Abstract
Coastal polynyas describe regions of persistent open water within the sea-ice pack. In this Review, we outline the critical importance of Antarctic coastal polynyas in the Earth system (including for the atmosphere, sea-ice, ocean and biosphere) and outline their past, present and future changes. Strong offshore winds are the primary force opening coastal polynyas, varying on synoptic timescales to influence polynya existence and size. The exposed ocean surface ventilates heat to the atmosphere, allowing sea surface cooling and frazil ice formation. Frazil ice increases the salinity of surface waters, ultimately sinking as dense shelf water that drives the southern limb of the global ocean overturning circulation. Light and nutrient availability in coastal polynyas also encourages high primary productivity, making them critical aspects of the Antarctic marine food web. Coastal polynya strength and location varies through time, most notably at glacial–interglacial timescales owing to changes in continental shelf available for polynya formation. Predicting the future evolution of Antarctic coastal polynyas is challenged by inadequate model resolution and poorly constrained processes and behaviours, but there are indications that activity will decline with warming. A coordinated and expanded campaign of in situ measurements, as well as new satellite-based observations that use intelligent algorithms, would improve coupled atmosphere–sea-ice–ocean models and, thereby, enhance knowledge of Antarctic coastal polynyas.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Arrigo, K. R. & van Dijken, G. L. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res. Oceans https://doi.org/10.1029/2002JC001739 (2003).
Bailey, D. A., Lynch, A. H. & Arbetter, T. E. Relationship between synoptic forcing and polynya formation in the Cosmonaut Sea: 2. Regional climate model simulations. J. Geophys. Res. Oceans https://doi.org/10.1029/2003JC001838 (2004).
Wei, Z., Zhang, Z., Wang, X., Chen, Y. & Zhou, M. The thermodynamic and dynamic control of the sensible heat polynya in the western Cosmonaut Sea. Deep Sea Res. II Top. Stud. Oceanogr. 195, 105000 (2022).
Massom, R., Harris, P., Michael, K. & Potter, M. The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 27, 420–426 (1998).
Fichefet, T. & Goosse, H. A numerical investigation of the spring Ross Sea polynya. Geophys. Res. Lett. 26, 1015–1018 (1999).
Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Oceans 120, 5545–5565 (2015).
Tamura, T., Ohshima, K. I. & Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. https://doi.org/10.1029/2007GL032903 (2008).
Wang, X. et al. Impacts of strong wind events on sea ice and water mass properties in Antarctic coastal polynyas. Clim. Dyn. 57, 3505–3528 (2021).
Nakata, K. & Ohshima, K. Mapping of active frazil and sea ice production in the northern hemisphere, with comparison to the southern hemisphere. J. Geophys. Res. Oceans 127, e2022JC018553 (2022).
Barber, D. G. & Massom, R. A. The role of sea ice in Arctic and Antarctic polynyas. Elsevier Oceanogr. Ser. 74, 1–54 (2007).
Tamura, T., Ohshima, K. I., Fraser, A. D. & Williams, G. D. Sea ice production variability in Antarctic coastal polynyas. J. Geophys. Res. Oceans 121, 2967–2979 (2016).
Riihelä, A., Bright, R. M. & Anttila, K. Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss. Nat. Geosci. 14, 832–836 (2021).
Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K. & Blankenship, D. D. Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing. Cryosphere 12, 2869–2882 (2018).
Nicholls, K. & Makinson, K. in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin Vol. 75 (eds Jacobs, S. S. & Weiss, R. F.) 301–318 (American Geophysical Union, 1985).
Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).
Hattermann, T. et al. Observed interannual changes beneath Filchner–Ronne Ice Shelf linked to large-scale atmospheric circulation. Nat. Commun. 12, 2961 (2021).
Naughten, K. A. et al. Two-timescale response of a large Antarctic ice shelf to climate change. Nat. Commun. 12, 1991 (2021).
Kusahara, K., Williams, G. D., Tamura, T., Massom, R. & Hasumi, H. Dense shelf water spreading from Antarctic coastal polynyas to the deep Southern Ocean: a regional circumpolar model study. J. Geophys. Res. Oceans 122, 6238–6253 (2017).
Jacobs, S. Bottom water production and its links with the thermohaline circulation. Antarct. Sci. 16, 427–437 (2004).
Ohshima, K. I. et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci. 6, 235–240 (2013).
Murakami, K. et al. Strong biological carbon uptake and carbonate chemistry associated with dense shelf water outflows in the Cape Darnley polynya, East Antarctica. Mar. Chem. 225, 103842 (2020).
Arrigo, K. R., van Dijken, G. & Long, M. Coastal Southern Ocean: a strong anthropogenic CO2 sink. Geophys. Res. Lett. https://doi.org/10.1029/2008GL035624 (2008).
Santora, J. A., LaRue, M. A. & Ainley, D. G. Geographic structuring of Antarctic penguin populations. Glob. Ecol. Biogeogr. 29, 1716–1728 (2020).
Raymond, B. et al. Important marine habitat off East Antarctica revealed by two decades of multi-species predator tracking. Ecography 38, 121–129 (2015).
Malpress, V. et al. Bio-physical characterisation of polynyas as a key foraging habitat for juvenile male southern elephant seals (Mirounga leonina) in Prydz Bay, East Antarctica. PLoS ONE 12, e0184536 (2017).
Labrousse, S. et al. Coastal polynyas: winter oases for subadult southern elephant seals in East Antarctica. Sci. Rep. 8, 3183 (2018).
Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).
Marsland, S., Church, J., Bindoff, N. & Williams, G. Antarctic coastal polynya response to climate change. J. Geophys. Res. Oceans https://doi.org/10.1029/2005JC003291 (2007).
Guest, P. Inside katabatic winds over the Terra Nova Bay polynya: 1. Atmospheric jet and surface conditions. J. Geophys. Res. Atmos. 126, e2021JD034902 (2021).
Kottmeier, C. & Engelbart, D. Generation and atmospheric heat exchange of coastal polynyas in the Weddell Sea. Bound. Lay. Meteorol. 60, 207–234 (1992).
Bromwich, D., Liu, Z., Rogers, A. & Van Woert, M. in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin Vol. 75 (eds Jacobs, S. S. & Weiss, R. F.) 101–133 (American Geophysical Union, 1998).
Carrasco, J., Bromwich, D. & Monaghan, A. Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea. Mon. Weather Rev. 131, 289–301 (2003).
Bromwich, D., Carrasco, J., Liu, Z. & Tzeng, R. Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross Ice Shelf, Antarctica. J. Geophys. Res. 98, 13045–13062 (1993).
Renfrew, I. in Encyclopedia of the Antarctic 1st edn (ed. Riffenburgh, B.) 759–762 (Routledge, 2006).
Rhodes, R. et al. Little ice age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Clim. Past 8, 1223–1238 (2012).
Rusciano, E., Budillon, G., Fusco, G. & Spezie, G. Evidence of atmosphere–sea ice coupling in the Terra Nova Bay polynya (Ross Sea–Antarctica). Cont. Shelf Res. 61-62, 112–124 (2013).
Pease, C. The size of wind-driven coastal polynyas. J. Geophys. Res. 92, 7049–7059 (1987).
Heorton, H. D., Radia, N. & Feltham, D. L. A model of sea ice formation in leads and polynyas. J. Phys. Oceanogr. 47, 1701–1718 (2017).
Morales Maqueda, M., Willmott, A. & Biggs, N. Polynya dynamics: a review of observations and modeling. Rev. Geophys. 42, RG1004 (2004).
Goosse, H., Dalaiden, Q., Cavitte, M. & Zhang, L. Can we reconstruct the formation of large open-ocean polynyas in the Southern Ocean using ice core records? Clim. Past 17, 111–131 (2021).
Campagne, P. et al. Glacial ice and atmospheric forcing on the Mertz Glacier polynya over the past 250 years. Nat. Commun. 6, 6642 (2015).
Bromwich, D. & Kurtz, D. Katabatic wind forcing of the Terra Nova Bay polynya. Geophys. Res. 89, 3561–3572 (1984).
Jiang, L. et al. Trends in the stability of Antarctic coastal polynyas and the role of topographic forcing factors. Remote Sens. 12, 1043 (2020).
Ding, Y. et al. Specific relationship between the surface air temperature and the area of the Terra Nova Bay polynya. Antarct. Adv. Atmos. Sci. 37, 532–544 (2020).
Van Woert, M. in Oceanography of the Ross Sea (eds Spezie, G. & Manzella, G. M. R.) 145–164 (Springer, 1999).
Fonseca, R. et al. Atmospheric controls on the Terra Nova Bay polynya occurrence in Antarctica. Clim. Dyn. 61, 5147–5169 (2023).
Liang, K., Wang, J., Luo, H. & Yang, Q. The role of atmospheric rivers in Antarctic sea ice variations. Geophys. Res. Lett. 50, e2022GL102588 (2023).
Ward, J. M. Multi-Temporal Variability Within Antarctic Coastal Polynyas and Their Relationships to Large-Scale Atmospheric Phenomena (Univ. of California, 2018).
Duffy, G. A., Montiel, F., Purich, A. & Fraser, C. I. Emerging long-term trends and interdecadal cycles in Antarctic polynyas. Proc. Natl Acad. Sci. USA 121, e2321595121 (2024).
Dinniman, M., Klinck, J. & Hofmann, E. Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. Amer. Meteor. Soc. 25, 4799–4816 (2012).
Stammerjohn, S. E., Martinson, D. G., Smith, R. C. & Iannuzzi, R. A. Sea ice in the Western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 55, 2041–2058 (2008).
Thompson, D. & Wallace, J. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim. 13, 1000–1016 (2000).
Moore, G., Alverson, K. & Renfrew, I. A reconstruction of the air-sea interaction associated with the Wedell Polynya. J. Phys. Oceanogr. 32, 1685–1698 (2002).
Weijer, W. et al. Local atmospheric response to an open-ocean polynya in a high resolution climate model. J. Clim. 30, 1629–1641 (2017).
Gall’ee, H. Air-sea interactions over Terra Nova Bay during winter: simulation with a coupled atmosphere-polynya model. J. Geophys. Res. 102, 13835–13849 (1997).
Wenta, M. & Cassano, J. The atmospheric boundary layer and surface conditions during katabatic wind events over the Terra Nova Bay polynya. Remote Sens. 12, 4160 (2020).
Maykut, G. Energy exchange over young sea ice in the Central Arctic. J. Geophys. Res. 83, 3646–3658 (1987).
Smith, S., Muench, R. & Pease, C. Polynyas and leads: an overview of physical processes and environment. J. Geophys. Res. 95, 9461–9479 (1990).
Guest, P. Inside katabatic winds over the Terra Nova Bay polynya: 2. Dynamic and thermodynamic analyses. J. Geophys. Res. Atmos. 126, e2021JD034904 (2021).
Adolphs, U. & Wendler, G. A pilot study on the interactions between katabatic winds and polynyas at the Adelie Coast, eastern Antarctica. Antarct. Sci. 7, 307–314 (1995).
Budillon, G., Fusco, G. & Spezie, G. A study of surface heat fluxes in the Ross Sea (Antarctica). Antarct. Sci. 12, 243–254 (2000).
Fusco, G., Budillon, G. & Spezie, G. Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont. Shelf Res. 29, 1887–1895 (2009).
Mezgec, K. et al. Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nat. Commun. 8, 1334 (2017).
Thompson, L. et al. Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica. Cryosphere 14, 3329–3347 (2020).
Andreas, E. L. Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res. 97, 11429–11441 (1992).
Ito, M., Fukamachi, Y., Ohshima, K. I. & Shirasawa, K. Observational evidence of supercooling and frazil ice formation throughout the water column in a coastal polynya in the Sea of Okhotsk. Cont. Shelf Res. 196, 104072 (2020).
Ushio, S. & Wakatsuchi, M. A laboratory study on supercooling and frazil ice production processes in winter coastal polynyas. J. Geophys. Res. 98, 20321–20328 (1993).
Drucker, R. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. J. Geophys. Res. 108, 3149 (2003).
Skogseth, R., Nilsen, F. & Smedsrud, L. H. Supercooled water in an Arctic polynya: observations and modeling. J. Glaciol. 55, 43–52 (2009).
Dmitrenko, I. A. et al. Observations of supercooling and frazil ice formation in the Laptev Sea coastal polynya. J. Geophys. Res. Oceans 115, 5015 (2010).
Martin, S. Frazil ice in rivers and oceans. Annu. Rev. Fluid Mech. 13, 379–397 (1981).
Smedsrud Henrik, L. H. Frazil-ice entrainment of sediment: large-tank laboratory experiments. J. Glaciol. 47, 461–471 (2001).
Schneck, C. C., Ghobrial, T. R. & Loewen, M. R. Laboratory study of the properties of frazil ice particles and flocs in water of different salinities. Cryosphere 13, 2751–2769 (2019).
Yang, D. et al. A mathematical model for supercooling process and its application to frazil ice evolution. Sci. Rep. 13, 5801 (2023).
Mossop, S. C. The freezing of supercooled water. Proc. Phys. Soc. B 68, 193 (1955).
Ciappa, A., Pietranera, L. & Budillon, G. Observations of the Terra Nova Bay (Antarctica) polynya by MODIS ice surface temperature imagery from 2005 to 2010. Remote Sens. Environ. 119, 158–172 (2012).
Clark, S. P. & Doering, J. C. Frazil flocculation and secondary nucleation in a counter-rotating flume. Cold Reg. Sci. Technol. 55, 221–229 (2009).
Matsumura, Y. & Ohshima, K. I. Lagrangian modelling of frazil ice in the ocean. Ann. Glaciol. 56, 373–382 (2015).
Doble, M. J., Coon, M. D. & Wadhams, P. Pancake ice formation in the Weddell Sea. J. Geophys. Res. Oceans 108, 3209 (2003).
Herman, A., Dojczman, M. & Åšwiszcz, K. High-resolution simulations of interactions between surface ocean dynamics and frazil ice. Cryosphere 14, 3707–3729 (2020).
Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).
Malyarenko, A., Gossart, A., Sun, R. & Krapp, M. Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea. Geosci. Model Dev. 16, 3355–3373 (2023).
Årthun, M., Holland, P. R., Nicholls, K. W. & Feltham, D. L. Eddy-driven exchange between the open ocean and a sub-ice shelf cavity. J. Phys. Oceanogr. 43, 2372–2387 (2013).
Jendersie, S., Williams, M. J. M., Langhorne, P. J. & Robertson, R. The density driven winter intensification of the Ross Sea circulation. J. Geophys. Res. Oceans 123, 7702–7724 (2018).
Gunn, K. L., Rintoul, S. R., England, M. H. & Bowen, M. M. Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin. Nat. Clim. Change 13, 537–544 (2023).
Porter, D. F. et al. Evolution of the seasonal surface mixed layer of the Ross Sea, Antarctica, observed with autonomous profiling floats. J. Geophys. Res. Oceans 124, 4934–4953 (2019).
Morrison, A. K., Hogg, A. M., England, M. H. & Spence, P. Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons. Sci. Adv. 6, eaav2516 (2020).
Hellmer, H. H., Kauker, F., Timmermann, R. & Hattermann, T. The fate of the southern Weddell Sea continental shelf in a warming climate. J. Clim. 30, 4337–4350 (2017).
Naughten, K. A. et al. Modeling the influence of the Weddell Polynya on the Filchner–Ronne Ice Shelf cavity. J. Clim. 32, 5289–5303 (2019).
Siahaan, A. et al. The Antarctic contribution to 21st-century sea-level rise predicted by the UK earth system model with an interactive ice sheet. Cryosphere 16, 4053–4086 (2022).
Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).
Orsi, A. H., Smethie, W. M. Jr. & Bullister, J. L. On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. Oceans 107, 31-1–31-14 (2002).
Zhou, L., Heuzé, C. & Mohrmann, M. Sea ice production in the 2016 and 2017 Maud Rise polynyas. J. Geophys. Res. Oceans 128, e2022JC019148 (2023).
Jacobs, S. S., Giulivi, C. F. & Dutrieux, P. Persistent Ross Sea freshening from imbalance West Antarctic ice shelf melting. J. Geophys. Res. Oceans 127, e2021JC017808 (2022).
Silvano, A. et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat. Geosci. 13, 780–786 (2020).
Arrigo, K. in Polynyas: Windows to the World Vol. 74 (eds Smith, W. & Barber, D.) 223–238 (Elsevier, 2007).
Tremblay, J.-E. & Smith, W. in Polynyas: Windows to the World Vol. 74 (eds Smith, W. & Barber, D.) 239–269 (Elsevier, 2007).
Oliver, H., St-Laurent, P., Sherrell, R. M. & Yager, P. L. Modeling iron and light controls on the summer Phaeocystis Antarctica bloom in the Amundsen Sea Polynya. Glob. Biogeochem. Cycles 33, 570–596 (2019).
Vaillancourt, R. D., Sambrotto, R. N., Green, S. & Matsuda, A. Phytoplankton biomass and photosynthetic competency in the summertime Mertz Glacier region of East Antarctica. Deep Sea Res. II Top. Stud. Oceanogr. 50, 1415–1440 (2003).
Smith Jr., W. O., Ainley, D. G., Cattaneo-Vietti, R. & Hofmann, E. E. in Antarctic Ecosystems: an Extreme Environment in a Changing World (eds Rogers, A. D. et al.) Ch. 7, 213–242 (Wiley, 2012).
Boyd, P. et al. The role of biota in the Southern Ocean carbon cycle. Nat. Rev. Earth Environ. 5, 390–408 (2024).
Kim, S. H. et al. Geographical distribution of the mesozooplankton community in highly productive coastal polynyas of the Ross Sea region marine protected area (RSR MPA) during early summer. Mar. Pollut. Bull. 204, 116524 (2024).
Ballard, G., Jongsomjit, D., Veloz, S. D. & Ainley, D. G. Coexistence of mesopredators in an intact polar ocean ecosystem: the basis for defining a Ross Sea marine protected area. Biol. Conserv. 156, 72–82 (2012).
Grebmeier, J. & Barry, J. in Polynyas: Windows to the World Vol. 74 (eds Smith, W. & Barber, D.) 363–390 (Elsevier, 2007).
Dayton, P. in Polar Oceanography Part B: Chemistry, Biology and Geology (ed. Smith Jr., W. O.) 631–685 (Academic, 1990).
Eayrs, C., Li, X., Raphael, M. N. & Holland, D. M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 14, 460–464 (2021).
Rickard, G. J., Behrens, E., Bahamondes Dominguez, A. A. & Pinkerton, M. H. An assessment of the oceanic physical and biogeochemical components of CMIP5 and CMIP6 models for the Ross Sea region. J. Geophys. Res. Oceans 128, e2022JC018880 (2023).
Park, J. et al. Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnol. Oceanogr. 62, 2260–2276 (2017).
St-Laurent, P. et al. Modeling the seasonal cycle of iron and carbon fluxes in the Amundsen Sea polynya, Antarctica. J. Geophys. Res. Oceans 124, 1544–1565 (2019).
Yager, P. et al. A carbon budget for the Amundsen Sea Polynya, Antarctica: estimating net community production and export in a highly productive polar ecosystem. Elem. Sci. Anth. 4, 000140 (2016).
Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. II Top. Stud. Oceanogr. 56, 554–577 (2009).
Huang, Y., Fassbender, A. & Bushinsky, S. Biogenic carbon pool production maintains the Southern Ocean carbon sink. Proc. Natl Acad. Sci. USA 120, e2217909120 (2023).
Lee, S. et al. Evidence of minimal carbon sequestration in the productive Amundsen Sea polynya. Geophys. Res. Lett. 44, 7892–7899 (2017).
Bates, N. R., Hansell, D. A., Carlson, C. A. & Gordon, L. I. Distribution of CO2 species, estimates of net community production, and air–sea CO2 exchange in the Ross Sea polynya. J. Geophys. Res. Oceans 103, 2883–2896 (1998).
Tortell, P. D. et al. Spatial distribution of pCO2, δO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica. Deep Sea Res. II Top. Stud. Oceanogr. 71-76, 77–93 (2012).
Mu, L., Stammerjohn, S. E., Lowry, K. E. & Yager, P. L. Spatial variability of surface pCO2 and air–sea CO2 flux in the Amundsen Sea Polynya, Antarctica. Elem. Sci. Anth. 3, 000036 (2014).
Mo, A. et al. Assessment of austral autumn air–sea CO2 exchange in the pacific sector of the Southern Ocean and dominant controlling factors. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1192959 (2023).
Marinov, I., Gnanadesikan, A., Toggweiler, J. & Sarmiento, J. L. The Southern Ocean biogeochemical divide. Nature 441, 964–967 (2006).
Bercovici, S. K., Huber, B. A., DeJong, H. B., Dunbar, R. B. & Hansell, D. A. Dissolved organic carbon in the Ross Sea: deep enrichment and export. Limnol. Oceanogr. 62, 2593–2603 (2017).
Carrillo, C. J., Smith, R. C. & Karl, D. M. Processes regulating oxygen and carbon dioxide in surface waters west of the Antarctic Peninsula. Mar. Chem. 84, 161–179 (2004).
Wang, X. et al. The response of sea ice and high-salinity shelf water in the Ross Sea Polynya to cyclonic atmosphere circulations. Cryosphere 17, 1107–1126 (2023).
Gordon, A., Visbeck, M. & Comiso, J. A possible link between the Weddell Polynya and the Southern Annular Mode. J. Clim. 20, 2558–2571 (2007).
Campbell, E. C. et al. Antarctic offshore polynyas linked to southern hemisphere climate anomalies. Nature 570, 319–325 (2019).
Mohrmann, M., Heuzé, C. & Swart, S. Southern Ocean polynyas in CMIP6 models. Cryosphere 15, 4281–4313 (2021).
Criscitiello, A. S. et al. Ice sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica. J. Geophys. Res. Oceans 118, 118–130 (2013).
Sprenk, D. et al. Seasonal changes in glacial polynya activity inferred from Weddell Sea varves. Clim. Past 10, 1239–1251 (2014).
Florindo, F., De Santis, L., Siegert, M. & Naish, T. Antarctic Climate Evolution 2nd edn (Elsevier, 2021).
Borchers, A. et al. Holocene ice dynamics and bottom-water formation associated with Cape Darnley polynya activity recorded in Burton Basin, East Antarctica. Mar. Geophys. Res. 37, 49–70 (2016).
Smith, J. A., Hillenbrand, C.-D., Pudsey, C. J., Allen, C. S. & Graham, A. G. C. The presence of polynyas in the Weddell Sea during the Last Glacial Period with implications for the reconstruction of sea-ice limits and ice sheet history. Earth Planet. Sci. Lett. 296, 287–298 (2010).
Ashley, K. E. et al. Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Clim. Past 17, 1–19 (2021).
Maddison, E. J. et al. Post-glacial seasonal diatom record of the Mertz Glacier Polynya, East Antarctica. Mar. Micropaleontol. 60, 66–88 (2006).
Sedwick, P. N. et al. Holocene sediment records from the continental shelf of Mac. Robertson Land, East Antarctica. Paleoceanography 16, 212–225 (2001).
Kern, S. Wintertime Antarctic coastal polynya area: 1992–2008. Geophys. Res. Lett. https://doi.org/10.1029/2009GL038062 (2009).
Wang, T., Wei, H. & Xiao, J. Dynamic linkage between the interannual variability of the spring Ross Ice Shelf Polynya and the atmospheric circulation anomalies. Clim. Dyn. 58, 831–840 (2022).
Singh, H. K. A., Landrum, L., Holland, M. M., Bailey, D. A. & DuVivier, A. K. An overview of Antarctic sea ice in the Community Earth System Model Version 2, part I: analysis of the seasonal cycle in the context of sea ice thermodynamics and coupled atmosphere ocean ice processes. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2020MS002143 (2021).
Blanchard-Wrigglesworth, E., Roach, L. A., Donohoe, A. & Ding, Q. Impact of winds and Southern Ocean SSTs on Antarctic sea ice trends and variability. J. Clim. 34, 949–965 (2021).
DuVivier, A. K. et al. Projections of winter polynyas and their biophysical impacts in the Ross Sea Antarctica. Clim. Dyn. 62, 989–1012 (2023).
Bracegirdle, T. J. et al. Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos. Sci. Lett. 21, e984 (2020).
Roach, L. A. et al. Antarctic sea ice area in CMIP6. Geophys. Res. Lett. 47, e2019GL086729 (2020).
Neme, J., England, M. H. & McC. Hogg, A. Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett. 49, e2022GL098820 (2022).
Purich, A. & England, M. H. Historical and future projected warming of Antarctic shelf bottom water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).
Khazendar, A. et al. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nat. Commun. 4, 2857 (2013).
Obase, T., Abe-Ouchi, A., Kusahara, K., Hasumi, H. & Ohgaito, R. Responses of basal melting of Antarctic ice shelves to the climatic forcing of the last glacial maximum and CO2 doubling. J. Clim. 30, 3473–3497 (2017).
Daae, K. et al. Necessary conditions for warm inflow toward the Filchner ice shelf, Weddell Sea. Geophys. Res. Lett. 47, e2020GL089237 (2020).
Ito, M. et al. Observations of supercooled water and frazil ice formation in an Arctic coastal polynya from moorings and satellite imagery. Ann. Glaciol. 56, 307–314 (2015).
Ohshima, K. I. et al. Dominant frazil ice production in the Cape Darnley polynya leading to Antarctic Bottom Water formation. Sci. Adv. 8, eadc9174 (2022).
Paul, S., Willmes, S., Gutjahr, O., Preußer, A. & Heinemann, G. Spatial feature reconstruction of cloud-covered areas in daily MODIS composites. Remote Sens. 7, 5042–5056 (2015).
Ohshima, K. I., Nihashi, S. & Iwamoto, K. Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geosci. Lett. 3, 1–14 (2016).
Nihashi, S., Ohshima, K. I. & Tamura, T. Sea-ice production in Antarctic coastal polynyas estimated from AMSR2 data and its validation using AMSR-E and SSM/I-SSMIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 3912–3922 (2017).
Nakata, K., Ohshima, K. I. & Nihashi, S. Mapping of active frazil for Antarctic coastal polynyas, with an estimation of sea-ice production. Geophys. Res. Lett. 48, e2020GL091353 (2021).
Nihashi, S. & Ohshima, K. I. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability. J. Clim. 28, 3650–3670 (2015).
Truax, O. Holocene Paleoceanography of the Western Ross Sea, Antarctica. PhD thesis, Univ. of Otago (2022).
Abram, N. J., Wolff, E. W. & Curran, M. A. J. A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev. 79, 168–183 (2013).
Mensah, V., Nakayama, Y., Fujii, M., Nogi, Y. & Ohshima, K. I. Dense water downslope flow and AABW production in a numerical model: sensitivity to horizontal and vertical resolution in the region off Cape Darnley polynya. Ocean Model. 165, 101843 (2021).
Jeong, H. et al. Southern Ocean polynyas and dense water formation in a high-resolution, coupled earth system model. Cryosphere https://doi.org/10.5194/tc-17-2681-2023 (2022).
Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).
Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).
Sadai, S., Condron, A., DeConto, R. & Pollard, D. Future climate response to Antarctic ice sheet melt caused by anthropogenic warming. Sci. Adv. 6, eaaz1169 (2020).
Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 3 (2019).
Schmidt, C., Morrison, A. K. & England, M. H. Wind- and sea ice-driven interannual variability of Antarctic Bottom Water formation. J. Geophys. Res. Oceans https://doi.org/10.1029/2023JC019774 (2023).
Stewart, A. L., Klocker, A. & Menemenlis, D. Circum-Antarctic shoreward heat transport derived from an eddy-and tide-resolving simulation. Geophys. Res. Lett. 45, 834–845 (2018).
Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 13, 49–78 (2019).
Iturbide, M. et al. Repository supporting the implementation of FAIR principles in the IPCC-WG1 Atlas. Zenodo https://doi.org/10.5281/zenodo.3691645 (2021).
Preußer, A., Heinemann, G., Willmes, S. & Paul, S. Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. Cryosphere 10, 3021–3042 (2016).
Tamura, T. & Ohshima, K. I. Mapping of sea ice production in the Arctic coastal polynyas. J. Geophys. Res. Oceans https://doi.org/10.1029/2010JC006586 (2011).
Kane, E. K. Access to an Open Polar Sea in Connection With the Search After Sir John Franklin and His Companions (Baker, Godwin & Co., 1853).
Reimnitz, E., Dethleff, D. & Nürnberg, D. Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea. Mar. Geol. 119, 215–225 (1994).
Lee, Y. J. et al. Causes and evolution of winter polynyas north of Greenland. Cryosphere 17, 233–253 (2023).
Vincent, R. F. A study of the North Water polynya ice arch using four decades of satellite data. Sci. Rep. https://doi.org/10.1038/s41598-019-56780-6 (2019).
Hirano, D. et al. A wind driven, hybrid latent and sensible heat coastal polynya off Barrow, Alaska. J. Geophys. Res. Oceans 121, 980–997 (2016).
Ito, M. et al. Favorable conditions for suspension freezing in an Arctic coastal polynya. J. Geophys. Res. Oceans 124, 8701–8719 (2019).
Schweiger, A. et al. Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res. Oceans https://doi.org/10.1029/2011JC007084 (2011).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Cornish, S. et al. Rise and fall of sea ice production in the Arctic Ocean’s ice factories. Nat. Commun. 13, 7800 (2022).
Stroeve, J. C., Schroder, D., Tsamados, M. & Feltham, D. Warm winter, thin ice? Cryosphere 12, 1791–1809 (2018).
Dickson, R. R. & Brown, J. The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res. Oceans 99, 12319–12341 (1994).
Aagaard, K., Coachman, L. & Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. A Oceanogr. Res. Pap. 28, 529–545 (1981).
Carsey, F. D. Microwave observation of the Weddell Polynya. Mon. Weather Rev. 108, 2032–2044 (1980).
Zwally, H. J. & Gloersen, P. Passive microwave images of the polar regions and research applications. Polar Rec. 18, 431–450 (1977).
Jena, B., Ravichandran, M. & Turner, J. Recent reoccurrence of large open-ocean polynya on the Maud Rise seamount. Geophys. Res. Lett. 46, 4320–4329 (2019).
Martin, T., Park, W. & Latif, M. Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Clim. Dyn. 40, 2005–2022 (2012).
Robertson, R., Visbeck, M., Gordon, A. L. & Fahrbach, E. Long-term temperature trends in the deep waters of the Weddell Sea. Deep Sea Res. II Top. Stud. Oceanogr. 49, 4791–4806 (2002).
Bernardello, R., Marinov, I., Palter, J. B., Galbraith, E. D. & Sarmiento, J. L. Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett. 41, 7262–7269 (2014).
Martinson, D. G., Killworth, P. D. & Gordon, A. L. A convective model for the Weddell Polynya. J. Phys. Oceanogr. 11, 466–488 (1981).
McPhee, M. G. Is thermobaricity a major factor in Southern Ocean ventilation? Antarct. Sci. 15, 153–160 (2003).
Holland, D. M. Transient sea-ice polynya forced by oceanic flow variability. Prog. Oceanogr. 48, 403–460 (2000).
Rheinlænder, J. W., Smedsrud, L. H. & Nisanciouglu, K. H. Internal ocean dynamics control the long-term evolution of Weddell Sea polynya activity. Front. Clim. https://doi.org/10.3389/fclim.2021.718016 (2021).
Cheon, W. G. et al. Replicating the 1970s’ Weddell Polynya using a coupled ocean–sea ice model with reanalysis surface flux fields. Geophys. Res. Lett. 42, 5411–5418 (2015).
Parkinson, C. L. On the development and cause of the Weddell Polynya in a sea ice simulation. J. Phys. Oceanogr. 13, 501–511 (1983).
Timmermann, R., Lemke, P. & Kottmeier, C. Formation and maintenance of a polynya in the Weddell Sea. J. Phys. Oceanogr. 29, 1251–1264 (1999).
Francis, D., Mattingly, K. S., Temimi, M., Massom, R. & Heil, P. On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica. Sci. Adv. 6, eabc2695 (2020).
Holland, D. M. Explaining the Weddell Polynya — a large ocean eddy shed at Maud Rise. Science 292, 1697–1700 (2001).
Kurtakoti, P., Veneziani, M., Stössel, A. & Weijer, W. Preconditioning and formation of Maud Rise polynyas in a high-resolution earth system model. J. Clim. 31, 9659–9678 (2018).
Gordon, A. L. Southern Ocean polynya. Nat. Clim. Change 4, 249–250 (2014).
Lockwood, J. W., Dufour, C. O., Griffies, S. M. & Winton, M. On the role of the Antarctic slope front on the occurrence of the Weddell Sea polynya under climate change. J. Clim. 34, 2529–2548 (2021).
Acknowledgements
N.R.G., E.D.K., A.G., A.M., A.B.-D., M.K., S.J., D.P.L. and A.A.-B. gratefully acknowledge financial support from the New Zealand Ministry for Business Innovation and Employment (grant no. ANTA1801; ‘Antarctic Science Platform’). D.N. acknowledges funding from the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC 2037; CLICCS - Climate, Climatic Change, and Society; project no. 390683824).
Author information
Authors and Affiliations
Contributions
All authors contributed to the conception, writing and editing of the article. N.R.G. and A.A.-B. wrote the introductory section. A.G. wrote the ‘Atmosphere’ section. S.J. wrote the ‘Sea ice’ section. A.M. wrote the ‘Ocean’ section. E.D.K. and A.B-D. wrote the ‘Biogeochemistry and the carbon cycle’ section. M.K., D.P.L. and N.R.G. wrote the ‘Changes in polynya activity’ section. N.R.G. wrote the ‘Summary and future perspectives’ section following discussions with all authors. D.N. wrote Box 1. D.N., D.P.L. and N.R.G. drafted Fig. 1. N.R.G. drafted the schematics for Figs. 2 and 6 with input from section authors. S.J. plotted the ocean profile data in Fig. 3, and A.M. plotted the model outputs in Fig. 4.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Kay Ohshima; Zhaoru Zhang, who co-reviewed with Xiaoqiao Wang; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Golledge, N.R., Keller, E.D., Gossart, A. et al. Antarctic coastal polynyas in the global climate system. Nat Rev Earth Environ 6, 126–139 (2025). https://doi.org/10.1038/s43017-024-00634-x
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43017-024-00634-x