Abstract
Antarctic atmospheric rivers (ARs) are a form of extreme weather that transport heat and moisture from the Southern Hemisphere subtropics and/or mid-latitudes to the Antarctic continent. Present-day AR events generally have a positive influence on the Antarctic ice-sheet mass balance by producing heavy snowfall, yet they also cause melt of sea ice and coastal ice sheet areas, as well as ice shelf destabilization. In this Review, we explore the atmospheric dynamics and impacts of Antarctic ARs over their life cycle to better understand their net contributions to ice-sheet mass balance. ARs occur in high-amplitude pressure couplets, and those strong enough to reach the Antarctic are often formed within Rossby waves initiated by tropical convection. Antarctic ARs are rare events (~3 days per year per location) but have been responsible for 50–70% of extreme snowfall events in East Antarctica since the 1980s. However, they can also trigger extensive surface melting events, such as the final ice shelf collapse of Larsen A in 1995 and Larsen B in 2002. Climate change will likely cause stronger ARs as anthropogenic warming increases atmospheric water vapour. Future research must determine how these climate change impacts will alter the relationship among Antarctic ARs, net ice-sheet mass balance and future sea-level rise.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
ERA5 data produced by ECMWF are available through the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab = overview). MERRA-2 data are publicly available at the Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets?project = MERRA-2). The code for the Wille et al. 2021 AR detection algorithm discussed in this study is publicly available (https://zenodo.org/record/7990215). Data for Fig. 2a are from ref. 7 and data for Fig. 2b are from ref. 49 with both data sets extended until 2020. The authors acknowledge use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov), part of the NASA Earth Observing System Data and Information System (EOSDIS), in Box 3.
Change history
17 April 2025
A Correction to this paper has been published: https://doi.org/10.1038/s43017-025-00679-6
References
Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).
Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).
Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 126, 725–735 (1998).
Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).
Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).
Lemke, P. et al. in Climate Change 2007: The Physical Science Basis — Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 4 (Solomon, S. et al.) 337–383 (Cambridge Univ. Press, 2007).
Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos. 126, e2020JD033788 (2021).
Baiman, R., Winters, A. C., Lenaerts, J. & Shields, C. A. Synoptic drivers of atmospheric river induced precipitation near Dronning Maud Land, Antarctica. J. Geophys. Res. Atmos. 128, e2022JD037859 (2023).
Baiman, R. et al. Synoptic and planetary-scale dynamics modulate antarctic atmospheric river precipitation intensity. Commun. Earth Environ. 5, 127 (2024).
Wille, J. D. et al. West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019).
Liang, K., Wang, J., Luo, H. & Yang, Q. The role of atmospheric rivers in Antarctic sea ice variations. Geophys. Res. Lett. 50, e2022GL102588 (2023).
Gorodetskaya, I. V. et al. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41, 6199–6206 (2014).
Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).
Wille, J. D. et al. The extraordinary March 2022 East Antarctica ‘Heat’ wave. Part II: impacts on the Antarctic ice sheet. J. Clim. 37, 779–799 (2024).
Francis, D., Mattingly, K. S., Temimi, M., Massom, R. & Heil, P. On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica. Sci. Adv. 6, eabc2695 (2020).
Bozkurt, D., Rondanelli, R., Marín, J. C. & Garreaud, R. Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos. 123, 3871–3892 (2018).
Clem, K. R. et al. Antarctica and the Southern Ocean. Bull. Am. Meteorol. Soc. 104, S322–S365 (2023).
Wang, Y., Wu, Q., Zhang, X. & Zhai, Z. Record-breaking Antarctic snowfall in 2022 delays global sea level rise. Sci. Bull. 68, 3154–3157 (2023).
Pohl, B. et al. Relationship between weather regimes and atmospheric rivers in East Antarctica. J. Geophys. Res. Atmos. 126, e2021JD035294 (2021).
Gorodetskaya, I. V. et al. Record-high Antarctic Peninsula temperatures and surface melt in February 2022: a compound event with an intense atmospheric river. npj Clim. Atmos. Sci. 6, 202 (2023).
Spensberger, C., Reeder, M. J., Spengler, T. & Patterson, M. The connection between the southern annular mode and a feature-based perspective on Southern Hemisphere midlatitude winter variability. J. Clim. 33, 115–129 (2020).
Goyal, R., Jucker, M., Sen Gupta, A., Hendon, H. H. & England, M. H. Zonal wave 3 pattern in the Southern Hemisphere generated by tropical convection. Nat. Geosci. 14, 732–738 (2021).
Wille, J. D. et al. The extraordinary March 2022 East Antarctica ‘Heat’ wave. Part I: observations and meteorological drivers. J. Clim. 37, 757–778 (2024).
Clem, K. R., Bozkurt, D., Kennett, D., King, J. C. & Turner, J. Central tropical Pacific convection drives extreme high temperatures and surface melt on the Larsen C Ice Shelf, Antarctic Peninsula. Nat. Commun. 13, 3906 (2022).
Shields, C. A., Wille, J. D., Marquardt Collow, A. B., Maclennan, M. & Gorodetskaya, I. V. Evaluating uncertainty and modes of variability for Antarctic atmospheric rivers. Geophys. Res. Lett. 49, e2022GL099577 (2022).
Terpstra, A., Gorodetskaya, I. V. & Sodemann, H. Linking sub-tropical evaporation and extreme precipitation over East Antarctica: an atmospheric river case study. J. Geophys. Res. Atmos. 126, e2020JD033617 (2021).
Rondanelli, R., Hatchett, B., Rutllant, J., Bozkurt, D. & Garreaud, R. Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophys. Res. Lett. 46, 3482–3491 (2019).
Trenberth, K. E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Oceans 103, 14291–14324 (1998).
Wang, G. et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 10, 13 (2019).
Wille, J. D. et al. Examining atmospheric river life cycles in East Antarctica. J. Geophys. Res. Atmos. 129, e2023JD039970 (2024).
Maclennan, M. L. et al. Climatology and surface impacts of atmospheric rivers on West Antarctica. Cryosphere 17, 865–881 (2023).
Gordon, A. E., Cavallo, S. M. & Novak, A. K. Evaluating common characteristics of Antarctic tropopause polar vortices. J. Atmos. Sci. 80, 337–352 (2022).
Udy, D. G., Vance, T. R., Kiem, A. S., Holbrook, N. J. & Curran, M. A. J. Links between large-scale modes of climate variability and synoptic weather patterns in the Southern Indian Ocean. J. Clim. 34, 883–899 (2021).
Bromwich, D. H. Snowfall in high southern latitudes. Rev. Geophys. 26, 149 (1988).
Gehring, J. et al. Orographic flow influence on precipitation during an atmospheric river event at Davis, Antarctica. J. Geophys. Res. Atmos. 127, e2021JD035210 (2022).
Wille, J. D. et al. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ. 3, 90 (2022).
Turner, J. et al. Extreme temperatures in the Antarctic. J. Clim. 34, 2653–2668 (2021).
Datta, R. T. et al. The effect of Foehn-induced surface melt on firn evolution over the Northeast Antarctic Peninsula. Geophys. Res. Lett. 46, 3822–3831 (2019).
Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A. & Lachlan-Cope, T. A. Foehn warming distributions in nonlinear and linear flow regimes: a focus on the Antarctic Peninsula: foehn warming distributions in nonlinear and linear flow regimes. Q. J. R. Meteorol. Soc. 142, 618–631 (2016).
Zou, X. et al. Strong warming over the Antarctic Peninsula during combined atmospheric river and foehn events: contribution of shortwave radiation and turbulence. J. Geophys. Res. Atmos. 128, e2022JD038138 (2023).
Laffin, M. K., Zender, C. S., van Wessem, M. & Marinsek, S. The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse. Cryosphere 16, 1369–1381 (2022).
Elvidge, A. D., Kuipers Munneke, P., King, J. C., Renfrew, I. A. & Gilbert, E. Atmospheric drivers of melt on Larsen C Ice Shelf: surface energy budget regimes and the impact of foehn. J. Geophys. Res. Atmos. 125, e2020JD032463 (2020).
Zou, X., Bromwich, D. H., Montenegro, A., Wang, S.-H. & Bai, L. Major surface melting over the Ross Ice Shelf part I: foehn effect. Q. J. R. Meteorol. Soc. 147, 2874–2894 (2021).
Djoumna, G. & Holland, D. M. Atmospheric rivers, warm air intrusions, and surface radiation balance in the Amundsen Sea embayment. J. Geophys. Res. Atmos. 126, e2020JD034119 (2021).
Francis, D., Fonseca, R., Mattingly, K. S., Lhermitte, S. & Walker, C. Foehn winds at Pine Island Glacier and their role in ice changes. Cryosphere 17, 3041–3062 (2023).
Ricaud, P. et al. Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica. Atmos. Chem. Phys. 20, 4167–4191 (2020).
Finlon, J. A. et al. Structure of an atmospheric river over Australia and the Southern Ocean: II. Microphysical evolution. J. Geophys. Res. Atmos. 125, e2020JD032514 (2020).
Lapere, R. et al. Polar aerosol atmospheric rivers: detection, characteristics, and potential applications. J. Geophys. Res. Atmos. 129, e2023JD039606 (2024).
Maclennan, M. L., Lenaerts, J. T. M., Shields, C. & Wille, J. D. Contribution of atmospheric rivers to Antarctic precipitation. Geophys. Res. Lett. 49, e2022GL100585 (2022).
Zhang, Z. et al. Extending the CW3E atmospheric river scale to the polar regions. EGUsphere 2024, 1–36 (2024).
Marshall, G. J. & Thompson, D. W. J. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures: Antarctic temperatures. J. Geophys. Res. Atmos. 121, 3276–3289 (2016).
Clem, K. R., Renwick, J. A., McGregor, J. & Fogt, R. L. The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos. 121, 9324–9341 (2016).
Nuncio, M. & Yuan, X. The influence of the Indian Ocean dipole on Antarctic sea ice. J. Clim. 28, 2682–2690 (2015).
Fogt, R. L. et al. Seasonal Antarctic pressure variability during the twentieth century from spatially complete reconstructions and CAM5 simulations. Clim. Dyn. 53, 1435–1452 (2019).
Turner, J. et al. Antarctic temperature variability and change from station data. Int. J. Climatol. 40, 2986–3007 (2020).
Maclennan, M. L. & Lenaerts, J. T. M. Large-scale atmospheric drivers of snowfall over Thwaites Glacier, Antarctica. Geophys. Res. Lett. 48, e2021GL093644 (2021).
Zhang, N., Zheng, X. & Ma, Q. Study on wave-induced kinematic responses and flexures of ice floe by smoothed particle hydrodynamics. Comput. Fluids 189, 46–59 (2019).
Guo, Y., Shinoda, T., Guan, B., Waliser, D. E. & Chang, E. K. M. Statistical relationship between atmospheric rivers and extratropical cyclones and anticyclones. J. Clim. 33, 7817–7834 (2020).
Zhang, Z. & Ralph, F. M. The influence of antecedent atmospheric river conditions on extratropical cyclogenesis. Mon. Weather Rev. 149, 1337–1357 (2021).
Ma, W., Chen, G. & Guan, B. Poleward shift of atmospheric rivers in the Southern Hemisphere in recent decades. Geophys. Res. Lett. 47, e2020GL089934 (2020).
Shields, C. A. et al. Future atmospheric rivers and impacts on precipitation: overview of the ARTMIP Tier 2 high-resolution global warming experiment. Geophys. Res. Lett. 50, e2022GL102091 (2023).
Ma, W. et al. The role of interdecadal climate oscillations in driving Arctic atmospheric river trends. Nat. Commun. 15, 2135 (2024).
O’Brien, T. A. et al. Increases in future AR count and size: overview of the ARTMIP Tier 2 CMIP5/6 experiment. J. Geophys. Res. Atmos. 127, e2021JD036013 (2022).
Zhang, L., Zhao, Y., Cheng, T. F. & Lu, M. Future changes in global atmospheric rivers projected by CMIP6 models. J. Geophys. Res. Atmos. 129, e2023JD039359 (2024).
Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).
Mottram, R. et al. What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15, 3751–3784 (2021).
Lenaerts, J. T. M., Medley, B., van den Broeke, M. R. & Wouters, B. Observing and modeling ice sheet surface mass balance. Rev. Geophys. 57, 376–420 (2019).
Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095 (2019).
González-Herrero, S. et al. Extreme precipitation records in Antarctica. Int. J. Climatol. 43, 3125–3138 (2023).
Adusumilli, S., Fish, A. M., Fricker, H. A. & Medley, B. Atmospheric river precipitation contributed to rapid increases in surface height of the West Antarctic Ice Sheet in 2019. Geophys. Res. Lett. 48, e2020GL091076 (2021).
Evangelista, H. et al. The June 2022 extreme warm event in central West Antarctica. Antarctic Sci. 35, 319–327 (2023).
Bozkurt, D., Marín, J. C. & Barrett, B. S. Temperature and moisture transport during atmospheric blocking patterns around the Antarctic Peninsula. Weather Clim. Extrem. 38, 100506 (2022).
Amory, C. et al. Firn on ice sheets. Nat. Rev. Earth Environ. 5, 79–99 (2024).
Kuipers Munneke, P., Ligtenberg, S. R. M., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).
Donat-Magnin, M. et al. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. Cryosphere 15, 571–593 (2021).
Van Wessem, J. M., Van De Berg, W. J. & Van Den Broeke, M. R. Data set: monthly averaged RACMO2.3p2 variables; Antarctica. Zenodo https://doi.org/10.5281/zenodo.7845736 (2023).
Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).
Scambos, T., Hulbe, C. & Fahnestock, M. Climate-induced ice shelf disintegration in the Antarctic Peninsula. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (eds Domack, E. et al.) 79–92 (Wiley, 2003).
Francis, D., Mattingly, K. S., Lhermitte, S., Temimi, M. & Heil, P. Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf. Cryosphere 15, 2147–2165 (2021).
Francis, D. et al. Atmospheric triggers of the Brunt Ice Shelf calving in February 2021. J. Geophys. Res. Atmos. 127, e2021JD036424 (2022).
Walker, C. C. et al. Multi-decadal collapse of East Antarctica’s Conger–Glenzer Ice Shelf. Nat. Geosci. 17, 1240–1248 (2024).
Ochwat, N. E. et al. Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response. Cryosphere 18, 1709–1731 (2024).
Stammerjohn, S. et al. Antarctica and the Southern Ocean. Bull. Am. Meteorol. Soc. 102, S317–S356 (2021).
Kuipers Munneke, P. et al. Intense winter surface melt on an Antarctic Ice Shelf. Geophys. Res. Lett. 45, 7615–7623 (2018).
Hepworth, E., Messori, G. & Vichi, M. Association between extreme atmospheric anomalies over Antarctic sea ice, Southern Ocean Polar cyclones and atmospheric rivers. J. Geophys. Res. Atmos. 127, e2021JD036121 (2022).
Bozkurt, D. et al. Recent near-surface temperature trends in the Antarctic Peninsula from observed, reanalysis and regional climate model data. Adv. Atmos. Sci. 37, 477–493 (2020).
Fonseca, R. et al. Atmospheric controls on the Terra Nova Bay polynya occurrence in Antarctica. Clim. Dyn. 61, 5147–5169 (2023).
Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. npj Clim. Atmos. Sci. 5, 19 (2022).
Kriegsmann, A. & Brümmer, B. Cyclone impact on sea ice in the central Arctic Ocean: a statistical study. Cryosphere 8, 303–317 (2014).
Holland, P. R. & Kimura, N. Observed concentration budgets of Arctic and Antarctic sea ice. J. Clim. 29, 5241–5249 (2016).
Massom, R. A. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558, 383–389 (2018).
Raphael, M. N. & Handcock, M. S. A new record minimum for Antarctic sea ice. Nat. Rev. Earth Environ. 3, 215–216 (2022).
Lu, H. et al. Extreme warm events in the South Orkney Islands, Southern Ocean: compounding influence of atmospheric rivers and föhn conditions. Q. J. R. Meteorol. Soc. 149, 3645–3668 (2023).
Torres, C., Bozkurt, D., Carrasco-Escaff, T., Bolibar, J. & Arigony-Neto, J. New insights on the interannual surface mass balance variability on the South Shetland Islands glaciers, northerly Antarctic Peninsula. Glob. Planet. Change 239, 104506 (2024).
Ropert-Coudert, Y. et al. A complete breeding failure in an Adélie penguin colony correlates with unusual and extreme environmental events. Ecography 38, 111–113 (2015).
Barrett, J. E. et al. Response of a terrestrial polar ecosystem to the March 2022 Antarctic weather anomaly. Earths Future 12, e2023EF004306 (2024).
Jackson, S. L. et al. Climatology of the Mount Brown South ice core site in East Antarctica: implications for the interpretation of a water isotope record. Clim. Past 19, 1653–1675 (2023).
Weng, Y., Johannessen, A. & Sodemann, H. High-resolution stable isotope signature of a land-falling atmospheric river in southern Norway. Weather Clim. Dyn. 2, 713–737 (2021).
Bozkurt, D. et al. Atmospheric river brings warmth and rainfall to the Northern Antarctic Peninsula during the mid-Austral Winter of 2023. Geophys. Res. Lett. 51, e2024GL108391 (2024).
Hoffmann-Abdi, K. et al. Short-term meteorological and environmental signals recorded in a firn core from a high-accumulation site on Plateau Laclavere, Antarctic Peninsula. Geosciences 11, 428 (2021).
Favier, V. et al. Antarctica-regional climate and surface mass budget. Curr. Clim. Change Rep. 3, 303–315 (2017).
Kittel, C. et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).
Coulon, V. et al. Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model. Cryosphere 18, 653–681 (2024).
Dalaiden, Q. et al. How useful is snow accumulation in reconstructing surface air temperature in Antarctica? A study combining ice core records and climate models. Cryosphere 14, 1187–1207 (2020).
Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C. & Berne, A. Present and future of rainfall in Antarctica. Geophys. Res. Lett. 48, e2020GL092281 (2021).
Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R. & Lubin, D. Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J. Clim. 32, 665–684 (2019).
Bevan, S. et al. Amundsen Sea embayment ice-sheet mass-loss predictions to 2050 calibrated using observations of velocity and elevation change. J. Glaciol. 69, 1729–1739 (2023).
Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).
Lowry, D. P., Krapp, M., Golledge, N. R. & Alevropoulos-Borrill, A. The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Commun. Earth Environ. 2, 221 (2021).
Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).
Mahesh, A. et al. Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1. Geosci. Model Dev. 17, 3533–3557 (2024).
Galea, D., Ma, H.-Y., Wu, W.-Y. & Kobayashi, D. Deep learning image segmentation for atmospheric rivers. Artif. Intell. Earth Syst. 3, 230048 (2024).
Gilbert, E. et al. Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling. EGUsphere 2024, 1–41 (2024).
Bromwich, D. H. et al. Winter targeted observing periods during the Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bull. Am. Meteorol. Soc. 105, E1662–E1684 (2024).
Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Shields, C. A. et al. Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design. Geosci. Model Dev. 11, 2455–2474 (2018).
Rutz, J. J. et al. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos. 124, 13777–13802 (2019).
Gorodetskaya, I. V., Silva, T., Schmithüsen, H. & Hirasawa, N. Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land Coast, East Antarctica. Adv. Atmos. Sci. 37, 455–476 (2020).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Ralph, F. M. et al. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteorol. Soc. 100, 269–289 (2019).
Ricaud, P. et al. Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing. Atmos. Chem. Phys. 24, 613–630 (2024).
Mitnik, L. M., Kuleshov, V. P., Mitnik, M. L. & Baranyuk, A. V. Satellite microwave radiometric measurements of extreme temperature rise in East Antarctica in March 2022. Sovr. Probl. DZZ Kosm. 20, 246–261 (2023).
Crewell, S. et al. A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means. Atmos. Meas. Tech. 14, 4829–4856 (2021).
Hoffman, A. O., Maclennan, M., Lenaerts, J., Larson, K. M. & Chrsitianson, K. Amundsen Sea embayment accumulation variability measured with GNSS-IR. Cryosphere Discuss. 2023, 1–28 (2023).
Bromwich, D. H. et al. The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bull. Am. Meteorol. Soc. 101, E1653–E1676 (2020).
Culberg, R., Schroeder, D. M. & Chu, W. Extreme melt season ice layers reduce firn permeability across Greenland. Nat. Commun. 12, 2336 (2021).
Miller, J. Z. et al. An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry. Cryosphere 16, 103–125 (2022).
Neff, P. Amundsen Sea coastal ice rises: future sites for marine-focused ice core records. Oceanography 33, 88–89 (2020).
Graf, P., Wernli, H., Pfahl, S. & Sodemann, H. A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain. Atmos. Chem. Phys. 19, 747–765 (2019).
Fauchereau, N., Pohl, B., Reason, C. J. C., Rouault, M. & Richard, Y. Recurrent daily OLR patterns in the Southern Africa/Southwest Indian Ocean region, implications for South African rainfall and teleconnections. Clim. Dyn. 32, 575–591 (2009).
Pohl, B., Dieppois, B., Crétat, J., Lawler, D. & Rouault, M. From synoptic to interdecadal variability in Southern African rainfall: toward a unified view across time scales. J. Clim. 31, 5845–5872 (2018).
Hart, N. C. G., Reason, C. J. C. & Fauchereau, N. Cloud bands over southern Africa: seasonality, contribution to rainfall variability and modulation by the MJO. Clim. Dyn. 41, 1199–1212 (2013).
Macron, C., Pohl, B., Richard, Y. & Bessafi, M. How do tropical temperate troughs form and develop over Southern Africa? J. Clim. 27, 1633–1647 (2014).
Wernli, H. A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Q. J. R. Meteorol. Soc. 123, 1677–1706 (1997).
Servettaz, A. P. M. et al. Snowfall and water stable isotope variability in East Antarctica controlled by warm synoptic events. J. Geophys. Res. Atmos. 125, e2020JD032863 (2020).
Acknowledgements
J.D.W. acknowledges support from the Horizon 2020 project nextGEMS under grant agreement number 101003470. K.S.M. acknowledges support from the Polar Radiant Energy in the Far InfraRed Experiment (PREFIRE) mission, NASA grant 80NSSC18K1485. X.Z. acknowledges support from NSF Grants 2229392. Y.M. was supported by the NASA Future Investigators in NASA Earth and Space Science and Technology programme (award number 80NSSC24K0012). J.E.B. was supported by the National Science Foundation for Long Term Ecological Research number OPP-2224760. C.A.S. acknowledges support by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the US Department of Energy’s Office of Biological & Environmental Research (BER) under Award Number DE-SC0022070, as well as National Center for Atmospheric Research, sponsored by NSF, under Cooperative Agreement Number 1852977. K.R.C. acknowledges support from the Royal Society of New Zealand Marsden Fund grant MFP-VUW2010. G.L. was supported by the National Defense Science and Engineering Graduate (NDSEG) Fellowship programme. A.C.W. and R.B. acknowledge financial support from the University of Colorado Boulder. M.L.M. acknowledges support from NASA grant 80NSSC21K1610 and the University of Colorado Boulder. I.V.G. thanks the support by the strategic funding to CIIMAR (UIDB/04423/2020 and UIDP/04423/2020), 2021.03140.CEECIND, projects ATLACE (CIRCNA/CAC/0273/2019), MAPS (2022.09201.PTDC) and Portuguese Polar Program (PROPOLAR) through national funds provided by FCT (Fundação para a Ciência e a Tecnologia). D.B. acknowledges support from ANID-FONDECYT-1240190, ANID-FONDAP-1523A0002 and COPAS COASTAL ANID FB210021. A.C. and S.K. acknowledge funding support from the Ukrainian State Special-Purpose Research Program in Antarctica for 2011–2022, research direction: Hydrometeorology; and they express their gratitude to their Ukrainian polar science co-workers known as the ‘Squad of Combat Penguins’.
Author information
Authors and Affiliations
Contributions
J.D.W., V.F. and I.V.G. led the Review. All authors contributed to the researching of data, writing and reviewing and editing of the manuscript, with authors B.P., R.B., I.V.G., C.A.S., M.L.M., X.Z., D.B., V.F., J.D.W. and R.D. leading the contributions to specific sections. Figure and display items were led by the following authors: B.P. (Fig. 1), R.B. (Figs. 1 and 2), X.Z. (Figs. 1 and 3), A.O.H. (Fig. 4), I.V.G. (Boxes 1 and 2) and V.F. and J.D.W. (Box 3).
Corresponding author
Ethics declarations
Competing interests
C.A.S. is an associate editor for NPJ Climate and Atmospheric Science. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Sergi González-Herrero, Qinghua Yang, Ella Gilbert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wille, J.D., Favier, V., Gorodetskaya, I.V. et al. Atmospheric rivers in Antarctica. Nat Rev Earth Environ 6, 178–192 (2025). https://doi.org/10.1038/s43017-024-00638-7
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43017-024-00638-7
This article is cited by
-
Indian summer monsoon rainfall drives Antarctic climate and sea ice variability through atmospheric teleconnections
npj Climate and Atmospheric Science (2025)