Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antarctic coastal polynyas in the global climate system

Abstract

Coastal polynyas describe regions of persistent open water within the sea-ice pack. In this Review, we outline the critical importance of Antarctic coastal polynyas in the Earth system (including for the atmosphere, sea-ice, ocean and biosphere) and outline their past, present and future changes. Strong offshore winds are the primary force opening coastal polynyas, varying on synoptic timescales to influence polynya existence and size. The exposed ocean surface ventilates heat to the atmosphere, allowing sea surface cooling and frazil ice formation. Frazil ice increases the salinity of surface waters, ultimately sinking as dense shelf water that drives the southern limb of the global ocean overturning circulation. Light and nutrient availability in coastal polynyas also encourages high primary productivity, making them critical aspects of the Antarctic marine food web. Coastal polynya strength and location varies through time, most notably at glacial–interglacial timescales owing to changes in continental shelf available for polynya formation. Predicting the future evolution of Antarctic coastal polynyas is challenged by inadequate model resolution and poorly constrained processes and behaviours, but there are indications that activity will decline with warming. A coordinated and expanded campaign of in situ measurements, as well as new satellite-based observations that use intelligent algorithms, would improve coupled atmosphere–sea-ice–ocean models and, thereby, enhance knowledge of Antarctic coastal polynyas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed and projected changes in Antarctic sea-ice.
Fig. 2: Polynya atmosphere, sea-ice and ocean processes.
Fig. 3: Impact of frazil ice formation on the local water column.
Fig. 4: A coupled model of polynya opening.
Fig. 5: Antarctic ocean circulation in the global system.
Fig. 6: Presence and absence of polynyas under different climate states.

Similar content being viewed by others

References

  1. Arrigo, K. R. & van Dijken, G. L. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res. Oceans https://doi.org/10.1029/2002JC001739 (2003).

  2. Bailey, D. A., Lynch, A. H. & Arbetter, T. E. Relationship between synoptic forcing and polynya formation in the Cosmonaut Sea: 2. Regional climate model simulations. J. Geophys. Res. Oceans https://doi.org/10.1029/2003JC001838 (2004).

  3. Wei, Z., Zhang, Z., Wang, X., Chen, Y. & Zhou, M. The thermodynamic and dynamic control of the sensible heat polynya in the western Cosmonaut Sea. Deep Sea Res. II Top. Stud. Oceanogr. 195, 105000 (2022).

    Google Scholar 

  4. Massom, R., Harris, P., Michael, K. & Potter, M. The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 27, 420–426 (1998).

    Google Scholar 

  5. Fichefet, T. & Goosse, H. A numerical investigation of the spring Ross Sea polynya. Geophys. Res. Lett. 26, 1015–1018 (1999).

    Google Scholar 

  6. Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Oceans 120, 5545–5565 (2015).

    Google Scholar 

  7. Tamura, T., Ohshima, K. I. & Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. https://doi.org/10.1029/2007GL032903 (2008).

  8. Wang, X. et al. Impacts of strong wind events on sea ice and water mass properties in Antarctic coastal polynyas. Clim. Dyn. 57, 3505–3528 (2021).

    Google Scholar 

  9. Nakata, K. & Ohshima, K. Mapping of active frazil and sea ice production in the northern hemisphere, with comparison to the southern hemisphere. J. Geophys. Res. Oceans 127, e2022JC018553 (2022).

  10. Barber, D. G. & Massom, R. A. The role of sea ice in Arctic and Antarctic polynyas. Elsevier Oceanogr. Ser. 74, 1–54 (2007).

    Google Scholar 

  11. Tamura, T., Ohshima, K. I., Fraser, A. D. & Williams, G. D. Sea ice production variability in Antarctic coastal polynyas. J. Geophys. Res. Oceans 121, 2967–2979 (2016).

    Google Scholar 

  12. Riihelä, A., Bright, R. M. & Anttila, K. Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss. Nat. Geosci. 14, 832–836 (2021).

    Google Scholar 

  13. Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K. & Blankenship, D. D. Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing. Cryosphere 12, 2869–2882 (2018).

    Google Scholar 

  14. Nicholls, K. & Makinson, K. in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin Vol. 75 (eds Jacobs, S. S. & Weiss, R. F.) 301–318 (American Geophysical Union, 1985).

  15. Rignot, E. et al. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

    CAS  Google Scholar 

  16. Hattermann, T. et al. Observed interannual changes beneath Filchner–Ronne Ice Shelf linked to large-scale atmospheric circulation. Nat. Commun. 12, 2961 (2021).

    CAS  Google Scholar 

  17. Naughten, K. A. et al. Two-timescale response of a large Antarctic ice shelf to climate change. Nat. Commun. 12, 1991 (2021).

    CAS  Google Scholar 

  18. Kusahara, K., Williams, G. D., Tamura, T., Massom, R. & Hasumi, H. Dense shelf water spreading from Antarctic coastal polynyas to the deep Southern Ocean: a regional circumpolar model study. J. Geophys. Res. Oceans 122, 6238–6253 (2017).

    Google Scholar 

  19. Jacobs, S. Bottom water production and its links with the thermohaline circulation. Antarct. Sci. 16, 427–437 (2004).

    Google Scholar 

  20. Ohshima, K. I. et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci. 6, 235–240 (2013).

    CAS  Google Scholar 

  21. Murakami, K. et al. Strong biological carbon uptake and carbonate chemistry associated with dense shelf water outflows in the Cape Darnley polynya, East Antarctica. Mar. Chem. 225, 103842 (2020).

    CAS  Google Scholar 

  22. Arrigo, K. R., van Dijken, G. & Long, M. Coastal Southern Ocean: a strong anthropogenic CO2 sink. Geophys. Res. Lett. https://doi.org/10.1029/2008GL035624 (2008).

  23. Santora, J. A., LaRue, M. A. & Ainley, D. G. Geographic structuring of Antarctic penguin populations. Glob. Ecol. Biogeogr. 29, 1716–1728 (2020).

    Google Scholar 

  24. Raymond, B. et al. Important marine habitat off East Antarctica revealed by two decades of multi-species predator tracking. Ecography 38, 121–129 (2015).

    Google Scholar 

  25. Malpress, V. et al. Bio-physical characterisation of polynyas as a key foraging habitat for juvenile male southern elephant seals (Mirounga leonina) in Prydz Bay, East Antarctica. PLoS ONE 12, e0184536 (2017).

    Google Scholar 

  26. Labrousse, S. et al. Coastal polynyas: winter oases for subadult southern elephant seals in East Antarctica. Sci. Rep. 8, 3183 (2018).

    Google Scholar 

  27. Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).

    Google Scholar 

  28. Marsland, S., Church, J., Bindoff, N. & Williams, G. Antarctic coastal polynya response to climate change. J. Geophys. Res. Oceans https://doi.org/10.1029/2005JC003291 (2007).

  29. Guest, P. Inside katabatic winds over the Terra Nova Bay polynya: 1. Atmospheric jet and surface conditions. J. Geophys. Res. Atmos. 126, e2021JD034902 (2021).

    Google Scholar 

  30. Kottmeier, C. & Engelbart, D. Generation and atmospheric heat exchange of coastal polynyas in the Weddell Sea. Bound. Lay. Meteorol. 60, 207–234 (1992).

    Google Scholar 

  31. Bromwich, D., Liu, Z., Rogers, A. & Van Woert, M. in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin Vol. 75 (eds Jacobs, S. S. & Weiss, R. F.) 101–133 (American Geophysical Union, 1998).

  32. Carrasco, J., Bromwich, D. & Monaghan, A. Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea. Mon. Weather Rev. 131, 289–301 (2003).

    Google Scholar 

  33. Bromwich, D., Carrasco, J., Liu, Z. & Tzeng, R. Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross Ice Shelf, Antarctica. J. Geophys. Res. 98, 13045–13062 (1993).

    Google Scholar 

  34. Renfrew, I. in Encyclopedia of the Antarctic 1st edn (ed. Riffenburgh, B.) 759–762 (Routledge, 2006).

  35. Rhodes, R. et al. Little ice age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Clim. Past 8, 1223–1238 (2012).

    Google Scholar 

  36. Rusciano, E., Budillon, G., Fusco, G. & Spezie, G. Evidence of atmosphere–sea ice coupling in the Terra Nova Bay polynya (Ross Sea–Antarctica). Cont. Shelf Res. 61-62, 112–124 (2013).

    Google Scholar 

  37. Pease, C. The size of wind-driven coastal polynyas. J. Geophys. Res. 92, 7049–7059 (1987).

    Google Scholar 

  38. Heorton, H. D., Radia, N. & Feltham, D. L. A model of sea ice formation in leads and polynyas. J. Phys. Oceanogr. 47, 1701–1718 (2017).

    Google Scholar 

  39. Morales Maqueda, M., Willmott, A. & Biggs, N. Polynya dynamics: a review of observations and modeling. Rev. Geophys. 42, RG1004 (2004).

    Google Scholar 

  40. Goosse, H., Dalaiden, Q., Cavitte, M. & Zhang, L. Can we reconstruct the formation of large open-ocean polynyas in the Southern Ocean using ice core records? Clim. Past 17, 111–131 (2021).

    Google Scholar 

  41. Campagne, P. et al. Glacial ice and atmospheric forcing on the Mertz Glacier polynya over the past 250 years. Nat. Commun. 6, 6642 (2015).

    CAS  Google Scholar 

  42. Bromwich, D. & Kurtz, D. Katabatic wind forcing of the Terra Nova Bay polynya. Geophys. Res. 89, 3561–3572 (1984).

    Google Scholar 

  43. Jiang, L. et al. Trends in the stability of Antarctic coastal polynyas and the role of topographic forcing factors. Remote Sens. 12, 1043 (2020).

    Google Scholar 

  44. Ding, Y. et al. Specific relationship between the surface air temperature and the area of the Terra Nova Bay polynya. Antarct. Adv. Atmos. Sci. 37, 532–544 (2020).

    CAS  Google Scholar 

  45. Van Woert, M. in Oceanography of the Ross Sea (eds Spezie, G. & Manzella, G. M. R.) 145–164 (Springer, 1999).

  46. Fonseca, R. et al. Atmospheric controls on the Terra Nova Bay polynya occurrence in Antarctica. Clim. Dyn. 61, 5147–5169 (2023).

    Google Scholar 

  47. Liang, K., Wang, J., Luo, H. & Yang, Q. The role of atmospheric rivers in Antarctic sea ice variations. Geophys. Res. Lett. 50, e2022GL102588 (2023).

    Google Scholar 

  48. Ward, J. M. Multi-Temporal Variability Within Antarctic Coastal Polynyas and Their Relationships to Large-Scale Atmospheric Phenomena (Univ. of California, 2018).

  49. Duffy, G. A., Montiel, F., Purich, A. & Fraser, C. I. Emerging long-term trends and interdecadal cycles in Antarctic polynyas. Proc. Natl Acad. Sci. USA 121, e2321595121 (2024).

    CAS  Google Scholar 

  50. Dinniman, M., Klinck, J. & Hofmann, E. Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. Amer. Meteor. Soc. 25, 4799–4816 (2012).

    Google Scholar 

  51. Stammerjohn, S. E., Martinson, D. G., Smith, R. C. & Iannuzzi, R. A. Sea ice in the Western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 55, 2041–2058 (2008).

    Google Scholar 

  52. Thompson, D. & Wallace, J. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    Google Scholar 

  53. Moore, G., Alverson, K. & Renfrew, I. A reconstruction of the air-sea interaction associated with the Wedell Polynya. J. Phys. Oceanogr. 32, 1685–1698 (2002).

    Google Scholar 

  54. Weijer, W. et al. Local atmospheric response to an open-ocean polynya in a high resolution climate model. J. Clim. 30, 1629–1641 (2017).

    Google Scholar 

  55. Gall’ee, H. Air-sea interactions over Terra Nova Bay during winter: simulation with a coupled atmosphere-polynya model. J. Geophys. Res. 102, 13835–13849 (1997).

    Google Scholar 

  56. Wenta, M. & Cassano, J. The atmospheric boundary layer and surface conditions during katabatic wind events over the Terra Nova Bay polynya. Remote Sens. 12, 4160 (2020).

    Google Scholar 

  57. Maykut, G. Energy exchange over young sea ice in the Central Arctic. J. Geophys. Res. 83, 3646–3658 (1987).

    Google Scholar 

  58. Smith, S., Muench, R. & Pease, C. Polynyas and leads: an overview of physical processes and environment. J. Geophys. Res. 95, 9461–9479 (1990).

    Google Scholar 

  59. Guest, P. Inside katabatic winds over the Terra Nova Bay polynya: 2. Dynamic and thermodynamic analyses. J. Geophys. Res. Atmos. 126, e2021JD034904 (2021).

    Google Scholar 

  60. Adolphs, U. & Wendler, G. A pilot study on the interactions between katabatic winds and polynyas at the Adelie Coast, eastern Antarctica. Antarct. Sci. 7, 307–314 (1995).

    Google Scholar 

  61. Budillon, G., Fusco, G. & Spezie, G. A study of surface heat fluxes in the Ross Sea (Antarctica). Antarct. Sci. 12, 243–254 (2000).

    Google Scholar 

  62. Fusco, G., Budillon, G. & Spezie, G. Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont. Shelf Res. 29, 1887–1895 (2009).

    Google Scholar 

  63. Mezgec, K. et al. Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nat. Commun. 8, 1334 (2017).

    CAS  Google Scholar 

  64. Thompson, L. et al. Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica. Cryosphere 14, 3329–3347 (2020).

    Google Scholar 

  65. Andreas, E. L. Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res. 97, 11429–11441 (1992).

    Google Scholar 

  66. Ito, M., Fukamachi, Y., Ohshima, K. I. & Shirasawa, K. Observational evidence of supercooling and frazil ice formation throughout the water column in a coastal polynya in the Sea of Okhotsk. Cont. Shelf Res. 196, 104072 (2020).

    Google Scholar 

  67. Ushio, S. & Wakatsuchi, M. A laboratory study on supercooling and frazil ice production processes in winter coastal polynyas. J. Geophys. Res. 98, 20321–20328 (1993).

    Google Scholar 

  68. Drucker, R. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. J. Geophys. Res. 108, 3149 (2003).

    Google Scholar 

  69. Skogseth, R., Nilsen, F. & Smedsrud, L. H. Supercooled water in an Arctic polynya: observations and modeling. J. Glaciol. 55, 43–52 (2009).

    Google Scholar 

  70. Dmitrenko, I. A. et al. Observations of supercooling and frazil ice formation in the Laptev Sea coastal polynya. J. Geophys. Res. Oceans 115, 5015 (2010).

    Google Scholar 

  71. Martin, S. Frazil ice in rivers and oceans. Annu. Rev. Fluid Mech. 13, 379–397 (1981).

    Google Scholar 

  72. Smedsrud Henrik, L. H. Frazil-ice entrainment of sediment: large-tank laboratory experiments. J. Glaciol. 47, 461–471 (2001).

    Google Scholar 

  73. Schneck, C. C., Ghobrial, T. R. & Loewen, M. R. Laboratory study of the properties of frazil ice particles and flocs in water of different salinities. Cryosphere 13, 2751–2769 (2019).

    Google Scholar 

  74. Yang, D. et al. A mathematical model for supercooling process and its application to frazil ice evolution. Sci. Rep. 13, 5801 (2023).

    CAS  Google Scholar 

  75. Mossop, S. C. The freezing of supercooled water. Proc. Phys. Soc. B 68, 193 (1955).

    Google Scholar 

  76. Ciappa, A., Pietranera, L. & Budillon, G. Observations of the Terra Nova Bay (Antarctica) polynya by MODIS ice surface temperature imagery from 2005 to 2010. Remote Sens. Environ. 119, 158–172 (2012).

    Google Scholar 

  77. Clark, S. P. & Doering, J. C. Frazil flocculation and secondary nucleation in a counter-rotating flume. Cold Reg. Sci. Technol. 55, 221–229 (2009).

    Google Scholar 

  78. Matsumura, Y. & Ohshima, K. I. Lagrangian modelling of frazil ice in the ocean. Ann. Glaciol. 56, 373–382 (2015).

    Google Scholar 

  79. Doble, M. J., Coon, M. D. & Wadhams, P. Pancake ice formation in the Weddell Sea. J. Geophys. Res. Oceans 108, 3209 (2003).

    Google Scholar 

  80. Herman, A., Dojczman, M. & Åšwiszcz, K. High-resolution simulations of interactions between surface ocean dynamics and frazil ice. Cryosphere 14, 3707–3729 (2020).

    Google Scholar 

  81. Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Google Scholar 

  82. Malyarenko, A., Gossart, A., Sun, R. & Krapp, M. Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea. Geosci. Model Dev. 16, 3355–3373 (2023).

    Google Scholar 

  83. Årthun, M., Holland, P. R., Nicholls, K. W. & Feltham, D. L. Eddy-driven exchange between the open ocean and a sub-ice shelf cavity. J. Phys. Oceanogr. 43, 2372–2387 (2013).

    Google Scholar 

  84. Jendersie, S., Williams, M. J. M., Langhorne, P. J. & Robertson, R. The density driven winter intensification of the Ross Sea circulation. J. Geophys. Res. Oceans 123, 7702–7724 (2018).

    Google Scholar 

  85. Gunn, K. L., Rintoul, S. R., England, M. H. & Bowen, M. M. Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin. Nat. Clim. Change 13, 537–544 (2023).

    Google Scholar 

  86. Porter, D. F. et al. Evolution of the seasonal surface mixed layer of the Ross Sea, Antarctica, observed with autonomous profiling floats. J. Geophys. Res. Oceans 124, 4934–4953 (2019).

    Google Scholar 

  87. Morrison, A. K., Hogg, A. M., England, M. H. & Spence, P. Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons. Sci. Adv. 6, eaav2516 (2020).

    CAS  Google Scholar 

  88. Hellmer, H. H., Kauker, F., Timmermann, R. & Hattermann, T. The fate of the southern Weddell Sea continental shelf in a warming climate. J. Clim. 30, 4337–4350 (2017).

    Google Scholar 

  89. Naughten, K. A. et al. Modeling the influence of the Weddell Polynya on the Filchner–Ronne Ice Shelf cavity. J. Clim. 32, 5289–5303 (2019).

    Google Scholar 

  90. Siahaan, A. et al. The Antarctic contribution to 21st-century sea-level rise predicted by the UK earth system model with an interactive ice sheet. Cryosphere 16, 4053–4086 (2022).

    Google Scholar 

  91. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Google Scholar 

  92. Orsi, A. H., Smethie, W. M. Jr. & Bullister, J. L. On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. Oceans 107, 31-1–31-14 (2002).

  93. Zhou, L., Heuzé, C. & Mohrmann, M. Sea ice production in the 2016 and 2017 Maud Rise polynyas. J. Geophys. Res. Oceans 128, e2022JC019148 (2023).

    Google Scholar 

  94. Jacobs, S. S., Giulivi, C. F. & Dutrieux, P. Persistent Ross Sea freshening from imbalance West Antarctic ice shelf melting. J. Geophys. Res. Oceans 127, e2021JC017808 (2022).

  95. Silvano, A. et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat. Geosci. 13, 780–786 (2020).

    CAS  Google Scholar 

  96. Arrigo, K. in Polynyas: Windows to the World Vol. 74 (eds Smith, W. & Barber, D.) 223–238 (Elsevier, 2007).

  97. Tremblay, J.-E. & Smith, W. in Polynyas: Windows to the World Vol. 74 (eds Smith, W. & Barber, D.) 239–269 (Elsevier, 2007).

  98. Oliver, H., St-Laurent, P., Sherrell, R. M. & Yager, P. L. Modeling iron and light controls on the summer Phaeocystis Antarctica bloom in the Amundsen Sea Polynya. Glob. Biogeochem. Cycles 33, 570–596 (2019).

    CAS  Google Scholar 

  99. Vaillancourt, R. D., Sambrotto, R. N., Green, S. & Matsuda, A. Phytoplankton biomass and photosynthetic competency in the summertime Mertz Glacier region of East Antarctica. Deep Sea Res. II Top. Stud. Oceanogr. 50, 1415–1440 (2003).

    CAS  Google Scholar 

  100. Smith Jr., W. O., Ainley, D. G., Cattaneo-Vietti, R. & Hofmann, E. E. in Antarctic Ecosystems: an Extreme Environment in a Changing World (eds Rogers, A. D. et al.) Ch. 7, 213–242 (Wiley, 2012).

  101. Boyd, P. et al. The role of biota in the Southern Ocean carbon cycle. Nat. Rev. Earth Environ. 5, 390–408 (2024).

    CAS  Google Scholar 

  102. Kim, S. H. et al. Geographical distribution of the mesozooplankton community in highly productive coastal polynyas of the Ross Sea region marine protected area (RSR MPA) during early summer. Mar. Pollut. Bull. 204, 116524 (2024).

    CAS  Google Scholar 

  103. Ballard, G., Jongsomjit, D., Veloz, S. D. & Ainley, D. G. Coexistence of mesopredators in an intact polar ocean ecosystem: the basis for defining a Ross Sea marine protected area. Biol. Conserv. 156, 72–82 (2012).

    Google Scholar 

  104. Grebmeier, J. & Barry, J. in Polynyas: Windows to the World Vol. 74 (eds Smith, W. & Barber, D.) 363–390 (Elsevier, 2007).

  105. Dayton, P. in Polar Oceanography Part B: Chemistry, Biology and Geology (ed. Smith Jr., W. O.) 631–685 (Academic, 1990).

  106. Eayrs, C., Li, X., Raphael, M. N. & Holland, D. M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 14, 460–464 (2021).

    CAS  Google Scholar 

  107. Rickard, G. J., Behrens, E., Bahamondes Dominguez, A. A. & Pinkerton, M. H. An assessment of the oceanic physical and biogeochemical components of CMIP5 and CMIP6 models for the Ross Sea region. J. Geophys. Res. Oceans 128, e2022JC018880 (2023).

    CAS  Google Scholar 

  108. Park, J. et al. Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnol. Oceanogr. 62, 2260–2276 (2017).

    CAS  Google Scholar 

  109. St-Laurent, P. et al. Modeling the seasonal cycle of iron and carbon fluxes in the Amundsen Sea polynya, Antarctica. J. Geophys. Res. Oceans 124, 1544–1565 (2019).

    CAS  Google Scholar 

  110. Yager, P. et al. A carbon budget for the Amundsen Sea Polynya, Antarctica: estimating net community production and export in a highly productive polar ecosystem. Elem. Sci. Anth. 4, 000140 (2016).

    Google Scholar 

  111. Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. II Top. Stud. Oceanogr. 56, 554–577 (2009).

    CAS  Google Scholar 

  112. Huang, Y., Fassbender, A. & Bushinsky, S. Biogenic carbon pool production maintains the Southern Ocean carbon sink. Proc. Natl Acad. Sci. USA 120, e2217909120 (2023).

    CAS  Google Scholar 

  113. Lee, S. et al. Evidence of minimal carbon sequestration in the productive Amundsen Sea polynya. Geophys. Res. Lett. 44, 7892–7899 (2017).

    CAS  Google Scholar 

  114. Bates, N. R., Hansell, D. A., Carlson, C. A. & Gordon, L. I. Distribution of CO2 species, estimates of net community production, and air–sea CO2 exchange in the Ross Sea polynya. J. Geophys. Res. Oceans 103, 2883–2896 (1998).

    CAS  Google Scholar 

  115. Tortell, P. D. et al. Spatial distribution of pCO2, δO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica. Deep Sea Res. II Top. Stud. Oceanogr. 71-76, 77–93 (2012).

    CAS  Google Scholar 

  116. Mu, L., Stammerjohn, S. E., Lowry, K. E. & Yager, P. L. Spatial variability of surface pCO2 and air–sea CO2 flux in the Amundsen Sea Polynya, Antarctica. Elem. Sci. Anth. 3, 000036 (2014).

    Google Scholar 

  117. Mo, A. et al. Assessment of austral autumn air–sea CO2 exchange in the pacific sector of the Southern Ocean and dominant controlling factors. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1192959 (2023).

  118. Marinov, I., Gnanadesikan, A., Toggweiler, J. & Sarmiento, J. L. The Southern Ocean biogeochemical divide. Nature 441, 964–967 (2006).

    CAS  Google Scholar 

  119. Bercovici, S. K., Huber, B. A., DeJong, H. B., Dunbar, R. B. & Hansell, D. A. Dissolved organic carbon in the Ross Sea: deep enrichment and export. Limnol. Oceanogr. 62, 2593–2603 (2017).

    CAS  Google Scholar 

  120. Carrillo, C. J., Smith, R. C. & Karl, D. M. Processes regulating oxygen and carbon dioxide in surface waters west of the Antarctic Peninsula. Mar. Chem. 84, 161–179 (2004).

    CAS  Google Scholar 

  121. Wang, X. et al. The response of sea ice and high-salinity shelf water in the Ross Sea Polynya to cyclonic atmosphere circulations. Cryosphere 17, 1107–1126 (2023).

    Google Scholar 

  122. Gordon, A., Visbeck, M. & Comiso, J. A possible link between the Weddell Polynya and the Southern Annular Mode. J. Clim. 20, 2558–2571 (2007).

    Google Scholar 

  123. Campbell, E. C. et al. Antarctic offshore polynyas linked to southern hemisphere climate anomalies. Nature 570, 319–325 (2019).

    CAS  Google Scholar 

  124. Mohrmann, M., Heuzé, C. & Swart, S. Southern Ocean polynyas in CMIP6 models. Cryosphere 15, 4281–4313 (2021).

  125. Criscitiello, A. S. et al. Ice sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica. J. Geophys. Res. Oceans 118, 118–130 (2013).

    Google Scholar 

  126. Sprenk, D. et al. Seasonal changes in glacial polynya activity inferred from Weddell Sea varves. Clim. Past 10, 1239–1251 (2014).

    Google Scholar 

  127. Florindo, F., De Santis, L., Siegert, M. & Naish, T. Antarctic Climate Evolution 2nd edn (Elsevier, 2021).

  128. Borchers, A. et al. Holocene ice dynamics and bottom-water formation associated with Cape Darnley polynya activity recorded in Burton Basin, East Antarctica. Mar. Geophys. Res. 37, 49–70 (2016).

    Google Scholar 

  129. Smith, J. A., Hillenbrand, C.-D., Pudsey, C. J., Allen, C. S. & Graham, A. G. C. The presence of polynyas in the Weddell Sea during the Last Glacial Period with implications for the reconstruction of sea-ice limits and ice sheet history. Earth Planet. Sci. Lett. 296, 287–298 (2010).

    CAS  Google Scholar 

  130. Ashley, K. E. et al. Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Clim. Past 17, 1–19 (2021).

    Google Scholar 

  131. Maddison, E. J. et al. Post-glacial seasonal diatom record of the Mertz Glacier Polynya, East Antarctica. Mar. Micropaleontol. 60, 66–88 (2006).

    Google Scholar 

  132. Sedwick, P. N. et al. Holocene sediment records from the continental shelf of Mac. Robertson Land, East Antarctica. Paleoceanography 16, 212–225 (2001).

    Google Scholar 

  133. Kern, S. Wintertime Antarctic coastal polynya area: 1992–2008. Geophys. Res. Lett. https://doi.org/10.1029/2009GL038062 (2009).

  134. Wang, T., Wei, H. & Xiao, J. Dynamic linkage between the interannual variability of the spring Ross Ice Shelf Polynya and the atmospheric circulation anomalies. Clim. Dyn. 58, 831–840 (2022).

    Google Scholar 

  135. Singh, H. K. A., Landrum, L., Holland, M. M., Bailey, D. A. & DuVivier, A. K. An overview of Antarctic sea ice in the Community Earth System Model Version 2, part I: analysis of the seasonal cycle in the context of sea ice thermodynamics and coupled atmosphere ocean ice processes. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2020MS002143 (2021).

  136. Blanchard-Wrigglesworth, E., Roach, L. A., Donohoe, A. & Ding, Q. Impact of winds and Southern Ocean SSTs on Antarctic sea ice trends and variability. J. Clim. 34, 949–965 (2021).

    Google Scholar 

  137. DuVivier, A. K. et al. Projections of winter polynyas and their biophysical impacts in the Ross Sea Antarctica. Clim. Dyn. 62, 989–1012 (2023).

    Google Scholar 

  138. Bracegirdle, T. J. et al. Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos. Sci. Lett. 21, e984 (2020).

    Google Scholar 

  139. Roach, L. A. et al. Antarctic sea ice area in CMIP6. Geophys. Res. Lett. 47, e2019GL086729 (2020).

    Google Scholar 

  140. Neme, J., England, M. H. & McC. Hogg, A. Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett. 49, e2022GL098820 (2022).

    Google Scholar 

  141. Purich, A. & England, M. H. Historical and future projected warming of Antarctic shelf bottom water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).

    Google Scholar 

  142. Khazendar, A. et al. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nat. Commun. 4, 2857 (2013).

    CAS  Google Scholar 

  143. Obase, T., Abe-Ouchi, A., Kusahara, K., Hasumi, H. & Ohgaito, R. Responses of basal melting of Antarctic ice shelves to the climatic forcing of the last glacial maximum and CO2 doubling. J. Clim. 30, 3473–3497 (2017).

    Google Scholar 

  144. Daae, K. et al. Necessary conditions for warm inflow toward the Filchner ice shelf, Weddell Sea. Geophys. Res. Lett. 47, e2020GL089237 (2020).

    Google Scholar 

  145. Ito, M. et al. Observations of supercooled water and frazil ice formation in an Arctic coastal polynya from moorings and satellite imagery. Ann. Glaciol. 56, 307–314 (2015).

    Google Scholar 

  146. Ohshima, K. I. et al. Dominant frazil ice production in the Cape Darnley polynya leading to Antarctic Bottom Water formation. Sci. Adv. 8, eadc9174 (2022).

    Google Scholar 

  147. Paul, S., Willmes, S., Gutjahr, O., Preußer, A. & Heinemann, G. Spatial feature reconstruction of cloud-covered areas in daily MODIS composites. Remote Sens. 7, 5042–5056 (2015).

    Google Scholar 

  148. Ohshima, K. I., Nihashi, S. & Iwamoto, K. Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geosci. Lett. 3, 1–14 (2016).

    Google Scholar 

  149. Nihashi, S., Ohshima, K. I. & Tamura, T. Sea-ice production in Antarctic coastal polynyas estimated from AMSR2 data and its validation using AMSR-E and SSM/I-SSMIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 3912–3922 (2017).

    Google Scholar 

  150. Nakata, K., Ohshima, K. I. & Nihashi, S. Mapping of active frazil for Antarctic coastal polynyas, with an estimation of sea-ice production. Geophys. Res. Lett. 48, e2020GL091353 (2021).

    Google Scholar 

  151. Nihashi, S. & Ohshima, K. I. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability. J. Clim. 28, 3650–3670 (2015).

    Google Scholar 

  152. Truax, O. Holocene Paleoceanography of the Western Ross Sea, Antarctica. PhD thesis, Univ. of Otago (2022).

  153. Abram, N. J., Wolff, E. W. & Curran, M. A. J. A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev. 79, 168–183 (2013).

    Google Scholar 

  154. Mensah, V., Nakayama, Y., Fujii, M., Nogi, Y. & Ohshima, K. I. Dense water downslope flow and AABW production in a numerical model: sensitivity to horizontal and vertical resolution in the region off Cape Darnley polynya. Ocean Model. 165, 101843 (2021).

    Google Scholar 

  155. Jeong, H. et al. Southern Ocean polynyas and dense water formation in a high-resolution, coupled earth system model. Cryosphere https://doi.org/10.5194/tc-17-2681-2023 (2022).

  156. Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    CAS  Google Scholar 

  157. Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    CAS  Google Scholar 

  158. Sadai, S., Condron, A., DeConto, R. & Pollard, D. Future climate response to Antarctic ice sheet melt caused by anthropogenic warming. Sci. Adv. 6, eaaz1169 (2020).

    Google Scholar 

  159. Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 3 (2019).

  160. Schmidt, C., Morrison, A. K. & England, M. H. Wind- and sea ice-driven interannual variability of Antarctic Bottom Water formation. J. Geophys. Res. Oceans https://doi.org/10.1029/2023JC019774 (2023).

  161. Stewart, A. L., Klocker, A. & Menemenlis, D. Circum-Antarctic shoreward heat transport derived from an eddy-and tide-resolving simulation. Geophys. Res. Lett. 45, 834–845 (2018).

    Google Scholar 

  162. Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 13, 49–78 (2019).

    Google Scholar 

  163. Iturbide, M. et al. Repository supporting the implementation of FAIR principles in the IPCC-WG1 Atlas. Zenodo https://doi.org/10.5281/zenodo.3691645 (2021).

  164. Preußer, A., Heinemann, G., Willmes, S. & Paul, S. Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. Cryosphere 10, 3021–3042 (2016).

    Google Scholar 

  165. Tamura, T. & Ohshima, K. I. Mapping of sea ice production in the Arctic coastal polynyas. J. Geophys. Res. Oceans https://doi.org/10.1029/2010JC006586 (2011).

  166. Kane, E. K. Access to an Open Polar Sea in Connection With the Search After Sir John Franklin and His Companions (Baker, Godwin & Co., 1853).

  167. Reimnitz, E., Dethleff, D. & Nürnberg, D. Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea. Mar. Geol. 119, 215–225 (1994).

    Google Scholar 

  168. Lee, Y. J. et al. Causes and evolution of winter polynyas north of Greenland. Cryosphere 17, 233–253 (2023).

    Google Scholar 

  169. Vincent, R. F. A study of the North Water polynya ice arch using four decades of satellite data. Sci. Rep. https://doi.org/10.1038/s41598-019-56780-6 (2019).

  170. Hirano, D. et al. A wind driven, hybrid latent and sensible heat coastal polynya off Barrow, Alaska. J. Geophys. Res. Oceans 121, 980–997 (2016).

    Google Scholar 

  171. Ito, M. et al. Favorable conditions for suspension freezing in an Arctic coastal polynya. J. Geophys. Res. Oceans 124, 8701–8719 (2019).

    Google Scholar 

  172. Schweiger, A. et al. Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res. Oceans https://doi.org/10.1029/2011JC007084 (2011).

  173. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Google Scholar 

  174. Cornish, S. et al. Rise and fall of sea ice production in the Arctic Ocean’s ice factories. Nat. Commun. 13, 7800 (2022).

    CAS  Google Scholar 

  175. Stroeve, J. C., Schroder, D., Tsamados, M. & Feltham, D. Warm winter, thin ice? Cryosphere 12, 1791–1809 (2018).

    Google Scholar 

  176. Dickson, R. R. & Brown, J. The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res. Oceans 99, 12319–12341 (1994).

    Google Scholar 

  177. Aagaard, K., Coachman, L. & Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. A Oceanogr. Res. Pap. 28, 529–545 (1981).

    Google Scholar 

  178. Carsey, F. D. Microwave observation of the Weddell Polynya. Mon. Weather Rev. 108, 2032–2044 (1980).

    Google Scholar 

  179. Zwally, H. J. & Gloersen, P. Passive microwave images of the polar regions and research applications. Polar Rec. 18, 431–450 (1977).

    Google Scholar 

  180. Jena, B., Ravichandran, M. & Turner, J. Recent reoccurrence of large open-ocean polynya on the Maud Rise seamount. Geophys. Res. Lett. 46, 4320–4329 (2019).

    Google Scholar 

  181. Martin, T., Park, W. & Latif, M. Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Clim. Dyn. 40, 2005–2022 (2012).

    Google Scholar 

  182. Robertson, R., Visbeck, M., Gordon, A. L. & Fahrbach, E. Long-term temperature trends in the deep waters of the Weddell Sea. Deep Sea Res. II Top. Stud. Oceanogr. 49, 4791–4806 (2002).

    Google Scholar 

  183. Bernardello, R., Marinov, I., Palter, J. B., Galbraith, E. D. & Sarmiento, J. L. Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett. 41, 7262–7269 (2014).

    CAS  Google Scholar 

  184. Martinson, D. G., Killworth, P. D. & Gordon, A. L. A convective model for the Weddell Polynya. J. Phys. Oceanogr. 11, 466–488 (1981).

    Google Scholar 

  185. McPhee, M. G. Is thermobaricity a major factor in Southern Ocean ventilation? Antarct. Sci. 15, 153–160 (2003).

    Google Scholar 

  186. Holland, D. M. Transient sea-ice polynya forced by oceanic flow variability. Prog. Oceanogr. 48, 403–460 (2000).

    Google Scholar 

  187. Rheinlænder, J. W., Smedsrud, L. H. & Nisanciouglu, K. H. Internal ocean dynamics control the long-term evolution of Weddell Sea polynya activity. Front. Clim. https://doi.org/10.3389/fclim.2021.718016 (2021).

  188. Cheon, W. G. et al. Replicating the 1970s’ Weddell Polynya using a coupled ocean–sea ice model with reanalysis surface flux fields. Geophys. Res. Lett. 42, 5411–5418 (2015).

    Google Scholar 

  189. Parkinson, C. L. On the development and cause of the Weddell Polynya in a sea ice simulation. J. Phys. Oceanogr. 13, 501–511 (1983).

    Google Scholar 

  190. Timmermann, R., Lemke, P. & Kottmeier, C. Formation and maintenance of a polynya in the Weddell Sea. J. Phys. Oceanogr. 29, 1251–1264 (1999).

    Google Scholar 

  191. Francis, D., Mattingly, K. S., Temimi, M., Massom, R. & Heil, P. On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica. Sci. Adv. 6, eabc2695 (2020).

    Google Scholar 

  192. Holland, D. M. Explaining the Weddell Polynya — a large ocean eddy shed at Maud Rise. Science 292, 1697–1700 (2001).

    CAS  Google Scholar 

  193. Kurtakoti, P., Veneziani, M., Stössel, A. & Weijer, W. Preconditioning and formation of Maud Rise polynyas in a high-resolution earth system model. J. Clim. 31, 9659–9678 (2018).

    Google Scholar 

  194. Gordon, A. L. Southern Ocean polynya. Nat. Clim. Change 4, 249–250 (2014).

    Google Scholar 

  195. Lockwood, J. W., Dufour, C. O., Griffies, S. M. & Winton, M. On the role of the Antarctic slope front on the occurrence of the Weddell Sea polynya under climate change. J. Clim. 34, 2529–2548 (2021).

    Google Scholar 

Download references

Acknowledgements

N.R.G., E.D.K., A.G., A.M., A.B.-D., M.K., S.J., D.P.L. and A.A.-B. gratefully acknowledge financial support from the New Zealand Ministry for Business Innovation and Employment (grant no. ANTA1801; ‘Antarctic Science Platform’). D.N. acknowledges funding from the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC 2037; CLICCS - Climate, Climatic Change, and Society; project no. 390683824).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, writing and editing of the article. N.R.G. and A.A.-B. wrote the introductory section. A.G. wrote the ‘Atmosphere’ section. S.J. wrote the ‘Sea ice’ section. A.M. wrote the ‘Ocean’ section. E.D.K. and A.B-D. wrote the ‘Biogeochemistry and the carbon cycle’ section. M.K., D.P.L. and N.R.G. wrote the ‘Changes in polynya activity’ section. N.R.G. wrote the ‘Summary and future perspectives’ section following discussions with all authors. D.N. wrote Box 1. D.N., D.P.L. and N.R.G. drafted Fig. 1. N.R.G. drafted the schematics for Figs. 2 and 6 with input from section authors. S.J. plotted the ocean profile data in Fig. 3, and A.M. plotted the model outputs in Fig. 4.

Corresponding author

Correspondence to Nicholas R. Golledge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Kay Ohshima; Zhaoru Zhang, who co-reviewed with Xiaoqiao Wang; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golledge, N.R., Keller, E.D., Gossart, A. et al. Antarctic coastal polynyas in the global climate system. Nat Rev Earth Environ 6, 126–139 (2025). https://doi.org/10.1038/s43017-024-00634-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00634-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing