Res. 104, 895–919 (1999).

    Article  Google Scholar 

  7. Ruff, L. & Kanamori, H. Seismicity and the subduction process. Phys. Earth Planet. Inter. 23, 240–252 (1980).

    Article  Google Scholar 

  8. Kanamori, H. Lessons from the 2004 Sumatra–Andaman earthquake. Phil. Trans. R. Soc. A 364, 1927–1945 (2006).

    Article  Google Scholar 

  9. McCaffrey, R. Global frequency of magnitude 9 earthquakes. Geology 36, 263–266 (2008).

    Article  Google Scholar 

  10. Stein, S. & Okal, E. A. Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull. Seismol. Soc. Am. 97, S279–S295 (2007).

    Article  Google Scholar 

  11. Feng, L. et al. A unified GPS-based earthquake catalog for the Sumatran plate boundary between 2002 and 2013. J. Geophys. Res. Solid Earth 120, 3566–3598 (2015).

    Article  Google Scholar 

  12. Morgan, P. M., Feng, L., Meltzner, A. J., Mallick, R. & Hill, E. M. Diverse slip behavior of the Banyak islands subsegment of the Sunda megathrust in Sumatra, Indonesia. J. Geophys. Res. Solid Earth 125, e2020JB020011 (2020).

    Article  Google Scholar 

  13. Satake, K. Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian Ocean tsunami. Geosci. Lett. 1, 15 (2014).

    Article  Google Scholar 

  14. Cassidy, J. F. The 2004 Sumatra earthquake and tsunami: lessons learned in subduction zone science and emergency management for the cascadia subduction zone. Pure Appl. Geophys. 172, 835–847 (2015).

    Article  Google Scholar 

  15. Suppasri, A. et al. A decade after the 2004 Indian Ocean tsunami: the progress in disaster preparedness and future challenges in Indonesia, Sri Lanka, Thailand and the Maldives. Pure Appl. Geophys. 172, 3313–3341 (2015).

    Article  Google Scholar 

  16. Ishii, M., Shearer, P. M., Houston, H. & Vidale, J. E. Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature 435, 933–936 (2005).

    Article  CAS  Google Scholar 

  17. Vigny, C. et al. Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia. Nature 436, 201–206 (2005).

    Article  CAS  Google Scholar 

  18. Chlieh, M. et al. Coseismic slip and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004. Bull. Seismol. Soc. Am. 97, S152–S173 (2007).

    Article  Google Scholar 

  19. Meltzner, A. J. et al. Uplift and subsidence associated with the great Aceh–Andaman earthquake of 2004. J. Geophys. Res. Solid Earth 111, B02407 (2006).

    Article  Google Scholar 

  20. Subarya, C. et al. Plate-boundary deformation associated with the great Sumatra–Andaman earthquake. Nature 440, 46–51 (2006).

    Article  CAS  Google Scholar 

  21. Piatanesi, A. & Lorito, S. Rupture process of the 2004 Sumatra–Andaman earthquake from tsunami waveform inversion. Bull. Seismol. Soc. Am. 97, S223–S231 (2007).

    Article  Google Scholar 

  22. Fujii, Y., Satake, K., Watada, S. & Ho, T.-C. Re-examination of slip distribution of the 2004 Sumatra–Andaman earthquake (Mw 9.2) by the inversion of tsunami data using Green’s functions corrected for compressible seawater over the elastic earth. Pure Appl. Geophys. 178, 4777–4796 (2021).

    Article  Google Scholar 

  23. Ammon, C. J. et al. Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308, 1133–1139 (2005).

    Article  CAS  Google Scholar 

  24. Ni, S., Kanamori, H. & Helmberger, D. Energy radiation from the Sumatra earthquake. Nature 434, 582–582 (2005).

    Article  CAS  Google Scholar 

  25. Blewitt, G. et al. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophys. Res. Lett. 33, L11309 (2006).

    Article  Google Scholar 

  26. Kerr, R. A. Failure to gauge the quake crippled the warning effort. Science 307, 201–201 (2005).

    Article  CAS  Google Scholar 

  27. Park, J. et al. Global seismographic network records the Great Sumatra–Andaman earthquake. Eos Trans. Am. Geophys. Union 86, 57–61 (2005).

    Article  Google Scholar 

  28. Stein, S. & Okal, E. A. Speed and size of the Sumatra earthquake. Nature 434, 581–582 (2005).

    Article  CAS  Google Scholar 

  29. Tsai, V. C., Nettles, M., Ekström, G. & Dziewonski, A. M. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys. Res. Lett. 32, L17304 (2005).

    Article  Google Scholar 

  30. Duputel, Z. et al. The 2012 Sumatra great earthquake sequence. Earth Planet. Sci. Lett. 351–352, 247–257 (2012).

    Article  Google Scholar 

  31. Duputel, Z. & Rivera, L. Long-period analysis of the 2016 Kaikoura earthquake. Phys. Earth Planet. Inter. 265, 62–66 (2017).

    Article  Google Scholar 

  32. Shi, Q., Wei, S. & Chen, M. An MCMC multiple point sources inversion scheme and its application to the 2016 Kumamoto Mw 6.2 earthquake. Geophys. J. Int. 215, 737–752 (2018).

    Article  Google Scholar 

  33. Kanamori, H. & Rivera, L. Source inversion of W phase: speeding up seismic tsunami warning. Geophys. J. Int. 175, 222–238 (2008).

    Article  Google Scholar 

  34. Hayes, G. P., Rivera, L. & Kanamori, H. Source inversion of the W-phase: real-time implementation and extension to low magnitudes. Seismol. Res. Lett. 80, 817–822 (2009).

    Article  Google Scholar 

  35. Duputel, Z., Rivera, L., Kanamori, H. & Hayes, G. W phase source inversion for moderate to large earthquakes (1990-2010): W phase inversion for Mw ≥ 6.0 earthquakes. Geophys. J. Int. 189, 1125–1147 (2012).

    Article  Google Scholar 

  36. Duputel, Z. et al. Real-time W phase inversion during the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63, 535–539 (2011).

    Article  Google Scholar 

  37. Kiser, E. & Ishii, M. The 2010 Mw 8.8 Chile earthquake: triggering on multiple segments and frequency-dependent rupture behavior. Geophys. Res. Lett. 38, L07301 (2011).

    Google Scholar 

  38. Meng, L., Inbal, A. & Ampuero, J.-P. A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L00G07 (2011).

    Google Scholar 

  39. Yao, H., Gerstoft, P., Shearer, P. M. & Mecklenbräuker, C. Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: frequency-dependent rupture modes. Geophys. Res. Lett. 38, L20310 (2011).

    Article  Google Scholar 

  40. Lay, T. & Kanamori, H. Insights from the great 2011 Japan earthquake. Phys. Today 64, 33–39 (2011).

    Article  Google Scholar 

  41. Yao, H., Shearer, P. M. & Gerstoft, P. Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures. Proc. Natl Acad. Sci. USA 110, 4512–4517 (2013).

    Article  CAS  Google Scholar 

  42. Ye, L., Lay, T., Kanamori, H. & Rivera, L. Rupture characteristics of major and great (Mw ≥ 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. J. Geophys. Res. Solid Earth 121, 826–844 (2016).

    Article  Google Scholar 

  43. Lay, T. et al. Depth‐varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. Solid Earth 117, B04311 (2012).

    Article  Google Scholar 

  44. Fujii, Y. & Satake, K. Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide gauge and satellite data. Bull. Seismol. Soc. Am. 97, S192–S207 (2007).

    Article  Google Scholar 

  45. Neetu, S. et al. Comment on ‘The Great Sumatra–Andaman earthquake of 26 December 2004’. Science 310, 1431–1431 (2005).

    Article  CAS  Google Scholar 

  46. Pietrzak, J. et al. Defining the source region of the Indian Ocean Tsunami from GPS, altimeters, tide gauges and tsunami models. Earth Planet. Sci. Lett. 261, 49–64 (2007).

    Article  CAS  Google Scholar 

  47. Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E. & González, F. I. The global reach of the 26 December 2004 Sumatra Tsunami. Science 309, 2045–2048 (2005).

    Article  CAS  Google Scholar 

  48. Gower, J. Jason 1 detects the 26 December 2004 tsunami. Eos Trans. Am. Geophys. Union 86, 37–38 (2005).

    Article  Google Scholar 

  49. Merrifield, M. A. et al. Tide gauge observations of the Indian Ocean tsunami, December 26, 2004. Geophys. Res. Lett. 32, L09603 (2005).

    Article  Google Scholar 

  50. Astafyeva, E. I. & Afraimovich, E. L. Long-distance traveling ionospheric disturbances caused by the great Sumatra–Andaman earthquake on 26 December 2004. Earth Planets Space 58, 1025–1031 (2006).

    Article  Google Scholar 

  51. Heki, K. et al. Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances. J. Geophys. Res. Solid Earth 111, B09313 (2006).

    Article  Google Scholar 

  52. Liu, J. Y. et al. Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophys. Res. Lett. 33, L02103 (2006).

    Google Scholar 

  53. Occhipinti, G., Lognonné, P., Kherani, E. A. & Hébert, H. Three‐dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami. Geophys. Res. Lett. 33, 2006GL026865 (2006).

    Article  Google Scholar 

  54. DasGupta, A., Das, A., Hui, D., Bandyopadhyay, K. K. & Sivaraman, M. R. Ionospheric perturbations observed by the GPS following the December 26th, 2004 Sumatra–Andaman earthquake. Earth Planets Space 58, 167–172 (2006).

    Article  Google Scholar 

  55. Bagiya, M. S. et al. Origin of the ahead of tsunami traveling ionospheric disturbances during Sumatra tsunami and offshore forecasting. J. Geophys. Res. Space Phys. 122, 7742–7749 (2017).

    Article  Google Scholar 

  56. Artru, J., Ducic, V., Kanamori, H., Lognonné, P. & Murakami, M. Ionospheric detection of gravity waves induced by tsunamis. Geophys. J. Int. 160, 840–848 (2005).

    Article  Google Scholar 

  57. Manta, F., Occhipinti, G., Feng, L. & Hill, E. M. Rapid identification of tsunamigenic earthquakes using GNSS ionospheric sounding. Sci. Rep. 10, 11054 (2020).

    Article  CAS  Google Scholar 

  58. Lei, X., Sun, H., Hsu, H. & Shi, Y. Check of Earth’s free oscillations excited by Sumatra–Andaman large earthquake and discussions on the anisotropy of inner core. Sci. China Ser. Earth Sci. 50, 909–917 (2007).

    Article  Google Scholar 

  59. Kundu, B. et al. The 2005 volcano‐tectonic earthquake swarm in the Andaman Sea: triggered by the 2004 great Sumatra–Andaman earthquake. Tectonics 31, TC5009 (2012).

    Article  Google Scholar 

  60. Lei, X., Xie, C. & Fu, B. Remotely triggered seismicity in Yunnan, southwestern China, following the 2004 Mw9.3 Sumatra earthquake. J. Geophys. Res. 116, B08303 (2011).

    Google Scholar 

  61. Velasco, A. A., Hernandez, S., Parsons, T. & Pankow, K. Global ubiquity of dynamic earthquake triggering. Nat. Geosci. 1, 375–379 (2008).

    Article  CAS  Google Scholar 

  62. West, M., Sánchez, J. J. & McNutt, S. R. Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra earthquake. Science 308, 1144–1146 (2005).

    Article  CAS  Google Scholar 

  63. Yao, D., Peng, Z. & Meng, X. Remotely triggered earthquakes in South-Central Tibet following the 2004 Mw 9.1 Sumatra and 2005 Mw 8.6 Nias earthquakes. Geophys. J. Int. 201, 543–551 (2015).

    Article  Google Scholar 

  64. Kamesh Raju, K. A. et al. Tectonic and volcanic implications of a cratered seamount off Nicobar Island, Andaman Sea. J. Asian Earth Sci. 56, 42–53 (2012).

    Article  Google Scholar 

  65. Miyazawa, M. & Brodsky, E. E. Deep low‐frequency tremor that correlates with passing surface waves. J. Geophys. Res. Solid Earth 113, B01307 (2008).

    Article  Google Scholar 

  66. Miyazawa, M. & Mori, J. Evidence suggesting fluid flow beneath Japan due to periodic seismic triggering from the 2004 Sumatra–Andaman earthquake. Geophys. Res. Lett. 33, L05303 (2006).

    Article  Google Scholar 

  67. Rubinstein, J. L. et al. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island. J. Geophys. Res. Solid Earth 114, B00A01 (2009).

    Article  Google Scholar 

  68. Ghosh, A., Vidale, J. E., Peng, Z., Creager, K. C. & Houston, H. Complex nonvolcanic tremor near Parkfield, California, triggered by the great 2004 Sumatra earthquake. J. Geophys. Res. Solid Earth 114, B00A15 (2009).

    Article  Google Scholar 

  69. Andrade, V. & Rajendran, K. Intraplate response to the great 2004 Sumatra–Andaman earthquake: a study from the andaman segment. Bull. Seismol. Soc. Am. 101, 506–514 (2011).

    Article  Google Scholar 

  70. Sevilgen, V., Stein, R. S. & Pollitz, F. F. Stress imparted by the great 2004 Sumatra earthquake shut down transforms and activated rifts up to 400 km away in the Andaman Sea. Proc. Natl Acad. Sci. USA 109, 15152–15156 (2012).

    Article  CAS  Google Scholar 

  71. Banerjee, P., Pollitz, F., Nagarajan, B. & Bürgmann, R. Coseismic slip distributions of the 26 December 2004 Sumatra–Andaman and 28 March 2005 Nias earthquakes from gps static offsets. Bull. Seismol. Soc. Am. 97, S86–S102 (2007).

    Article  Google Scholar 

  72. Hashimoto, M. et al. Crustal deformations associated with the great Sumatra–Andaman earthquake deduced from continuous GPS observation. Earth Planets Space 58, 127–139 (2006).

    Article  Google Scholar 

  73. Broerse, D. B. T., Vermeersen, L. L. A., Riva, R. E. M. & van der Wal, W. Ocean contribution to co-seismic crustal deformation and geoid anomalies: application to the 2004 December 26 Sumatra–Andaman earthquake. Earth Planet. Sci. Lett. 305, 341–349 (2011).

    Article  CAS  Google Scholar 

  74. Cambiotti, G., Bordoni, A., Sabadini, R. & Colli, L. GRACE gravity data help constraining seismic models of the 2004 Sumatran earthquake. J. Geophys. Res. 116, B10403 (2011).

    Article  Google Scholar 

  75. De Linage, C. et al. Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophys. J. Int. 176, 695–714 (2009).

    Article  Google Scholar 

  76. Panet, I. et al. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity. Geophys. J. Int. 171, 177–190 (2007).

    Article  Google Scholar 

  77. Chen, J. L., Wilson, C. R., Tapley, B. D. & Grand, S. GRACE detects coseismic and postseismic deformation from the Sumatra–Andaman earthquake. Geophys. Res. Lett. 34, L13302 (2007).

    Article  Google Scholar 

  78. Han, S. C., Shum, C. K., Bevis, M., Ji, C. & Kuo, C. Y. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 313, 658–662 (2006).

    Article  CAS  Google Scholar 

  79. Gross, R. S. & Chao, B. F. The rotational and gravitational signature of the December 26, 2004 Sumatran earthquake. Surv. Geophys. 27, 615–632 (2006).

    Article  Google Scholar 

  80. Gahalaut, V. K. et al. GPS measurements of postseismic deformation in the Andaman-Nicobar region following the giant 2004 Sumatra–Andaman earthquake. J. Geophys. Res. Solid Earth 113, B08401 (2008).

    Article  Google Scholar 

  81. US Geological Survey. Advanced National Seismic System (ANSS) comprehensive catalog (US Geological Survey, 2017).

  82. Wong, N. Z., Feng, L. & Hill, E. M. GPS-based slip models of one Mw 7.2 and twenty moderate earthquakes along the Sumatran plate boundary. Geosci. Lett. 6, 8 (2019).

    Article  Google Scholar 

  83. Briggs, R. W. et al. Deformation and slip along the Sunda megathrust in the great Nias–Simeulue earthquake. Science 311, 1897–1901 (2006).

    Article  CAS  Google Scholar 

  84. Konca, A. O. et al. Rupture kinematics of the 2005 Mw 8.6 Nias–Simeulue earthquake from the joint inversion of seismic and geodetic data. Bull. Seismol. Soc. Am. 97, 307–322 (2007).

    Article  Google Scholar 

  85. Nalbant, S. S., Steacy, S., Sieh, K., Natawidjaja, D. & McCloskey, J. Earthquake risk on the Sunda trench. Nature 435, 756–757 (2005).

    Article  CAS  Google Scholar 

  86. Konca, A. O. et al. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456, 631–635 (2008).

    Article  CAS  Google Scholar 

  87. Tsang, L. L. H. et al. Afterslip following the 2007 Mw 8.4 Bengkulu earthquake in Sumatra loaded the 2010 Mw 7.8 Mentawai tsunami earthquake rupture zone. J. Geophys. Res. Solid Earth 121, 9034–9049 (2016).

    Article  Google Scholar 

  88. Hill, E. M. et al. The 2010 Mw 7.8 Mentawai earthquake: very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J. Geophys. Res. Solid Earth 117, B06402 (2012).

    Article  Google Scholar 

  89. Dewey, J. W. et al. Seismicity associated with the Sumatra–Andaman islands earthquake of 26 December 2004. Bull. Seismol. Soc. Am. 97, S25–S42 (2007).

    Article  Google Scholar 

  90. Mishra, O. P., Kayal, J. R., Chakrabortty, G. K., Singh, O. P. & Ghosh, D. Aftershock investigation in the Andaman–Nicobar islands of India and its seismotectonic implications. Bull. Seismol. Soc. Am. 97, S71–S85 (2007).

    Article  Google Scholar 

  91. Araki, E. et al. Aftershock distribution of the 26 December 2004 Sumatra-Andaman earthquake from ocean bottom seismographic observation. Earth Planets Space 58, 113–119 (2006).

    Article  Google Scholar 

  92. Engdahl, E. R., Villaseñor, A., DeShon, H. R. & Thurber, C. H. Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatra–Andaman and 2005 Mw 8.6 Nias Island great earthquakes. Bull. Seismol. Soc. Am. 97, S43–S61 (2007).

    Article  Google Scholar 

  93. Lin, J., Le Pichon, X., Rangin, C., Sibuet, J. & Maury, T. Spatial aftershock distribution of the 26 December 2004 great Sumatra–Andaman earthquake in the northern Sumatra area. Geochem. Geophys. Geosyst. 10, Q05006 (2009).

    Article  Google Scholar 

  94. Sibuet, J.-C. et al. 26th December 2004 great Sumatra–Andaman earthquake: co-seismic and post-seismic motions in northern Sumatra. Earth Planet. Sci. Lett. 263, 88–103 (2007).

    Article  CAS  Google Scholar 

  95. Waldhauser, F., Schaff, D. P., Diehl, T. & Engdahl, E. R. Splay faults imaged by fluid-driven aftershocks of the 2004 Mw 9.2 Sumatra–Andaman earthquake. Geology 40, 243–246 (2012).

    Article  Google Scholar 

  96. Tilmann, F. J. et al. The updip seismic/aseismic transition of the Sumatra megathrust illuminated by aftershocks of the 2004 Aceh–Andaman and 2005 Nias events. Geophys. J. Int. 181, 1261–1274 (2010).

    Google Scholar 

  97. Wang, X. et al. Plate interface geometry complexity and persistent heterogenous coupling revealed by a high-resolution earthquake focal mechanism catalog in Mentawai, Sumatra. Earth Planet. Sci. Lett. 637, 118726 (2024).

    Article  CAS  Google Scholar 

  98. Morgan, P. M. et al. Sibling earthquakes generated within a persistent rupture barrier on the Sunda megathrust under Simeulue Island. Geophys. Res. Lett. 44, 2159–2166 (2017).

    Article  Google Scholar 

  99. Paul, J., Lowry, A. R., Bilham, R., Sen, S. & Smalley, R. Postseismic deformation of the Andaman Islands following the 26 December, 2004 great Sumatra–Andaman earthquake. Geophys. Res. Lett. 34, 2007GL031024 (2007).

    Article  Google Scholar 

  100. Paul, J., Rajendran, C. P., Lowry, A. R., Andrade, V. & Rajendran, K. Andaman postseismic deformation observations: still slipping after all these years? Bull. Seismol. Soc. Am. 102, 343–351 (2012).

    Article  Google Scholar 

  101. Hsu, Y.-J. et al. Frictional afterslip following the 2005 Nias–Simeulue earthquake, Sumatra. Science 312, 1921–1926 (2006).

    Article  CAS  Google Scholar 

  102. Kreemer, C., Blewitt, G. & Maerten, F. Co‐ and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data. Geophys. Res. Lett. 33, L07307 (2006).

    Article  Google Scholar 

  103. Qiu, Q., Feng, L., Hermawan, I. & Hill, E. M. Coseismic and postseismic slip of the 2005 Mw 8.6 Nias–Simeulue earthquake: spatial overlap and localized viscoelastic flow. J. Geophys. Res. Solid Earth 124, 7445–7460 (2019).

    Article  Google Scholar 

  104. Borrero, J. C. et al. The tsunami of 2007 September 12, Bengkulu province, Sumatra, Indonesia: post-tsunami field survey and numerical modelling. Geophys. J. Int. 178, 180–194 (2009).

    Article  Google Scholar 

  105. Gahalaut, V. K. & Catherine, J. K. Rupture characteristics of 28 March 2005 Sumatra earthquake from GPS measurements and its implication for tsunami generation. Earth Planet. Sci. Lett. 249, 39–46 (2006).

    Article  CAS  Google Scholar 

  106. Geist, E. L., Bilek, S. L., Arcas, D. & Titov, V. V. Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes. Earth Planets Space 58, 185–193 (2006).

    Article  Google Scholar 

  107. Kerr, R. A. Model shows islands muted tsunami after latest Indonesian quake. Science 308, 341–341 (2005).

    Article  CAS  Google Scholar 

  108. Feng, L. et al. Footprints of past earthquakes revealed in the afterslip of the 2010 Mw 7.8 Mentawai tsunami earthquake. Geophys. Res. Lett. 43, 9518–9526 (2016).

    Article  Google Scholar 

  109. King, G. C. P., Stein, R. S. & Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84, 935–953 (1994).

    Google Scholar 

  110. Freed, A. M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 33, 335–367 (2005).

    Article  CAS  Google Scholar 

  111. Lange, D. et al. The fine structure of the subducted Investigator Fracture Zone in western Sumatra as seen by local seismicity. Earth Planet. Sci. Lett. 298, 47–56 (2010).

    Article  CAS  Google Scholar 

  112. Yu, W., Song, T.-R. A. & Silver, P. G. Repeating aftershocks of the great 2004 Sumatra and 2005 Nias earthquakes. J. Asian Earth Sci. 67–68, 153–170 (2013).

    Article  Google Scholar 

  113. Lubis, A. M., Hashima, A. & Sato, T. Analysis of afterslip distribution following the 2007 September 12 southern Sumatra earthquake using poroelastic and viscoelastic media. Geophys. J. Int. 192, 18–37 (2013).

    Article  Google Scholar 

  114. Qiu, Q., Moore, J. D. P., Barbot, S., Feng, L. & Hill, E. M. Transient rheology of the Sumatran mantle wedge revealed by a decade of great earthquakes. Nat. Commun. 9, 995 (2018).

    Article  Google Scholar 

  115. Pollitz, F., Banerjee, P., Grijalva, K., Nagarajan, B. & Bürgmann, R. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M = 9.2 Sumatra earthquake. Geophys. J. Int. 173, 189–204 (2008).

    Article  Google Scholar 

  116. Satirapod, C., Trisirisatayawong, I., Fleitout, L., Garaud, J. D. & Simons, W. J. F. Vertical motions in Thailand after the 2004 Sumatra–Andaman earthquake from GPS observations and its geophysical modelling. Adv. Space Res. 51, 1565–1571 (2013).

    Article  Google Scholar 

  117. Broerse, T., Riva, R., Simons, W., Govers, R. & Vermeersen, B. Postseismic GRACE and GPS observations indicate a rheology contrast above and below the Sumatra slab. J. Geophys. Res. Solid Earth 120, 5343–5361 (2015).

    Article  Google Scholar 

  118. Wiseman, K., Bürgmann, R., Freed, A. M. & Banerjee, P. Viscoelastic relaxation in a heterogeneous Earth following the 2004 Sumatra–Andaman earthquake. Earth Planet. Sci. Lett. 431, 308–317 (2015).

    Article  CAS  Google Scholar 

  119. Simons, W. J. F. et al. Vertical motion of Phuket Island (1994–2018) due to the Sumatra–Andaman mega-thrust earthquake cycle: impact on sea-level and consequences for coral reefs. Mar. Geol. 414, 92–102 (2019).

    Article  Google Scholar 

  120. Wiseman, K. & Bürgmann, R. Stress triggering of the great Indian Ocean strike‐slip earthquakes in a diffuse plate boundary zone. Geophys. Res. Lett. 39, L22304 (2012).

    Article  Google Scholar 

  121. Han, S., Sauber, J., Luthcke, S. B., Ji, C. & Pollitz, F. F. Implications of postseismic gravity change following the great 2004 Sumatra–Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J. Geophys. Res. Solid Earth 113, B11413 (2008).

    Article  Google Scholar 

  122. Ogawa, R. & Heki, K. Slow postseismic recovery of geoid depression formed by the 2004 Sumatra–Andaman earthquake by mantle water diffusion. Geophys. Res. Lett. 34, L06313 (2007).

    Article  Google Scholar 

  123. Hoechner, A., Sobolev, S. V., Einarsson, I. & Wang, R. Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake: postseismic deformation and geoid change. Geochem. Geophys. Geosyst. 12, Q07010 (2011).

    Article  Google Scholar 

  124. Hu, Y. & Wang, K. Spherical‐Earth finite element model of short‐term postseismic deformation following the 2004 Sumatra earthquake. J. Geophys. Res. Solid Earth 117, B05404 (2012).

    Article  Google Scholar 

  125. Panet, I. et al. Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra–Andaman earthquake. Geochem. Geophys. Geosyst. 11, Q06008 (2010).

    Article  Google Scholar 

  126. Pollitz, F. F., Bürgmann, R. & Banerjee, P. Post-seismic relaxation following the great 2004 Sumatra–Andaman earthquake on a compressible self-gravitating Earth. Geophys. J. Int. 167, 397–420 (2006).

    Article  Google Scholar 

  127. Gunawan, E. et al. A comprehensive model of postseismic deformation of the 2004 Sumatra–Andaman earthquake deduced from GPS observations in northern Sumatra. J. Asian Earth Sci. 88, 218–229 (2014).

    Article  Google Scholar 

  128. Tanaka, Y., Hasegawa, T., Tsuruoka, H., Klemann, V. & Martinec, Z. Spectral-finite element approach to post-seismic relaxation in a spherical compressible Earth: application to gravity changes due to the 2004 Sumatra–Andaman earthquake. Geophys. J. Int. 200, 299–321 (2015).

    Article  Google Scholar 

  129. Hu, Y. et al. Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake. Nature 538, 368–372 (2016).

    Article  CAS  Google Scholar 

  130. Wang, K., Hu, Y. & He, J. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484, 327–332 (2012).

    Article  CAS  Google Scholar 

  131. Kaufmann, G. & Lambeck, K. Glacial isostatic adjustment and the radial viscosity profile from inverse modeling. J. Geophys. Res. Solid Earth 107(B11), 2280 (2002).

    Google Scholar 

  132. Lau, H. C. P. et al. Inferences of mantle viscosity based on ice age data sets: radial structure. J. Geophys. Res. Solid Earth 121, 6991–7012 (2016).

    Article  Google Scholar 

  133. Luo, H. & Wang, K. Postseismic geodetic signature of cold forearc mantle in subduction zones. Nat. Geosci. 14, 104–109 (2021).

    Article  CAS  Google Scholar 

  134. Trubienko, O., Garaud, J.-D. & Fleitout, L. Models of postseismic deformation after megaearthquakes: the role of various rheological and geometrical parameters of the subduction zone. Solid Earth Discuss. 6, 427–466 (2014).

    Google Scholar 

  135. McCloskey, J., Nalbant, S. S. & Steacy, S. Earthquake risk from co-seismic stress. Nature 434, 291–291 (2005).

    Article  CAS  Google Scholar 

  136. Hughes, K. L. H., Masterlark, T. & Mooney, W. D. Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra–Andaman earthquake. Earth Planet. Sci. Lett. 293, 289–299 (2010).

    Article  CAS  Google Scholar 

  137. Hughes, K. L. H., Masterlark, T. & Mooney, W. D. Pore-fluid migration and the timing of the 2005 M8.7 Nias earthquake. Lithosphere 3, 170–172 (2011).

    Article  Google Scholar 

  138. Wiseman, K. & Bürgmann, R. Stress and seismicity changes on the Sunda megathrust preceding the 2007 Mw 8.4 earthquake. Bull. Seismol. Soc. Am. 101, 313–326 (2011).

    Article  Google Scholar 

  139. Meltzner, A. J. et al. Coral evidence for earthquake recurrence and an A.D. 1390–1455 cluster at the south end of the 2004 Aceh–Andaman rupture. J. Geophys. Res. 115, B10402 (2010).

    Google Scholar 

  140. Meltzner, A. J. et al. Persistent termini of 2004- and 2005-like ruptures of the Sunda megathrust. J. Geophys. Res. Solid Earth 115, B04405 (2012).

    Google Scholar 

  141. Meltzner, A. J. et al. Time-varying interseismic strain rates and similar seismic ruptures on the Nias–Simeulue patch of the Sunda megathrust. Quat. Sci. Rev. 122, 258–281 (2015).

    Article  Google Scholar 

  142. Philibosian, B. et al. An ancient shallow slip event on the Mentawai segment of the Sunda megathrust, Sumatra. J. Geophys. Res. Solid Earth 117, B05401 (2012).

    Article  Google Scholar 

  143. Philibosian, B. et al. Rupture and variable coupling behavior of the Mentawai segment of the Sunda megathrust during the supercycle culmination of 1797 to 1833. J. Geophys. Res. Solid Earth 119, 7258–7287 (2014).

    Article  Google Scholar 

  144. Philibosian, B. et al. Earthquake supercycles on the Mentawai segment of the Sunda megathrust in the seventeenth century and earlier. J. Geophys. Res. Solid Earth 122, 642–676 (2017).

    Article  Google Scholar 

  145. Philibosian, B. & Meltzner, A. J. Segmentation and supercycles: a catalog of earthquake rupture patterns from the Sumatran Sunda megathrust and other well-studied faults worldwide. Quat. Sci. Rev. 241, 106390 (2020).

    Article  Google Scholar 

  146. Jacob, J., Dyment, J. & Yatheesh, V. Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia. J. Geophys. Res. Solid Earth 119, 169–190 (2014).

    Article  Google Scholar 

  147. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  Google Scholar 

  148. Natawidjaja, D. H. et al. Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. J. Geophys. Res. Solid Earth 111, B06403 (2006).

    Article  Google Scholar 

  149. Singh, S. C. et al. Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra. Nat. Geosci. 4, 308–311 (2011).

    Article  CAS  Google Scholar 

  150. Wang, K. & Bilek, S. L. Do subducting seamounts generate or stop large earthquakes? Geology 39, 819–822 (2011).

    Article  Google Scholar 

  151. Martin, S. S. et al. Reassessment of the 1907 Sumatra ‘tsunami earthquake’ based on macroseismic, seismological, and tsunami observations, and modeling. Pure Appl. Geophys. 176, 2831–2868 (2019).

    Article  Google Scholar 

  152. Patton, J. R. et al. A 6600 year earthquake history in the region of the 2004 Sumatra–Andaman subduction zone earthquake. Geosphere 11, 2067–2129 (2015).

    Article  Google Scholar 

  153. Rubin, C. M. et al. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami. Nat. Commun. 8, 16019 (2017).

    Article  CAS  Google Scholar 

  154. Monecke, K. et al. A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 455, 1232–1234 (2008).

    Article  CAS  Google Scholar 

  155. Jankaew, K. et al. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455, 1228–1231 (2008).

    Article  CAS  Google Scholar 

  156. Daly, P. et al. Archaeological evidence that a late 14th-century tsunami devastated the coast of northern Sumatra and redirected history. Proc. Natl Acad. Sci. USA 116, 11679–11686 (2019).

    Article  CAS  Google Scholar 

  157. Sieh, K. et al. Penultimate predecessors of the 2004 Indian Ocean tsunami in Aceh, Sumatra: stratigraphic, archeological, and historical evidence. J. Geophys. Res. Solid Earth 120, 308–325 (2015).

    Article  Google Scholar 

  158. Bilham, R., Engdahl, R., Feldl, N. & Satyabala, S. P. Partial and complete rupture of the Indo–Andaman plate boundary 1847–2004. Seismol. Res. Lett. 76, 299–311 (2005).

    Article  Google Scholar 

  159. Malik, J. N. et al. Geologic evidence for two pre-2004 earthquakes during recent centuries near Port Blair, South Andaman Island, India. Geology 39, 559–562 (2011).

    Article  Google Scholar 

  160. Rajendran, C. P. et al. Crustal deformation and seismic history associated with the 2004 Indian Ocean earthquake: a perspective from the Andaman–Nicobar islands. Bull. Seismol. Soc. Am. 97, 174–191 (2007).

    Article  Google Scholar 

  161. Salman, R. et al. Piecemeal rupture of the Mentawai Patch, Sumatra: the 2008 Mw 7.2 North Pagai earthquake sequence. J. Geophys. Res. Solid Earth 122, 9404–9419 (2017).

    Article  Google Scholar 

  162. Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322, 1674–1678 (2008).

    Article  CAS  Google Scholar 

  163. Birkmann, J., Setiadi, N. & Fiedler, G. in Cultures and Disasters (eds Krüger, F. et al.) 235–254 (Routledge, 2015).

  164. Di Mauro, M., Megawati, K., Cedillos, V. & Tucker, B. Tsunami risk reduction for densely populated Southeast Asian cities: analysis of vehicular and pedestrian evacuation for the city of Padang, Indonesia, and assessment of interventions. Nat. Hazards 68, 373–404 (2013).

    Article  Google Scholar 

  165. Yosritzal et al. Evaluation of tsunami evacuation planning of the primary school student in Padang. MATEC Web Conf. 276, 02018 (2019).

    Article  Google Scholar 

  166. Yue, H. et al. Rupture process of the 2010 Mw 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observations. J. Geophys. Res. Solid Earth 119, 5574–5593 (2014).

    Article  Google Scholar 

  167. Byrne, D. E., Davis, D. M. & Sykes, L. R. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7, 833–857 (1988).

    Article  Google Scholar 

  168. Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H. & Galetzka, J. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J. Geophys. Res. Solid Earth 113, B05305 (2008).

    Article  Google Scholar 

  169. Kanamori, H., Rivera, L. & Lee, W. H. K. Historical seismograms for unravelling a mysterious earthquake: the 1907 Sumatra earthquake. Geophys. J. Int. 183, 358–374 (2010).

    Article  Google Scholar 

  170. Bradley, K. et al. Stratigraphic control of frontal décollement level and structural vergence and implications for tsunamigenic earthquake hazard in Sumatra, Indonesia. Geochem. Geophys. Geosyst. 20, 1646–1664 (2019).

    Article  Google Scholar 

  171. Qin, Y. et al. Assessing the risk of potential tsunamigenic earthquakes in the Mentawai region by seismic imaging, central Sumatra. Geochem. Geophys. Geosyst. 25, e2023GC011149 (2024).

    Article  Google Scholar 

  172. Singh, S. C. et al. Seismic images of the megathrust rupture during the 25th October 2010 Pagai earthquake, SW Sumatra: frontal rupture and large tsunami. Geophys. Res. Lett. 38, L16313 (2011).

    Article  Google Scholar 

  173. Lindsey, E. O. et al. Slip rate deficit and earthquake potential on shallow megathrusts. Nat. Geosci. 14, 321–326 (2021).

    Article  CAS  Google Scholar 

  174. Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 495, 112–134 (2018).

    Article  Google Scholar 

  175. Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300, 1942–1943 (2003).

    Article  CAS  Google Scholar 

  176. Ito, Y., Obara, K., Shiomi, K., Sekine, S. & Hirose, H. Slow earthquakes coincident with episodic tremors and slow slip events. Science 315, 503–506 (2007).

    Article  CAS  Google Scholar 

  177. Outerbridge, K. C. et al. A tremor and slip event on the Cocos–Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya peninsula, Costa Rica. J. Geophys. Res. Solid Earth 115, B10408 (2010).

    Article  Google Scholar 

  178. Perry, M., Muller, C., Protti, M., Feng, L. & Hill, E. M. Shallow slow slip events identified offshore the Osa peninsula in southern Costa Rica from GNSS time series. Geophys. Res. Lett. 50, e2023GL104771 (2023).

    Article  Google Scholar 

  179. Wallace, L. M. Slow slip events in New Zealand. Annu. Rev. Earth Planet. Sci. 48, 175–203 (2020).

    Article  CAS  Google Scholar 

  180. Mallick, R. et al. Long-lived shallow slow-slip events on the Sunda megathrust. Nat. Geosci. 14, 327–333 (2021).

    Article  CAS  Google Scholar 

  181. Tsang, L. L. H. et al. A 15 year slow-slip event on the Sunda megathrust offshore Sumatra. Geophys. Res. Lett. 42, 6630–6638 (2015).

    Article  Google Scholar 

  182. Feng, L. et al. Hunt for slow slip events along the Sumatran subduction zone in a decade of continuous GPS data. J. Geophys. Res. Solid Earth 120, 8623–8632 (2015).

    Article  Google Scholar 

  183. Sekine, S., Hirose, H. & Obara, K. Along‐strike variations in short‐term slow slip events in the southwest Japan subduction zone. J. Geophys. Res. Solid Earth 115, B00A27 (2010).

    Article  Google Scholar 

  184. Fu, Y., Liu, Z. & Freymueller, J. T. Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone. Geochem. Geophys. Geosyst. 16, 2450–2461 (2015).

    Article  Google Scholar 

  185. Li, S., Freymueller, J. & McCaffrey, R. Slow slip events and time-dependent variations in locking beneath Lower Cook Inlet of the Alaska–Aleutian subduction zone. J. Geophys. Res. Solid Earth 121, 1060–1079 (2016).

    Article  Google Scholar 

  186. Mavrommatis, A. P., Segall, P., Uchida, N. & Johnson, K. M. Long-term acceleration of aseismic slip preceding the Mw 9 Tohoku-Oki earthquake: constraints from repeating earthquakes. Geophys. Res. Lett. 42, 9717–9725 (2015).

    Article  Google Scholar 

  187. Marill, L. et al. Fourteen-year acceleration along the Japan trench. J. Geophys. Res. Solid Earth 126, e2020JB021226 (2021).

    Article  Google Scholar 

  188. Kelman, I., Spence, R., Palmer, J., Petal, M. & Saito, K. Tourists and disasters: lessons from the 26 December 2004 tsunamis. J. Coast. Conserv. 12, 105–113 (2008).

    Article  Google Scholar 

  189. Brown, P. H. & Minty, J. H. Media coverage and charitable giving after the 2004 tsunami. South. Econ. J. 75, 9–25 (2008).

    Article  Google Scholar 

  190. Christoplos, I. Links between relief, rehabilitation and development in the tsunami response: a synthesis of initial findings (Tsunami Evaluation Coalition, 2006).

  191. Brusset, E. et al. A ripple in development? long term perspectives on the response to the Indian Ocean tsunami 2004 (Swedish International Development Cooperation Agency, 2009).

  192. Daly, P. et al. Rethinking relief, reconstruction and development: evaluating the effectiveness and sustainability of post-disaster livelihood aid. Int. J. Disaster Risk Reduct. 49, 101650 (2020).

    Article  Google Scholar 

  193. Daly, P. et al. Social capital and community integration in post-disaster relocation settlements after the 2004 Indian Ocean tsunami in Indonesia. Int. J. Disaster Risk Reduct. 95, 103861 (2023).

    Article  Google Scholar 

  194. Mahdi, S. et al. Remarriage strategies for post-disaster widows and widowers following the 2004 Indian Ocean tsunami in Aceh, Indonesia. Prog. Disaster Sci. 19, 100289 (2023).

    Article  Google Scholar 

  195. McCaughey, J. W., Mundir, I., Daly, P., Mahdi, S. & Patt, A. Trust and distrust of tsunami vertical evacuation buildings: extending protection motivation theory to examine choices under social influence. Int. J. Disaster Risk Reduct. 24, 462–473 (2017).

    Article  Google Scholar 

  196. McCaughey, J. W., Daly, P., Mundir, I., Mahdi, S. & Patt, A. Socio-economic consequences of post-disaster reconstruction in hazard-exposed areas. Nat. Sustain. 1, 38–43 (2018).

    Article  Google Scholar 

  197. Mulligan, M. & Nadarajah, Y. Rebuilding community in the wake of disaster: lessons from the recovery from the 2004 tsunami in Sri Lanka and India. Community Dev. J. 47, 353–368 (2012).

    Article  Google Scholar 

  198. Renuka, R. & Srimulyani, E. Women after the tsunami: impact, empowerment and changes in post-disaster situations of Sri Lanka and Aceh, Indonesia. Asian J. Womens Stud. 21, 192–210 (2015).

    Article  Google Scholar 

  199. Ruff, L. J. Do trench sediments affect great earthquake occurrence in subduction zones? Pure Appl. Geophys. 129, 263–282 (1989).

    Article  Google Scholar 

  200. Atwater, B. F., Stuiver, M. & Yamaguchi, D. K. Radiocarbon test of earthquake magnitude at the Cascadia subduction zone. Nature 353, 156–158 (1991).

    Article  Google Scholar 

  201. Atwater, B. F. et al. The Orphan Tsunami of 1700 — Japanese Clues to a Parent Earthquake in North America (Univ. Washington Press, 2005).

  202. Tulius, J. Lesson from the past, knowledge for the future: roles of human memories in earthquake and tsunami narratives in Mentawai, Indonesia. Paradig. J. Kaji. Budaya 10, 147–168 (2020).

    Article  Google Scholar 

  203. Ulutas, E., Inan, A. & Annunziato, A. Web-based tsunami early warning system: a case study of the 2010 Kepulaunan Mentawai earthquake and tsunami. Nat. Hazards Earth Syst. Sci. 12, 1855–1871 (2012).

    Article  Google Scholar 

  204. Puspito, N. T. et al. Evaluation of station performance of the Indonesian seismic network using the primary location parameter. Seismol. Res. Lett. 95, 804–819 (2023).

    Article  Google Scholar 

  205. Harig, S. et al. The tsunami scenario database of the Indonesia Tsunami Early Warning System (InaTEWS): evolution of the coverage and the involved modeling approaches. Pure Appl. Geophys. 177, 1379–1401 (2020).

    Article  Google Scholar 

  206. Spahn, H. & Lauterjung, J. InaTEWS: about more than technology. Jakarta Post https://www.thejakartapost.com/academia/2018/10/04/inatews-about-more-than-technology.html (2018).

  207. Adityawan, M. B. et al. Development of a tsunami early warning system on the coast of Palu based on maritime wireless communication. Prog. Disaster Sci. 19, 100290 (2023).

    Article  Google Scholar 

  208. Lassa, J. A. Reviewing Indonesia’s tsunami early warning strategy: reflections from Sulawesi island. The Conversation http://theconversation.com/reviewing-indonesias-tsunami-early-warning-strategy-reflections-from-sulawesi-island-104257 (2018).

  209. Government of Indonesia. Penguatan dan pengembangan sistem informasi gempa bumi dan peringatan dini tsunami [Indonesian] (Government of Indonesia, 2019).

  210. Iqbal, M. et al. Performance analysis of Indonesia cable based tsunameter (INA-CBT) Rokatenda ring topology. In 2021 IEEE Ocean Engineering Technology and Innovation Conference: Ocean Observation, Technology and Innovation in Support of Ocean Decade of Science (OETIC), 57–62 (IEEE, 2021).

  211. Nurwidya, A. I. et al. Data analysis and visualization of INA-CBT Labuan Bajo system. In IEEE Ocean Eng. Technol. Innov. Conf. Manag. Conserv. Sustain. Resilient Marine Coast. Resources (OETIC) 17–22 (IEEE, 2022).

  212. Tim Kaji Cepat Bersama. Evaluasi Terhadap InaTEWS: Harapan & Kenyataan Pada Peristiwa Gempabumi Outer-Rise (Lembaga llmu Pengetahuan lndonesia, 2012).

  213. McAdoo, B. G., Dengler, L., Prasetya, G. & Titov, V. Smong: how an oral history saved thousands on Indonesia’s Simeulue island during the December 2004 and March 2005 tsunamis. Earthq. Spectra 22, 661–669 (2006).

    Article  Google Scholar 

  214. Rafliana, I. et al. Tsunami risk communication and management: contemporary gaps and challenges. Int. J. Disaster Risk Reduct. 70, 102771 (2022).

    Article  Google Scholar 

  215. Hoppe, M. & Mahadiko, H. S. 30 minutes in the city of Padang: lessons for tsunami preparedness and early warning from the earthquake on September 30, 2009 (GITEWS, 2010).

  216. Abidin, H. Z. & Kato, T. Why many victims: lessons from the July 2006 south Java tsunami earthquake. Adv. Geosci. 13, 249–263 (2009).

    Article  Google Scholar 

  217. Suppasri, A. et al. Lessons learned from the 2011 great east Japan tsunami: performance of tsunami countermeasures, coastal buildings, and tsunami evacuation in Japan. Pure Appl. Geophys. 170, 993–1018 (2013).

    Article  Google Scholar 

  218. Almutairi, A., Mourshed, M. & Ameen, R. F. M. Coastal community resilience frameworks for disaster risk management. Nat. Hazards 101, 595–630 (2020).

    Article  Google Scholar 

  219. Bradley, K., Feng, L., Hill, E. M., Natawidjaja, D. H. & Sieh, K. Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. J. Geophys. Res. Solid Earth 122, 572–591 (2017).

    Article  Google Scholar 

  220. Hananto, N. et al. Evidence of pervasive trans-tensional deformation in the northwestern Wharton Basin in the 2012 earthquakes rupture area. Earth Planet. Sci. Lett. 502, 174–186 (2018).

    Article  CAS  Google Scholar 

  221. Hill, E. M. et al. The 2012 Mw 8.6 Wharton Basin sequence: a cascade of great earthquakes generated by near-orthogonal, young, oceanic mantle faults. J. Geophys. Res. Solid Earth 120, 3723–3747 (2015).

    Article  Google Scholar 

  222. Meng, L. et al. Earthquake in a maze: compressional rupture branching during the 2012 Mw 8.6 Sumatra earthquake. Science 337, 724–726 (2012).

    Article  CAS  Google Scholar 

  223. Singh, S. C. et al. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone. Sci. Adv. 3, e1601689 (2017).

    Article  Google Scholar 

  224. Lubis, A. M. et al. Slip rates and locking depths of the southern Sumatran Fault Zone revealed by new campaign GPS observations. Geophys. J. Int. 239, 248–257 (2024).

    Article  Google Scholar 

  225. Curray, J. R. Tectonics and history of the Andaman Sea region. J. Asian Earth Sci. 25, 187–232 (2005).

    Article  Google Scholar 

  226. Sieh, K. & Natawidjaja, D. Neotectonics of the Sumatran fault, Indonesia. J. Geophys. Res. Solid Earth 105, 28295–28326 (2000).

    Article  Google Scholar 

  227. Gahalaut, V., Nagarajan, B., Catherine, J. & Kumar, S. Constraints on 2004 Sumatra–Andaman earthquake rupture from GPS measurements in Andaman–Nicobar Islands. Earth Planet. Sci. Lett. 242, 365–374 (2006).

    Article  CAS  Google Scholar 

  228. Banerjee, P., Pollitz, F. F. & Bürgmann, R. The size and duration of the Sumatra–Andaman earthquake from far-field static offsets. Science 308, 1769–1772 (2005).

    Article  CAS  Google Scholar 

  229. United Nations Office for the Coordination of Humanitarian Affairs. India, Indonesia, Maldives, Myanmar, Somalia, Thailand: earthquake and tsunami — OCHA Situation Report no. 14 (OCHA, 2005).

  230. Channel News Asia. Tsunami disaster: the aftermath. Channel News Asia https://web.archive.org/web/20121024085959/http:/www.channelnewsasia.com/killerwaves/glance.htm (2004).

  231. Agence France-Presse. Asian tsunami death toll passes 144,000. ABC News Online https://web.archive.org/web/20090617042814/http://www.abc.net.au/news/newsitems/200501/s1275702.htm (2005).

  232. Voice of America. Waves kill at least 10 off Tanzania coast. VOA https://www.voanews.com/a/a-13-2004-12-28-voa22/304839.html (2009).

  233. Siewert, F. The Seychelles raises its voice. reliefweb https://reliefweb.int/report/seychelles/seychelles-raises-its-voice (2005).

  234. Obura, D. Impacts of the 26 December 2004 tsunami in Eastern Africa. Ocean Coast. Manag. 49, 873–888 (2006).

    Article  Google Scholar 

  235. Dickson, P. Two drown as Sumatra quake wave hits SA coastline. Cape Times https://web.archive.org/web/20051128212931/http:/www.capetimes.co.za/index.php?fSectionId=271&fArticleId=2357542 (2004).

  236. Maldives National Disaster Management Center. Casualty updates. NDMC https://web.archive.org/web/20060420004636/http://www.tsunamimaldives.mv/?action=casualtyUpdates (2006).

  237. Government of India. Tsunami: a report to the nation. reliefweb https://reliefweb.int/report/india/india-tsunami-report-nation (2005).

  238. Office of the UN Recovery Coordinator for Aceh and Nias. Tsunani recovery status report (UNORC, 2005).

  239. United Nations Country Team in Thailand. Tsunami Thailand: one year later — national response and contribution of international partners (UNCT Thailand, 2005).

  240. Government of Sri Lanka. Post tsunami recovery and reconstruction: progress, challenges, way forward (Government of Sri Lanka, 2005).

  241. Fitch, T. J. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. J. Geophys. Res. 77, 4432–4460 (1972).

    Article  Google Scholar 

  242. Delescluse, M. & Chamot-Rooke, N. Instantaneous deformation and kinematics of the India–Australia Plate. Geophys. J. Int. 168, 818–842 (2007).

    Article  Google Scholar 

  243. Deplus, C. et al. Direct evidence of active deformation in the eastern Indian oceanic plate. Geology 26, 131–134 (1998).

    Article  Google Scholar 

  244. Geersen, J. et al. Pervasive deformation of an oceanic plate and relationship to large >Mw 8 intraplate earthquakes: the northern Wharton Basin, Indian Ocean. Geology 43, 359–362 (2015).

    Article  Google Scholar 

  245. Stevens, D. E. et al. A complete structural model and kinematic history for distributed deformation in the Wharton Basin. Earth Planet. Sci. Lett. 538, 116218 (2020).

    Article  CAS  Google Scholar 

  246. Wiens, D. A. et al. A diffuse plate boundary model for Indian Ocean tectonics. Geophys. Res. Lett. 12, 429–432 (1985).

    Article  Google Scholar 

  247. International Seismological Centre. Searching the ISC Bulletin. ISC https://doi.org/10.31905/D808B830 (2024).

  248. Deplus, C. Indian ocean actively deforms. Science 292, 1850–1851 (2001).

    Article  CAS  Google Scholar 

  249. Delescluse, M. et al. April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust. Nature 490, 240–244 (2012).

    Article  CAS  Google Scholar 

  250. Coudurier-Curveur, A. et al. Is there a nascent plate boundary in the Northern Indian Ocean? Geophys. Res. Lett. 47, e2020GL087362 (2020).

    Article  Google Scholar 

  251. McCaffrey, R. The tectonic framework of the Sumatran subduction zone. Annu. Rev. Earth Planet. Sci. 37, 345–366 (2009).

    Article  CAS  Google Scholar 

  252. McCaffrey, R. Slip vectors and stretching of the Sumatran fore arc. Geology 19, 881–884 (1991).

    Article  Google Scholar 

  253. Cattin, R. et al. Stress change and effective friction coefficient along the Sumatra–Andaman–Sagaing fault system after the 26 December 2004 (Mw = 9.2) and the 28 March 2005 (Mw = 8.7) earthquakes. Geochem. Geophys. Geosyst. 10, Q03011 (2009).

    Article  Google Scholar 

  254. Bellier, O. et al. Paleoseismicity and seismic hazard along the Great Sumatran Fault (Indonesia). J. Geodyn. 24, 169–183 (1997).

    Article  Google Scholar 

  255. Hurukawa, N., Wulandari, B. R. & Kasahara, M. Earthquake history of the Sumatran Fault, Indonesia, since 1892, derived from relocation of large earthquakes. Bull. Seismol. Soc. Am. 104, 1750–1762 (2014).

    Article  Google Scholar 

  256. Natawidjaja, D. H. & Triyoso, W. The Sumatran fault zone — from source to hazard. J. Earthq. Tsunami 01, 21–47 (2007).

    Article  Google Scholar 

  257. Salman, R. et al. Structural controls on rupture extent of recent Sumatran fault zone earthquakes, Indonesia. J. Geophys. Res. Solid Earth 125, e2019JB018101 (2020).

    Article  Google Scholar 

  258. Tong, X., Sandwell, D. T. & Schmidt, D. A. Surface creep rate and moment accumulation rate along the Aceh segment of the Aumatran fault from L-band ALOS-1/PALSAR-1 observations. Geophys. Res. Lett. 45, 3404–3412 (2018).

    Article  Google Scholar 

  259. Sun, T. & Wang, K. Viscoelastic relaxation following subduction earthquakes and its effects on afterslip determination. J. Geophys. Res. Solid Earth 120, 1329–1344 (2015).

    Article  Google Scholar 

  260. Zhou, X. & Wang, K. Viscoelastic response of a self-gravitational spherical earth to shear dislocation obtained using the fixed-Talbot method. J. Geophys. Res. Solid Earth 128, e2022JB025912 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore Ministry of Education under the Tier 3b project ‘Integrating Volcano and Earthquake Science and Technology (InVEST)’ (award no. MOE-MOET32021-0002 to E.M.H. and L.F.), by the National Research Foundation (NRF) of Singapore under its NRF Investigatorship Scheme (award no. NRF-NRFI05-2019-0009 to E.M.H.) and by the NRF Singapore under its Singapore NRF Fellowship scheme (award no. NRF-NRFF11-2019-0008 to A.J.M.). This is Earth Observatory of Singapore paper no. 616. The authors thank S. Wei and S. Sathiakumar for discussions, X. Zhou for providing the 17-year cumulative postseismic deformation calculated from his viscoelastic relaxation model of the 2004 Indian Ocean earthquake, T. Sun for providing postseismic velocity vectors in the mantle for panel a in Box 2, and B. Philibosian for inputs on the rupture length of the 2000 Enggano earthquake for Fig. 3. The authors also thank Y. Y. Sim for help generating the map in Box 1. Additionally, the authors extend their gratitude to the Indian National Centre for Ocean Information Services (INCOIS), the Ministry of Earth Sciences, the Gouvernment of India, Hyderabad, for providing the details of their Andaman and Nicobar GNSS Network for Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

E.M.H. conceptualized the Review. G.M.S. coordinated the process. G.M.S., L.F., J.W.M., A.J.M., A.S. and E.M.H. wrote the preliminary draft. All authors contributed to the discussions, planning, writing and reviewing of the manuscript. G.M.S., L.F. and J.W.M. developed the graphics.

Corresponding author

Correspondence to Gina M. Sarkawi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Thorne Lay, Kenji Satake, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BNPB: https://bnpb.go.id/sejarah-bnpb

BPBD: https://www.bnpb.go.id/bpbd-propinsi

InaCORS: https://srgi.big.go.id/map/jkg-active

InaTEWS: https://inatews.bmkg.go.id/

INCOIS: https://incois.gov.in/portal/datainfo/datainfohome.jsp

Indonesian tide gauges: https://srgi.big.go.id/tides

MyRTKnet: https://mytransformasinet.jupem.gov.my/

National Center for Environmental Information: https://www.ngdc.noaa.gov/hazard/tsu_travel_time_events.shtml

ThaiCORS: https://ncdc.in.th/portal/apps/webappviewer/index.html?id=7752b918a468499bb3c9f4aade180191

Glossary

Afterslip

Gradual, aseismic fault slip following an earthquake, which continues to release strain and generates postseismic deformation.

Asperity

A location on the fault surface that is stuck and can store elastic strain; where earthquake rupture often occurs.

Cold nose

A portion of the mantle wedge with reduced temperature that is less thermally altered than its surrounding mantle, which influences subduction-zone dynamics and seismicity.

Coulomb stress changes

Alterations in the stress on a fault, combining changes in shear stress and normal stress, which when positive increase the likelihood of fault slip and seismic activity.

Earthquake supercycle

Repeating periods of elastic strain accumulation and release, involving multiple fault ruptures.

Slow slip events

Gradual fault slip over days to years that releases strain without substantial shaking and influences the distribution of stress along tectonic boundaries.

Southeast Asian Ring of Fire

A segment of the Pacific Ring of Fire known for frequent earthquakes and volcanic activity, which affects Indonesia, the Philippines and other regions.

Sunda megathrust

A major fault along the Sunda trench, where the Indo–Australian plate subducts beneath the Sunda plate.

Tsunami earthquakes

Earthquakes that produce a larger tsunami than is expected from its magnitude.

Viscoelastic relaxation

Gradual redistribution of stress and deformation in the Earth’s deep crust and upper mantle following an earthquake, driven by the viscoelastic behaviour of subsurface materials.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkawi, G.M., Feng, L., McCaughey, J.W. et al. Insights into tectonic hazards since the 2004 Indian Ocean earthquake and tsunami. Nat Rev Earth Environ 6, 17–34 (2025). https://doi.org/10.1038/s43017-024-00613-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00613-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing