Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atmospheric rivers in Antarctica

A Publisher Correction to this article was published on 17 April 2025

This article has been updated

Abstract

Antarctic atmospheric rivers (ARs) are a form of extreme weather that transport heat and moisture from the Southern Hemisphere subtropics and/or mid-latitudes to the Antarctic continent. Present-day AR events generally have a positive influence on the Antarctic ice-sheet mass balance by producing heavy snowfall, yet they also cause melt of sea ice and coastal ice sheet areas, as well as ice shelf destabilization. In this Review, we explore the atmospheric dynamics and impacts of Antarctic ARs over their life cycle to better understand their net contributions to ice-sheet mass balance. ARs occur in high-amplitude pressure couplets, and those strong enough to reach the Antarctic are often formed within Rossby waves initiated by tropical convection. Antarctic ARs are rare events (~3 days per year per location) but have been responsible for 50–70% of extreme snowfall events in East Antarctica since the 1980s. However, they can also trigger extensive surface melting events, such as the final ice shelf collapse of Larsen A in 1995 and Larsen B in 2002. Climate change will likely cause stronger ARs as anthropogenic warming increases atmospheric water vapour. Future research must determine how these climate change impacts will alter the relationship among Antarctic ARs, net ice-sheet mass balance and future sea-level rise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The dynamics of a landfalling Antarctic AR.
Fig. 2: AR frequency, trends and projections.
Fig. 3: Antarctic AR extremes.
Fig. 4: AR impacts.

Similar content being viewed by others

Data availability

ERA5 data produced by ECMWF are available through the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab = overview). MERRA-2 data are publicly available at the Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets?project = MERRA-2). The code for the Wille et al. 2021 AR detection algorithm discussed in this study is publicly available (https://zenodo.org/record/7990215). Data for Fig. 2a are from ref. 7 and data for Fig. 2b are from ref. 49 with both data sets extended until 2020. The authors acknowledge use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov), part of the NASA Earth Observing System Data and Information System (EOSDIS), in Box 3.

Change history

References

  1. Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).

    Article  Google Scholar 

  2. Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).

    Article  Google Scholar 

  3. Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 126, 725–735 (1998).

    Article  Google Scholar 

  4. Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).

    Article  Google Scholar 

  5. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    Article  CAS  Google Scholar 

  6. Lemke, P. et al. in Climate Change 2007: The Physical Science Basis — Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 4 (Solomon, S. et al.) 337–383 (Cambridge Univ. Press, 2007).

  7. Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos. 126, e2020JD033788 (2021).

    Article  Google Scholar 

  8. Baiman, R., Winters, A. C., Lenaerts, J. & Shields, C. A. Synoptic drivers of atmospheric river induced precipitation near Dronning Maud Land, Antarctica. J. Geophys. Res. Atmos. 128, e2022JD037859 (2023).

    Article  Google Scholar 

  9. Baiman, R. et al. Synoptic and planetary-scale dynamics modulate antarctic atmospheric river precipitation intensity. Commun. Earth Environ. 5, 127 (2024).

    Article  Google Scholar 

  10. Wille, J. D. et al. West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019).

    Article  CAS  Google Scholar 

  11. Liang, K., Wang, J., Luo, H. & Yang, Q. The role of atmospheric rivers in Antarctic sea ice variations. Geophys. Res. Lett. 50, e2022GL102588 (2023).

    Article  Google Scholar 

  12. Gorodetskaya, I. V. et al. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41, 6199–6206 (2014).

    Article  Google Scholar 

  13. Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).

    Article  Google Scholar 

  14. Wille, J. D. et al. The extraordinary March 2022 East Antarctica ‘Heat’ wave. Part II: impacts on the Antarctic ice sheet. J. Clim. 37, 779–799 (2024).

    Article  Google Scholar 

  15. Francis, D., Mattingly, K. S., Temimi, M., Massom, R. & Heil, P. On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica. Sci. Adv. 6, eabc2695 (2020).

    Article  Google Scholar 

  16. Bozkurt, D., Rondanelli, R., Marín, J. C. & Garreaud, R. Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos. 123, 3871–3892 (2018).

    Article  Google Scholar 

  17. Clem, K. R. et al. Antarctica and the Southern Ocean. Bull. Am. Meteorol. Soc. 104, S322–S365 (2023).

    Article  Google Scholar 

  18. Wang, Y., Wu, Q., Zhang, X. & Zhai, Z. Record-breaking Antarctic snowfall in 2022 delays global sea level rise. Sci. Bull. 68, 3154–3157 (2023).

    Article  Google Scholar 

  19. Pohl, B. et al. Relationship between weather regimes and atmospheric rivers in East Antarctica. J. Geophys. Res. Atmos. 126, e2021JD035294 (2021).

    Article  Google Scholar 

  20. Gorodetskaya, I. V. et al. Record-high Antarctic Peninsula temperatures and surface melt in February 2022: a compound event with an intense atmospheric river. npj Clim. Atmos. Sci. 6, 202 (2023).

    Article  Google Scholar 

  21. Spensberger, C., Reeder, M. J., Spengler, T. & Patterson, M. The connection between the southern annular mode and a feature-based perspective on Southern Hemisphere midlatitude winter variability. J. Clim. 33, 115–129 (2020).

    Article  Google Scholar 

  22. Goyal, R., Jucker, M., Sen Gupta, A., Hendon, H. H. & England, M. H. Zonal wave 3 pattern in the Southern Hemisphere generated by tropical convection. Nat. Geosci. 14, 732–738 (2021).

    Article  CAS  Google Scholar 

  23. Wille, J. D. et al. The extraordinary March 2022 East Antarctica ‘Heat’ wave. Part I: observations and meteorological drivers. J. Clim. 37, 757–778 (2024).

    Article  Google Scholar 

  24. Clem, K. R., Bozkurt, D., Kennett, D., King, J. C. & Turner, J. Central tropical Pacific convection drives extreme high temperatures and surface melt on the Larsen C Ice Shelf, Antarctic Peninsula. Nat. Commun. 13, 3906 (2022).

    Article  CAS  Google Scholar 

  25. Shields, C. A., Wille, J. D., Marquardt Collow, A. B., Maclennan, M. & Gorodetskaya, I. V. Evaluating uncertainty and modes of variability for Antarctic atmospheric rivers. Geophys. Res. Lett. 49, e2022GL099577 (2022).

    Article  Google Scholar 

  26. Terpstra, A., Gorodetskaya, I. V. & Sodemann, H. Linking sub-tropical evaporation and extreme precipitation over East Antarctica: an atmospheric river case study. J. Geophys. Res. Atmos. 126, e2020JD033617 (2021).

    Article  Google Scholar 

  27. Rondanelli, R., Hatchett, B., Rutllant, J., Bozkurt, D. & Garreaud, R. Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophys. Res. Lett. 46, 3482–3491 (2019).

    Article  Google Scholar 

  28. Trenberth, K. E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Oceans 103, 14291–14324 (1998).

    Article  Google Scholar 

  29. Wang, G. et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 10, 13 (2019).

    Article  CAS  Google Scholar 

  30. Wille, J. D. et al. Examining atmospheric river life cycles in East Antarctica. J. Geophys. Res. Atmos. 129, e2023JD039970 (2024).

    Article  Google Scholar 

  31. Maclennan, M. L. et al. Climatology and surface impacts of atmospheric rivers on West Antarctica. Cryosphere 17, 865–881 (2023).

    Article  Google Scholar 

  32. Gordon, A. E., Cavallo, S. M. & Novak, A. K. Evaluating common characteristics of Antarctic tropopause polar vortices. J. Atmos. Sci. 80, 337–352 (2022).

    Article  Google Scholar 

  33. Udy, D. G., Vance, T. R., Kiem, A. S., Holbrook, N. J. & Curran, M. A. J. Links between large-scale modes of climate variability and synoptic weather patterns in the Southern Indian Ocean. J. Clim. 34, 883–899 (2021).

    Article  Google Scholar 

  34. Bromwich, D. H. Snowfall in high southern latitudes. Rev. Geophys. 26, 149 (1988).

    Article  Google Scholar 

  35. Gehring, J. et al. Orographic flow influence on precipitation during an atmospheric river event at Davis, Antarctica. J. Geophys. Res. Atmos. 127, e2021JD035210 (2022).

    Article  Google Scholar 

  36. Wille, J. D. et al. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ. 3, 90 (2022).

    Article  Google Scholar 

  37. Turner, J. et al. Extreme temperatures in the Antarctic. J. Clim. 34, 2653–2668 (2021).

    Article  Google Scholar 

  38. Datta, R. T. et al. The effect of Foehn-induced surface melt on firn evolution over the Northeast Antarctic Peninsula. Geophys. Res. Lett. 46, 3822–3831 (2019).

    Article  Google Scholar 

  39. Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A. & Lachlan-Cope, T. A. Foehn warming distributions in nonlinear and linear flow regimes: a focus on the Antarctic Peninsula: foehn warming distributions in nonlinear and linear flow regimes. Q. J. R. Meteorol. Soc. 142, 618–631 (2016).

    Article  Google Scholar 

  40. Zou, X. et al. Strong warming over the Antarctic Peninsula during combined atmospheric river and foehn events: contribution of shortwave radiation and turbulence. J. Geophys. Res. Atmos. 128, e2022JD038138 (2023).

    Article  Google Scholar 

  41. Laffin, M. K., Zender, C. S., van Wessem, M. & Marinsek, S. The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse. Cryosphere 16, 1369–1381 (2022).

    Article  Google Scholar 

  42. Elvidge, A. D., Kuipers Munneke, P., King, J. C., Renfrew, I. A. & Gilbert, E. Atmospheric drivers of melt on Larsen C Ice Shelf: surface energy budget regimes and the impact of foehn. J. Geophys. Res. Atmos. 125, e2020JD032463 (2020).

    Article  Google Scholar 

  43. Zou, X., Bromwich, D. H., Montenegro, A., Wang, S.-H. & Bai, L. Major surface melting over the Ross Ice Shelf part I: foehn effect. Q. J. R. Meteorol. Soc. 147, 2874–2894 (2021).

    Article  Google Scholar 

  44. Djoumna, G. & Holland, D. M. Atmospheric rivers, warm air intrusions, and surface radiation balance in the Amundsen Sea embayment. J. Geophys. Res. Atmos. 126, e2020JD034119 (2021).

    Article  Google Scholar 

  45. Francis, D., Fonseca, R., Mattingly, K. S., Lhermitte, S. & Walker, C. Foehn winds at Pine Island Glacier and their role in ice changes. Cryosphere 17, 3041–3062 (2023).

    Article  Google Scholar 

  46. Ricaud, P. et al. Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica. Atmos. Chem. Phys. 20, 4167–4191 (2020).

    Article  CAS  Google Scholar 

  47. Finlon, J. A. et al. Structure of an atmospheric river over Australia and the Southern Ocean: II. Microphysical evolution. J. Geophys. Res. Atmos. 125, e2020JD032514 (2020).

    Article  Google Scholar 

  48. Lapere, R. et al. Polar aerosol atmospheric rivers: detection, characteristics, and potential applications. J. Geophys. Res. Atmos. 129, e2023JD039606 (2024).

    Article  Google Scholar 

  49. Maclennan, M. L., Lenaerts, J. T. M., Shields, C. & Wille, J. D. Contribution of atmospheric rivers to Antarctic precipitation. Geophys. Res. Lett. 49, e2022GL100585 (2022).

    Article  Google Scholar 

  50. Zhang, Z. et al. Extending the CW3E atmospheric river scale to the polar regions. EGUsphere 2024, 1–36 (2024).

    Google Scholar 

  51. Marshall, G. J. & Thompson, D. W. J. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures: Antarctic temperatures. J. Geophys. Res. Atmos. 121, 3276–3289 (2016).

    Article  Google Scholar 

  52. Clem, K. R., Renwick, J. A., McGregor, J. & Fogt, R. L. The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos. 121, 9324–9341 (2016).

    Article  Google Scholar 

  53. Nuncio, M. & Yuan, X. The influence of the Indian Ocean dipole on Antarctic sea ice. J. Clim. 28, 2682–2690 (2015).

    Article  Google Scholar 

  54. Fogt, R. L. et al. Seasonal Antarctic pressure variability during the twentieth century from spatially complete reconstructions and CAM5 simulations. Clim. Dyn. 53, 1435–1452 (2019).

    Article  Google Scholar 

  55. Turner, J. et al. Antarctic temperature variability and change from station data. Int. J. Climatol. 40, 2986–3007 (2020).

    Article  Google Scholar 

  56. Maclennan, M. L. & Lenaerts, J. T. M. Large-scale atmospheric drivers of snowfall over Thwaites Glacier, Antarctica. Geophys. Res. Lett. 48, e2021GL093644 (2021).

    Article  Google Scholar 

  57. Zhang, N., Zheng, X. & Ma, Q. Study on wave-induced kinematic responses and flexures of ice floe by smoothed particle hydrodynamics. Comput. Fluids 189, 46–59 (2019).

    Article  Google Scholar 

  58. Guo, Y., Shinoda, T., Guan, B., Waliser, D. E. & Chang, E. K. M. Statistical relationship between atmospheric rivers and extratropical cyclones and anticyclones. J. Clim. 33, 7817–7834 (2020).

    Article  Google Scholar 

  59. Zhang, Z. & Ralph, F. M. The influence of antecedent atmospheric river conditions on extratropical cyclogenesis. Mon. Weather Rev. 149, 1337–1357 (2021).

    Article  Google Scholar 

  60. Ma, W., Chen, G. & Guan, B. Poleward shift of atmospheric rivers in the Southern Hemisphere in recent decades. Geophys. Res. Lett. 47, e2020GL089934 (2020).

    Article  Google Scholar 

  61. Shields, C. A. et al. Future atmospheric rivers and impacts on precipitation: overview of the ARTMIP Tier 2 high-resolution global warming experiment. Geophys. Res. Lett. 50, e2022GL102091 (2023).

    Article  Google Scholar 

  62. Ma, W. et al. The role of interdecadal climate oscillations in driving Arctic atmospheric river trends. Nat. Commun. 15, 2135 (2024).

    Article  CAS  Google Scholar 

  63. O’Brien, T. A. et al. Increases in future AR count and size: overview of the ARTMIP Tier 2 CMIP5/6 experiment. J. Geophys. Res. Atmos. 127, e2021JD036013 (2022).

    Article  Google Scholar 

  64. Zhang, L., Zhao, Y., Cheng, T. F. & Lu, M. Future changes in global atmospheric rivers projected by CMIP6 models. J. Geophys. Res. Atmos. 129, e2023JD039359 (2024).

    Article  Google Scholar 

  65. Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).

    Article  Google Scholar 

  66. Mottram, R. et al. What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15, 3751–3784 (2021).

    Article  Google Scholar 

  67. Lenaerts, J. T. M., Medley, B., van den Broeke, M. R. & Wouters, B. Observing and modeling ice sheet surface mass balance. Rev. Geophys. 57, 376–420 (2019).

    Article  Google Scholar 

  68. Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095 (2019).

    Article  CAS  Google Scholar 

  69. González-Herrero, S. et al. Extreme precipitation records in Antarctica. Int. J. Climatol. 43, 3125–3138 (2023).

    Article  Google Scholar 

  70. Adusumilli, S., Fish, A. M., Fricker, H. A. & Medley, B. Atmospheric river precipitation contributed to rapid increases in surface height of the West Antarctic Ice Sheet in 2019. Geophys. Res. Lett. 48, e2020GL091076 (2021).

    Article  Google Scholar 

  71. Evangelista, H. et al. The June 2022 extreme warm event in central West Antarctica. Antarctic Sci. 35, 319–327 (2023).

    Article  Google Scholar 

  72. Bozkurt, D., Marín, J. C. & Barrett, B. S. Temperature and moisture transport during atmospheric blocking patterns around the Antarctic Peninsula. Weather Clim. Extrem. 38, 100506 (2022).

    Article  Google Scholar 

  73. Amory, C. et al. Firn on ice sheets. Nat. Rev. Earth Environ. 5, 79–99 (2024).

    Article  Google Scholar 

  74. Kuipers Munneke, P., Ligtenberg, S. R. M., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

    Article  Google Scholar 

  75. Donat-Magnin, M. et al. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. Cryosphere 15, 571–593 (2021).

    Article  Google Scholar 

  76. Van Wessem, J. M., Van De Berg, W. J. & Van Den Broeke, M. R. Data set: monthly averaged RACMO2.3p2 variables; Antarctica. Zenodo https://doi.org/10.5281/zenodo.7845736 (2023).

  77. Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).

    Article  Google Scholar 

  78. Scambos, T., Hulbe, C. & Fahnestock, M. Climate-induced ice shelf disintegration in the Antarctic Peninsula. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (eds Domack, E. et al.) 79–92 (Wiley, 2003).

  79. Francis, D., Mattingly, K. S., Lhermitte, S., Temimi, M. & Heil, P. Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf. Cryosphere 15, 2147–2165 (2021).

    Article  Google Scholar 

  80. Francis, D. et al. Atmospheric triggers of the Brunt Ice Shelf calving in February 2021. J. Geophys. Res. Atmos. 127, e2021JD036424 (2022).

    Article  Google Scholar 

  81. Walker, C. C. et al. Multi-decadal collapse of East Antarctica’s Conger–Glenzer Ice Shelf. Nat. Geosci. 17, 1240–1248 (2024).

    Article  CAS  Google Scholar 

  82. Ochwat, N. E. et al. Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response. Cryosphere 18, 1709–1731 (2024).

    Article  Google Scholar 

  83. Stammerjohn, S. et al. Antarctica and the Southern Ocean. Bull. Am. Meteorol. Soc. 102, S317–S356 (2021).

    Article  Google Scholar 

  84. Kuipers Munneke, P. et al. Intense winter surface melt on an Antarctic Ice Shelf. Geophys. Res. Lett. 45, 7615–7623 (2018).

    Article  Google Scholar 

  85. Hepworth, E., Messori, G. & Vichi, M. Association between extreme atmospheric anomalies over Antarctic sea ice, Southern Ocean Polar cyclones and atmospheric rivers. J. Geophys. Res. Atmos. 127, e2021JD036121 (2022).

    Article  Google Scholar 

  86. Bozkurt, D. et al. Recent near-surface temperature trends in the Antarctic Peninsula from observed, reanalysis and regional climate model data. Adv. Atmos. Sci. 37, 477–493 (2020).

    Article  Google Scholar 

  87. Fonseca, R. et al. Atmospheric controls on the Terra Nova Bay polynya occurrence in Antarctica. Clim. Dyn. 61, 5147–5169 (2023).

    Article  Google Scholar 

  88. Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. npj Clim. Atmos. Sci. 5, 19 (2022).

    Article  Google Scholar 

  89. Kriegsmann, A. & Brümmer, B. Cyclone impact on sea ice in the central Arctic Ocean: a statistical study. Cryosphere 8, 303–317 (2014).

    Article  Google Scholar 

  90. Holland, P. R. & Kimura, N. Observed concentration budgets of Arctic and Antarctic sea ice. J. Clim. 29, 5241–5249 (2016).

    Article  Google Scholar 

  91. Massom, R. A. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558, 383–389 (2018).

    Article  CAS  Google Scholar 

  92. Raphael, M. N. & Handcock, M. S. A new record minimum for Antarctic sea ice. Nat. Rev. Earth Environ. 3, 215–216 (2022).

    Article  Google Scholar 

  93. Lu, H. et al. Extreme warm events in the South Orkney Islands, Southern Ocean: compounding influence of atmospheric rivers and föhn conditions. Q. J. R. Meteorol. Soc. 149, 3645–3668 (2023).

    Article  Google Scholar 

  94. Torres, C., Bozkurt, D., Carrasco-Escaff, T., Bolibar, J. & Arigony-Neto, J. New insights on the interannual surface mass balance variability on the South Shetland Islands glaciers, northerly Antarctic Peninsula. Glob. Planet. Change 239, 104506 (2024).

    Article  Google Scholar 

  95. Ropert-Coudert, Y. et al. A complete breeding failure in an Adélie penguin colony correlates with unusual and extreme environmental events. Ecography 38, 111–113 (2015).

    Article  Google Scholar 

  96. Barrett, J. E. et al. Response of a terrestrial polar ecosystem to the March 2022 Antarctic weather anomaly. Earths Future 12, e2023EF004306 (2024).

    Article  Google Scholar 

  97. Jackson, S. L. et al. Climatology of the Mount Brown South ice core site in East Antarctica: implications for the interpretation of a water isotope record. Clim. Past 19, 1653–1675 (2023).

    Article  Google Scholar 

  98. Weng, Y., Johannessen, A. & Sodemann, H. High-resolution stable isotope signature of a land-falling atmospheric river in southern Norway. Weather Clim. Dyn. 2, 713–737 (2021).

    Article  Google Scholar 

  99. Bozkurt, D. et al. Atmospheric river brings warmth and rainfall to the Northern Antarctic Peninsula during the mid-Austral Winter of 2023. Geophys. Res. Lett. 51, e2024GL108391 (2024).

    Article  Google Scholar 

  100. Hoffmann-Abdi, K. et al. Short-term meteorological and environmental signals recorded in a firn core from a high-accumulation site on Plateau Laclavere, Antarctic Peninsula. Geosciences 11, 428 (2021).

    Article  CAS  Google Scholar 

  101. Favier, V. et al. Antarctica-regional climate and surface mass budget. Curr. Clim. Change Rep. 3, 303–315 (2017).

    Article  Google Scholar 

  102. Kittel, C. et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).

    Article  Google Scholar 

  103. Coulon, V. et al. Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model. Cryosphere 18, 653–681 (2024).

    Article  Google Scholar 

  104. Dalaiden, Q. et al. How useful is snow accumulation in reconstructing surface air temperature in Antarctica? A study combining ice core records and climate models. Cryosphere 14, 1187–1207 (2020).

    Article  Google Scholar 

  105. Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C. & Berne, A. Present and future of rainfall in Antarctica. Geophys. Res. Lett. 48, e2020GL092281 (2021).

    Article  Google Scholar 

  106. Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R. & Lubin, D. Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J. Clim. 32, 665–684 (2019).

    Article  Google Scholar 

  107. Bevan, S. et al. Amundsen Sea embayment ice-sheet mass-loss predictions to 2050 calibrated using observations of velocity and elevation change. J. Glaciol. 69, 1729–1739 (2023).

    Article  Google Scholar 

  108. Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    Article  CAS  Google Scholar 

  109. Lowry, D. P., Krapp, M., Golledge, N. R. & Alevropoulos-Borrill, A. The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Commun. Earth Environ. 2, 221 (2021).

    Article  Google Scholar 

  110. Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).

    Article  CAS  Google Scholar 

  111. Mahesh, A. et al. Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1. Geosci. Model Dev. 17, 3533–3557 (2024).

    Article  Google Scholar 

  112. Galea, D., Ma, H.-Y., Wu, W.-Y. & Kobayashi, D. Deep learning image segmentation for atmospheric rivers. Artif. Intell. Earth Syst. 3, 230048 (2024).

    Google Scholar 

  113. Gilbert, E. et al. Extreme precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from kilometre-scale regional climate modelling. EGUsphere 2024, 1–41 (2024).

    Google Scholar 

  114. Bromwich, D. H. et al. Winter targeted observing periods during the Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bull. Am. Meteorol. Soc. 105, E1662–E1684 (2024).

    Article  Google Scholar 

  115. Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  116. Shields, C. A. et al. Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design. Geosci. Model Dev. 11, 2455–2474 (2018).

    Article  Google Scholar 

  117. Rutz, J. J. et al. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos. 124, 13777–13802 (2019).

    Article  Google Scholar 

  118. Gorodetskaya, I. V., Silva, T., Schmithüsen, H. & Hirasawa, N. Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land Coast, East Antarctica. Adv. Atmos. Sci. 37, 455–476 (2020).

    Article  CAS  Google Scholar 

  119. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  120. Ralph, F. M. et al. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteorol. Soc. 100, 269–289 (2019).

    Article  Google Scholar 

  121. Ricaud, P. et al. Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing. Atmos. Chem. Phys. 24, 613–630 (2024).

    Article  CAS  Google Scholar 

  122. Mitnik, L. M., Kuleshov, V. P., Mitnik, M. L. & Baranyuk, A. V. Satellite microwave radiometric measurements of extreme temperature rise in East Antarctica in March 2022. Sovr. Probl. DZZ Kosm. 20, 246–261 (2023).

    Article  Google Scholar 

  123. Crewell, S. et al. A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means. Atmos. Meas. Tech. 14, 4829–4856 (2021).

    Article  Google Scholar 

  124. Hoffman, A. O., Maclennan, M., Lenaerts, J., Larson, K. M. & Chrsitianson, K. Amundsen Sea embayment accumulation variability measured with GNSS-IR. Cryosphere Discuss. 2023, 1–28 (2023).

    Google Scholar 

  125. Bromwich, D. H. et al. The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bull. Am. Meteorol. Soc. 101, E1653–E1676 (2020).

    Article  Google Scholar 

  126. Culberg, R., Schroeder, D. M. & Chu, W. Extreme melt season ice layers reduce firn permeability across Greenland. Nat. Commun. 12, 2336 (2021).

    Article  CAS  Google Scholar 

  127. Miller, J. Z. et al. An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry. Cryosphere 16, 103–125 (2022).

    Article  Google Scholar 

  128. Neff, P. Amundsen Sea coastal ice rises: future sites for marine-focused ice core records. Oceanography 33, 88–89 (2020).

    Article  Google Scholar 

  129. Graf, P., Wernli, H., Pfahl, S. & Sodemann, H. A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain. Atmos. Chem. Phys. 19, 747–765 (2019).

    Article  CAS  Google Scholar 

  130. Fauchereau, N., Pohl, B., Reason, C. J. C., Rouault, M. & Richard, Y. Recurrent daily OLR patterns in the Southern Africa/Southwest Indian Ocean region, implications for South African rainfall and teleconnections. Clim. Dyn. 32, 575–591 (2009).

    Article  Google Scholar 

  131. Pohl, B., Dieppois, B., Crétat, J., Lawler, D. & Rouault, M. From synoptic to interdecadal variability in Southern African rainfall: toward a unified view across time scales. J. Clim. 31, 5845–5872 (2018).

    Article  Google Scholar 

  132. Hart, N. C. G., Reason, C. J. C. & Fauchereau, N. Cloud bands over southern Africa: seasonality, contribution to rainfall variability and modulation by the MJO. Clim. Dyn. 41, 1199–1212 (2013).

    Article  Google Scholar 

  133. Macron, C., Pohl, B., Richard, Y. & Bessafi, M. How do tropical temperate troughs form and develop over Southern Africa? J. Clim. 27, 1633–1647 (2014).

    Article  Google Scholar 

  134. Wernli, H. A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Q. J. R. Meteorol. Soc. 123, 1677–1706 (1997).

    Article  Google Scholar 

  135. Servettaz, A. P. M. et al. Snowfall and water stable isotope variability in East Antarctica controlled by warm synoptic events. J. Geophys. Res. Atmos. 125, e2020JD032863 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.D.W. acknowledges support from the Horizon 2020 project nextGEMS under grant agreement number 101003470. K.S.M. acknowledges support from the Polar Radiant Energy in the Far InfraRed Experiment (PREFIRE) mission, NASA grant 80NSSC18K1485. X.Z. acknowledges support from NSF Grants 2229392. Y.M. was supported by the NASA Future Investigators in NASA Earth and Space Science and Technology programme (award number 80NSSC24K0012). J.E.B. was supported by the National Science Foundation for Long Term Ecological Research number OPP-2224760. C.A.S. acknowledges support by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the US Department of Energy’s Office of Biological & Environmental Research (BER) under Award Number DE-SC0022070, as well as National Center for Atmospheric Research, sponsored by NSF, under Cooperative Agreement Number 1852977. K.R.C. acknowledges support from the Royal Society of New Zealand Marsden Fund grant MFP-VUW2010. G.L. was supported by the National Defense Science and Engineering Graduate (NDSEG) Fellowship programme. A.C.W. and R.B. acknowledge financial support from the University of Colorado Boulder. M.L.M. acknowledges support from NASA grant 80NSSC21K1610 and the University of Colorado Boulder. I.V.G. thanks the support by the strategic funding to CIIMAR (UIDB/04423/2020 and UIDP/04423/2020), 2021.03140.CEECIND, projects ATLACE (CIRCNA/CAC/0273/2019), MAPS (2022.09201.PTDC) and Portuguese Polar Program (PROPOLAR) through national funds provided by FCT (Fundação para a Ciência e a Tecnologia). D.B. acknowledges support from ANID-FONDECYT-1240190, ANID-FONDAP-1523A0002 and COPAS COASTAL ANID FB210021. A.C. and S.K. acknowledge funding support from the Ukrainian State Special-Purpose Research Program in Antarctica for 2011–2022, research direction: Hydrometeorology; and they express their gratitude to their Ukrainian polar science co-workers known as the ‘Squad of Combat Penguins’.

Author information

Authors and Affiliations

Authors

Contributions

J.D.W., V.F. and I.V.G. led the Review. All authors contributed to the researching of data, writing and reviewing and editing of the manuscript, with authors B.P., R.B., I.V.G., C.A.S., M.L.M., X.Z., D.B., V.F., J.D.W. and R.D. leading the contributions to specific sections. Figure and display items were led by the following authors: B.P. (Fig. 1), R.B. (Figs. 1 and 2), X.Z. (Figs. 1 and 3), A.O.H. (Fig. 4), I.V.G. (Boxes 1 and 2) and V.F. and J.D.W. (Box 3).

Corresponding author

Correspondence to Jonathan D. Wille.

Ethics declarations

Competing interests

C.A.S. is an associate editor for NPJ Climate and Atmospheric Science. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Sergi González-Herrero, Qinghua Yang, Ella Gilbert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wille, J.D., Favier, V., Gorodetskaya, I.V. et al. Atmospheric rivers in Antarctica. Nat Rev Earth Environ 6, 178–192 (2025). https://doi.org/10.1038/s43017-024-00638-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00638-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing