Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate impacts of the El Niño–Southern Oscillation in Africa

Abstract

The El Niño–Southern Oscillation (ENSO) — describing shifts between warm El Niño and cold La Niña phases — has a substantial effect on the global climate. In this Review, we outline the mechanisms and climate impacts of ENSO in Africa, focusing on rainfall. ENSO’s influence varies strongly by season, region, phase, event and decade, highlighting complex dynamics and asymmetries. Although difficult to generalize, key characteristics include: anomalies across the Sahel in July–September, related to the tropospheric temperature mechanism; a strong dipole in anomalies between eastern and southern Africa during October–December (the short rain reason) and December–February, linked to interactions with the Indian Ocean Dipole and Indian Ocean Basin mode, respectively; and anomalies over southern Africa (with possible indications of opposite anomalies over East Africa) during March–May (the long rain season), associated with continuation of the Indian Ocean Basin mode. These teleconnections tend to be most pronounced for East Pacific El Niño and Central Pacific La Niña events, as well as during decades when interbasin interactions are strongest. Although challenging to simulate, climate models suggest that these impacts will strengthen in the future, manifesting as an increased frequency of ENSO-related dry and wet extremes. Given the reliance of much of Africa on rain-fed agriculture, resolving these relationships is vital, necessitating realistic simulation of regional circulations, ENSO and its interbasin interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of impact of the El Niño–Southern Oscillation (ENSO) on African climate.
Fig. 2: Seasonal evolution of observed ENSO impacts on African rainfall.
Fig. 3: Influence of decadal variability on ENSO–rainfall relationships in Africa.
Fig. 4: IOD and IOB influence on ENSO–African rainfall relationships.
Fig. 5: Future change of African rainfall associated with ENSO.

Similar content being viewed by others

References

  1. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Article  CAS  Google Scholar 

  2. Palmer, P. I. et al. Drivers and impacts of eastern African rainfall variability. Nat. Rev. Earth Environ. 4, 254–270 (2023).

    Article  Google Scholar 

  3. Klein, S. A., Soden, B. J. & Lau, N. C. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Clim. 12, 917–932 (1999).

    Article  Google Scholar 

  4. Latif, M. & Grötzner, A. The equatorial Atlantic oscillation and its response to ENSO. Clim. Dyn. 16, 213–218 (2000).

    Article  Google Scholar 

  5. Goddard, L. & Graham, N. E. Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res. 104, 19099–19116 (1999).

    Article  Google Scholar 

  6. Rodríguez-Fonseca, B. et al. Interannual and decadal SST-forced responses of the West African monsoon. Atmos. Sci. Lett. 12, 67–74 (2011).

    Article  Google Scholar 

  7. Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    Article  CAS  Google Scholar 

  8. Halpern, D. & Woiceshyn, P. M. Somali Jet in the Arabian Sea, El Niño, and India rainfall. J. Clim. 14, 434–441 (2001).

    Article  Google Scholar 

  9. Howard, E. & Washington, R. Characterizing the synoptic expression of the Angola Low. J. Clim. 31, 7147–7165 (2018).

    Article  Google Scholar 

  10. Cook, K. H. The south Indian convergence zone and interannual rainfall variability over southern Africa. J. Clim. 13, 3789–3804 (2000).

    Article  Google Scholar 

  11. Howard, E. & Washington, R. Drylines in southern Africa: rediscovering the Congo air boundary. J. Clim. 32, 8223–8242 (2019).

    Article  Google Scholar 

  12. Hart, N. C. G., Reason, C. J. C. & Fauchereau, N. Cloud bands over southern Africa: seasonality, contribution to rainfall variability and modulation by the MJO. Clim. Dyn. 41, 1199–1212 (2013).

    Article  Google Scholar 

  13. Macron, C., Pohl, B., Richard, Y. & Bessafi, M. How do tropical temperate troughs form and develop over southern Africa? J. Clim. 27, 1633–1647 (2014).

    Article  Google Scholar 

  14. Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999).

    Article  CAS  Google Scholar 

  15. Hashizume, M., Chaves, L. F. & Minakawa, N. Indian Ocean Dipole drives malaria resurgence in East African highlands. Sci. Rep. 2, 269 (2012).

    Article  Google Scholar 

  16. Funk, C. et al. Examining the role of unusually warm Indo-Pacific sea-surface temperatures in recent African droughts. Q. J. R. Meteorol. Soc. 144, 360–383 (2018).

    Article  Google Scholar 

  17. Kimutai, J. B. et al. Human-Induced Climate Change Increased Drought Severity in Horn of Africa. UNU-EHS Working Paper https://doi.org/10.25561/103482 (Imperial College London, 2023).

  18. Nicholson, S. E. The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013, 1–32 (2013).

    Article  Google Scholar 

  19. Lintner, B. R. & Chiang, J. C. H. Reorganization of tropical climate during El Nino: a weak temperature gradient approach. J. Clim. 18, 5312–5329 (2005).

    Article  Google Scholar 

  20. Sheen, K. L. et al. Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales. Nat. Commun. 8, 14966 (2017).

    Article  CAS  Google Scholar 

  21. Rowell, D. P. Teleconnections between the tropical Pacific and the Sahel. Q. J. R. Meteorol. Soc. 127, 1683–1706 (2001).

    Article  Google Scholar 

  22. Gleixner, S., Keenlyside, N., Viste, E. & Korecha, D. The El Niño effect on Ethiopian summer rainfall. Clim. Dyn. 49, 1865–1883 (2017).

    Article  Google Scholar 

  23. Diro, G. T., Grimes, D. I. F. & Black, E. Teleconnections between Ethiopian summer rainfall and sea surface temperature: part I — observation and modelling. Clim. Dyn. 37, 103–119 (2011).

    Article  Google Scholar 

  24. Janicot, S., Trzaska, S. & Poccard, I. Summer Sahel–ENSO teleconnection and decadal time scale SST variations. Clim. Dyn. 18, 303–320 (2001).

    Article  Google Scholar 

  25. Joly, M. & Voldoire, A. Influence of ENSO on the West African monsoon: temporal aspects and atmospheric processes. J. Clim. 22, 3193–3210 (2009).

    Article  Google Scholar 

  26. Weller, E. et al. More-frequent extreme northward shifts of eastern Indian Ocean tropical convergence under greenhouse warming. Sci. Rep. 4, 6087 (2014).

    Article  CAS  Google Scholar 

  27. Black, E., Slingo, J. & Sperber, K. R. An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev. 131, 74–94 (2003).

    Article  Google Scholar 

  28. Moihamette, F., Pokam, W. M., Diallo, I. & Washington, R. Extreme Indian Ocean Dipole and rainfall variability over central Africa. Int. J. Climatol. 42, 5255–5272 (2022).

    Article  Google Scholar 

  29. Lindesay, J. A., Harrison, M. S. J. & Haffner, M. P. The Southern Oscillation and South African rainfall. S. Afr. J. Sci. 82, 196–198 (1986).

    Google Scholar 

  30. Blamey, R. C., Kolusu, S. R., Mahlalela, P., Todd, M. C. & Reason, C. J. C. The role of regional circulation features in regulating El Nino climate impacts over southern Africa: a comparison of the 2015/2016 drought with previous events. Int. J. Climatol. 38, 4276–4295 (2018).

    Article  Google Scholar 

  31. Rodríguez-Fonseca, B. et al. Variability and predictability of West African droughts: a review on the role of sea surface temperature anomalies. J. Clim. 28, 4034–4060 (2015).

    Article  Google Scholar 

  32. Reason, C. J. C. The Bolivian, Botswana, and Bilybara highs and Southern Hemisphere drought/floods. Geophys. Res. Lett. 43, 1280–1286 (2016).

    Article  Google Scholar 

  33. Hart, N. C. G., Washington, R. & Reason, C. J. C. On the likelihood of tropical–extratropical cloud bands in the South Indian convergence zone during ENSO events. J. Clim. 31, 2797–2817 (2018).

    Article  Google Scholar 

  34. Barimalala, R., Blamey, R. C., Desbiolles, F. & Reason, C. J. C. Variability in the Mozambique Channel Trough and impacts on southeast African rainfall. J. Clim. 33, 749–765 (2020).

    Article  Google Scholar 

  35. Reason, C. J. C. Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys. Res. Lett. 28, 2225–2227 (2001).

    Article  Google Scholar 

  36. Behera, S. K. & Yamagata, T. Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett. 28, 327–330 (2001).

    Article  Google Scholar 

  37. Fauchereau, N., Trzaska, S., Richard, Y., Roucou, P. & Camberlin, P. Sea-surface temperature co-variability in the southern Atlantic and Indian Oceans and its connections with the atmospheric circulation in the Southern Hemisphere. Int. J. Climatol. 23, 663–677 (2003).

    Article  Google Scholar 

  38. Chang, P., Fang, Y., Saravanan, R., Ji, L. & Seidel, H. The cause of the fragile relationship between the Pacific El Nino and the Atlantic Nino. Nature 443, 324–328 (2006).

    Article  CAS  Google Scholar 

  39. Giannini, A., Saravanan, R. & Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302, 1027–1030 (2003).

    Article  CAS  Google Scholar 

  40. de, Oliveira, C. P., Aímola, L., Ambrizzi, T. & Freitas, A. C. V. The influence of the regional Hadley and Walker circulations on precipitation patterns over Africa in El Niño, La Niña, and neutral years. Pure Appl. Geophys. 175, 2293–2306 (2018).

    Article  Google Scholar 

  41. Xie, S. P. & Carton, J. A. Tropical atlantic variability: patterns, mechanisms, and impacts. Am. Geophys. Union. 147, 121–142 (2004).

    Google Scholar 

  42. Pomposi, C., Giannini, A., Kushnir, Y. & Lee, D. E. Understanding Pacific Ocean influence on interannual precipitation variability in the Sahel. Geophys. Res. Lett. 43, 9234–9242 (2016).

    Article  Google Scholar 

  43. Rowell, D. P. The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Clim. 16, 849–862 (2003).

    Article  Google Scholar 

  44. Fontaine, B. et al. Impacts of warm and cold situations in the Mediterranean basins on the West African monsoon: observed connection patterns (1979–2006) and climate simulations. Clim. Dyn. 35, 95–114 (2010).

    Article  Google Scholar 

  45. Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    Article  Google Scholar 

  46. Reason, C. J. C. & Rouault, M. Links between the Antarctic oscillation and winter rainfall over western South Africa. Geophys. Res. Lett. 32, L07705 (2005).

    Article  Google Scholar 

  47. Mahlalela, P. T., Blamey, R. C., Hart, N. C. G. & Reason, C. J. C. Drought in the Eastern Cape region of South Africa and trends in rainfall characteristics. Clim. Dyn. 55, 2743–2759 (2020).

    Article  CAS  Google Scholar 

  48. Lavaysse, C., Flamant, C. & Janicot, S. Regional-scale convection patterns during strong and weak phases of the Saharan heat low. Atmos. Sci. Lett. 11, 255–264 (2010).

    Article  Google Scholar 

  49. Lavaysse, C., Flamant, C., Evan, A., Janicot, S. & Gaetani, M. Recent climatological trend of the Saharan heat low and its impact on the West African climate. Clim. Dyn. 47, 3479–3498 (2016).

    Article  Google Scholar 

  50. Thorncroft, C. D. & Blackburn, M. Maintenance of the African easterly jet. Q. J. R. Meteorol. Soc. 125, 763–786 (1999).

    Google Scholar 

  51. Riddle, E. E. & Cook, K. H. Abrupt rainfall transitions over the Greater Horn of Africa: observations and regional model simulations. J. Geophys. Res. 113, D15109 (2008).

    Google Scholar 

  52. Iqbal, W. et al. Mean climate and representation of jet streams in the CORDEX South Asia simulations by the regional climate model RCA4. Theor. Appl. Climatol. 129, 1–19 (2017).

    Article  Google Scholar 

  53. Vizy, E. K. & Cook, K. H. Connections between the summer East African and Indian rainfall regimes. J. Geophys. Res. 108, 4510 (2003).

    Google Scholar 

  54. Jain, S., Mishra, S. K., Anand, A., Salunke, P. & Fasullo, J. T. Historical and projected low-frequency variability in the Somali Jet and Indian summer monsoon. Clim. Dyn. 56, 749–765 (2021).

    Article  Google Scholar 

  55. Crétat, J., Pohl, B., Dieppois, B., Berthou, S. & Pergaud, J. The Angola Low: relationship with southern African rainfall and ENSO. Clim. Dyn. 52, 1783–1803 (2019).

    Article  Google Scholar 

  56. Reason, C. J. C. et al. A review of South African research in atmospheric science and physical oceanography during 2000–2005: review article. S. Afr. J. Sci. 102, 35–45 (2006).

    Google Scholar 

  57. Driver, P. & Reason, C. J. C. Variability in the Botswana High and its relationships with rainfall and temperature characteristics over southern Africa. Int. J. Climatol. 37, 570–581 (2017).

    Article  Google Scholar 

  58. Maoyi, M. L. & Abiodun, B. J. How well does MPAS-atmosphere simulate the characteristics of the Botswana High? Clim. Dyn. 57, 2109–2128 (2021).

    Article  Google Scholar 

  59. Todd, M. & Washington, R. Circulation anomalies associated with tropical-temperate troughs in southern Africa and the south west Indian Ocean. Clim. Dyn. 15, 937–951 (1999).

    Article  Google Scholar 

  60. Pohl, B., Fauchereau, N., Richard, Y., Rouault, M. & Reason, C. J. C. Interactions between synoptic, intraseasonal and interannual convective variability over southern Africa. Clim. Dyn. 33, 1033–1050 (2009).

    Article  Google Scholar 

  61. Manhique, A. J., Reason, C. J. C., Rydberg, L. & Fauchereau, N. ENSO and Indian Ocean sea surface temperatures and their relationships with tropical temperate troughs over Mozambique and the southwest Indian Ocean. Int. J. Climatol. 31, 1–13 (2011).

    Article  Google Scholar 

  62. Hart, N. C. G., Reason, C. J. C. & Fauchereau, N. Tropical–extratropical interactions over southern Africa: three cases of heavy summer season rainfall. Mon. Wea. Rev. 138, 2608–2623 (2010).

    Article  Google Scholar 

  63. Lazenby, M. J., Todd, M. C. & Wang, Y. Climate model simulation of the South Indian Ocean convergence zone: mean state and variability. Clim. Res. 68, 59–71 (2016).

    Article  Google Scholar 

  64. Barimalala, R., Desbiolles, F., Blamey, R. C. & Reason, C. Madagascar influence on the South Indian Ocean convergence zone, the Mozambique Channel Trough and southern African rainfall. Geophys. Res. Lett. 45, 11,380–311,389 (2018).

    Article  Google Scholar 

  65. Kug, J. S., Jin, F. F. & An, S.-I. Two types of El Niño Events: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

    Article  Google Scholar 

  66. Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

    Article  Google Scholar 

  67. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).

    Article  Google Scholar 

  68. Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    Article  Google Scholar 

  69. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Article  CAS  Google Scholar 

  70. Cai, W. et al. Changing El Nino–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).

    Article  Google Scholar 

  71. Frauen, C., Dommenget, D., Tyrrell, N., Rezny, M. & Wales, S. Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Clim. 27, 6225–6244 (2014).

    Article  Google Scholar 

  72. Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Article  Google Scholar 

  73. Takahashi, K. & Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dyn. 46, 1627–1645 (2016).

    Article  Google Scholar 

  74. Bader, J. & Latif, M. The 1983 drought in the West Sahel: a case study. Clim. Dyn. 36, 463–472 (2011).

    Article  Google Scholar 

  75. Jia, F., Cai, W., Gan, B., Wu, L. & Di Lorenzo, E. Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nat. Clim. Change 11, 840–847 (2021).

    Article  Google Scholar 

  76. Ratnam, J. V., Behera, S. K., Masumoto, Y. & Yamagata, T. Remote effects of El Niño and Modoki events on the Austral summer precipitation of southern Africa. J. Clim. 27, 3802–3815 (2014).

    Article  Google Scholar 

  77. Southern Africa Drought (WFP, 2025); https://www.wfp.org/emergencies/southern-africa-drought.

  78. Geng, T. et al. Increased occurrences of consecutive La Nina events under global warming. Nature 619, 774–781 (2023).

    Article  CAS  Google Scholar 

  79. Richard, Y., Trzaska, S., Roucou, P. & Rouault, M. Modification of the Southern African rainfall variability/ENSO relationship since the late 1960s. Clim. Dyn. 16, 883–895 (2000).

    Article  Google Scholar 

  80. Clark, C. O., Webster, P. J. & Cole, J. E. Interdecadal variability of the relationship between the Indian Ocean zonal mode and East African coastal rainfall anomalies. J. Clim. 16, 548–554 (2003).

    Article  Google Scholar 

  81. Kim, S. T. et al. Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Clim. Change 4, 786–790 (2014).

    Article  Google Scholar 

  82. Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).

    Article  Google Scholar 

  83. Pomposi, C., Kushnir, Y., Giannini, A. & Biasutti, M. Toward understanding the occurrence of both wet and dry Sahel seasons during El Nino: the modulating role of the global ocean. J. Clim. 33, 1193–1207 (2020).

    Article  Google Scholar 

  84. Suárez-Moreno, R., Rodríguez-Fonseca, B., Barroso, J. A. & Fink, A. H. Interdecadal changes in the leading ocean forcing of Sahelian rainfall interannual variability: atmospheric dynamics and role of multidecadal SST background. J. Clim. 31, 6687–6710 (2018).

    Article  Google Scholar 

  85. Ham, Y. G., Kug, J. S. & Park, J. Y. Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Nino. Geophys. Res. Lett. 40, 4012–4017 (2013).

    Article  Google Scholar 

  86. Nnamchi, H. C., Dike, V. N., Akinsanola, A. A. & Okoro, U. K. Leading patterns of the satellite-era summer precipitation over West Africa and associated global teleconnections. Atmos. Res. 259, 105677 (2021).

    Article  Google Scholar 

  87. Mohino, E., Keenlyside, N. & Pohlmann, H. Decadal prediction of Sahel rainfall: where does the skill (or lack thereof) come from? Clim. Dyn. 47, 3593–3612 (2016).

    Article  Google Scholar 

  88. Losada, T. et al. Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys. Res. Lett. 39, L12705 (2012).

    Article  Google Scholar 

  89. Ashok, K., Guan, Z. Y. & Yamagata, T. A look at the relationship between the ENSO and the Indian Ocean Dipole. J. Meteor. Soc. Jpn. 81, 41–56 (2003).

    Article  Google Scholar 

  90. Kebacho, L. L. Large-scale circulations associated with recent interannual variability of the short rains over East Africa. Meteorol. Atmos. Phys. 134, 10 (2022).

    Article  Google Scholar 

  91. Ham, Y. G., Choi, J. Y. & Kug, J. S. The weakening of the ENSO–Indian Ocean Dipole (IOD) coupling strength in recent decades. Clim. Dyn. 49, 249–261 (2017).

    Article  Google Scholar 

  92. Manatsa, D., Mukwada, G. & Makaba, L. ENSO shifts and their link to southern Africa surface air temperature in summer. Theor. Appl. Climatol. 132, 727–738 (2018).

    Article  Google Scholar 

  93. Hoell, A., Funk, C., Zinke, J. & Harrison, L. Modulation of the Southern Africa precipitation response to the El Niño Southern Oscillation by the subtropical Indian Ocean Dipole. Clim. Dyn. 48, 2529–2540 (2017).

    Article  Google Scholar 

  94. Wang, S. S., Huang, J. P., He, Y. L. & Guan, Y. P. Combined effects of the Pacific Decadal Oscillation and El Nino–Southern Oscillation on global land dry-wet changes. Sci. Rep. 4, 6651 (2014).

    Article  CAS  Google Scholar 

  95. Villamayor, J. & Mohino, E. Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5 simulations. Geophys. Res. Lett. 42, 1214–1222 (2015).

    Article  Google Scholar 

  96. Mohino, E., Janicot, S. & Bader, J. Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim. Dyn. 37, 419–440 (2011).

    Article  Google Scholar 

  97. Mason, S. J. El Nino, climate change, and southern African climate. Environ 12, 327–345 (2001).

    Google Scholar 

  98. Malherbe, J., Dieppois, B., Maluleke, P., Van Staden, M. & Pillay, D. L. South African droughts and decadal variability. Nat. Hazards 80, 657–681 (2016).

    Article  Google Scholar 

  99. Liebmann, B. et al. Climatology and interannual variability of boreal spring wet season precipitation in the eastern Horn of Africa and implications for its recent decline. J. Clim. 30, 3867–3886 (2017).

    Article  Google Scholar 

  100. Funk, C. et al. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. P. Natl. Acad. Sci. USA 105, 11081–11086 (2008).

    Article  CAS  Google Scholar 

  101. Yang, W. C., Seager, R., Cane, M. A. & Lyon, B. The East African long rains in observations and models. J. Clim. 27, 7185–7202 (2014).

    Article  Google Scholar 

  102. Lyon, B. Seasonal drought in the Greater Horn of Africa and its recent increase during the March–May long rains. J. Clim. 27, 7953–7975 (2014).

    Article  Google Scholar 

  103. Badji, A., Mohino, E., Diakhate, M., Mignot, J. & Gaye, A. T. Decadal variability of rainfall in Senegal: beyond the total seasonal amount. J. Clim. 35, 5339–5358 (2022).

    Article  Google Scholar 

  104. Hoerling, M., Hurrell, J., Eischeid, J. & Phillips, A. Detection and attribution of twentieth-century northern and southern African rainfall change. J. Clim. 19, 3989–4008 (2006).

    Article  Google Scholar 

  105. Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 33, L17712 (2006).

    Article  Google Scholar 

  106. Ruprich-Robert, Y. et al. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Clim. 30, 2785–2810 (2017).

    Article  Google Scholar 

  107. McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Article  Google Scholar 

  108. Li, X. C., Xie, S. P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 6, 275–279 (2016).

    Article  Google Scholar 

  109. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  110. Wang, G. et al. The Indian Ocean Dipole in a warming world. Nat. Rev. Earth Environ. 5, 588–604 (2024).

    Article  Google Scholar 

  111. Cai, W., Sullivan, A. & Cowan, T. Interactions of ENSO, the IOD, and the SAM in CMIP3 models. J. Clim. 24, 1688–1704 (2011).

    Article  Google Scholar 

  112. Tao, W. et al. Interdecadal modulation of ENSO teleconnections to the Indian Ocean Basin Mode and their relationship under global warming in CMIP5 models. Int. J. Climatol. 35, 391–407 (2015).

    Article  Google Scholar 

  113. Zheng, X.-T., Xie, S.-P. & Liu, Q. Response of the Indian Ocean Basin Mode and its capacitor effect to global warming. J. Clim. 24, 6146–6164 (2011).

    Article  Google Scholar 

  114. Dieppois, B., Rouault, M. & New, M. The impact of ENSO on southern African rainfall in CMIP5 ocean atmosphere coupled climate models. Clim. Dyn. 45, 2425–2442 (2015).

    Article  Google Scholar 

  115. Gaetani, M. & Mohino, E. Decadal prediction of the Sahelian precipitation in CMIP5 simulations. J. Clim. 26, 7708–7719 (2013).

    Article  Google Scholar 

  116. García-Serrano, J., Guemas, V. & Doblas-Reyes, F. J. Added-value from initialization in predictions of Atlantic multi-decadal variability. Clim. Dyn. 44, 2539–2555 (2015).

    Article  Google Scholar 

  117. Bellucci, A. et al. An assessment of a multi-model ensemble of decadal climate predictions. Clim. Dyn. 44, 2787–2806 (2015).

    Article  Google Scholar 

  118. He, Y. J. et al. Role of ocean initialization in skillful prediction of Sahel rainfall on the decadal time scale. J. Clim. 36, 2109–2129 (2023).

    Article  Google Scholar 

  119. Martin, E. R. & Thorncroft, C. Sahel rainfall in multimodel CMIP5 decadal hindcasts. Geophys. Res. Lett. 41, 2169–2175 (2014).

    Article  Google Scholar 

  120. Du, Y. & Chen, H. Evaluation of CMIP6 model performance in simulating the PDO and its future change. Atmos. Ocean. Sci. Lett. 17, 100449 (2024).

    Article  Google Scholar 

  121. Xu, M., Xu, Y., Li, T., Shen, S. & Hu, Z. Evaluation of the Pacific decadal oscillation from 1901 to 2014 in CMIP6 models. Clim. Res. 90, 1–15 (2023).

    Article  Google Scholar 

  122. Ma, Y., Yuan, N., Dong, T. & Dong, W. On the Pacific decadal oscillation simulations in CMIP6 models: a new test-bed from climate network analysis. Asia-Pac. J. Atmos. Sci. 59, 17–28 (2023).

    Article  CAS  Google Scholar 

  123. Li, S. et al. Intensified Atlantic multidecadal variability in a warming climate. Nat. Clim. Change 15, 293–300 (2025).

    Article  Google Scholar 

  124. Zanna, L. Forecast skill and predictability of observed Atlantic sea surface temperatures. J. Clim. 25, 5047–5056 (2012).

    Article  Google Scholar 

  125. Yeager, S. G. et al. Predicting near-term changes in the Earth system: a large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bull. Am. Meteorol. Soc. 99, 1867–1886 (2018).

    Article  Google Scholar 

  126. Haarsma, R. J., Selten, F. M., Weber, S. L. & Kliphuis, M. Sahel rainfall variability and response to greenhouse warming. Geophys. Res. Lett. 32, L17702 (2005).

    Article  Google Scholar 

  127. Vizy, E. K., Cook, K. H., Crétat, J. & Neupane, N. Projections of a wetter Sahel in the twenty-first century from global and regional models. J. Clim. 26, 4664–4687 (2013).

    Article  Google Scholar 

  128. Almazroui, M. et al. Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst. Environ. 4, 455–475 (2020).

    Article  Google Scholar 

  129. Monerie, P.-A., Sanchez-Gomez, E., Gaetani, M., Mohino, E. & Dong, B. Future evolution of the Sahel precipitation zonal contrast in CESM1. Clim. Dyn. 55, 2801–2821 (2020).

    Article  Google Scholar 

  130. Zhang, Z. & Li, G. Uncertainty in the projected changes of Sahel summer rainfall under global warming in CMIP5 and CMIP6 multi-model ensembles. Clim. Dyn. 59, 3579–3597 (2022).

    Article  Google Scholar 

  131. Monerie, P.-A., Pohl, B. & Gaetani, M. The fast response of Sahel precipitation to climate change allows effective mitigation action. npj Clim. Atmos. Sci. 4, 24 (2021).

    Article  Google Scholar 

  132. Cai, W. et al. Southern Ocean warming and its climatic impacts. Sci. Bull. 68, 946–960 (2023).

    Article  Google Scholar 

  133. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 3−32 (Cambridge Univ. Press, 2021).

  134. Guilbert, M., Terray, P., Mignot, J., Ollier, L. & Gastineau, G. Interhemispheric temperature gradient and equatorial Pacific SSTs drive Sahel monsoon uncertainties under global warming. J. Clim. 37, 1033–1052 (2024).

    Article  Google Scholar 

  135. Park, J.-y, Bader, J. & Matei, D. Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Clim. Change 6, 941–945 (2016).

    Article  Google Scholar 

  136. Gaetani, M. et al. West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Clim. Dyn. 48, 1353–1373 (2017).

    Article  Google Scholar 

  137. Paeth, H. & Hense, A. SST versus climate change signals in West African rainfall: 20th-century variations and future projections. Clim. Change 65, 179–208 (2004).

    Article  CAS  Google Scholar 

  138. Shongwe, M. E., van Oldenborgh, G. J., van den Hurk, B. & van Aalst, M. Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J. Clim. 24, 3718–3733 (2011).

    Article  Google Scholar 

  139. Tierney, J. E., Ummenhofer, C. C. & deMenocal, P. B. Past and future rainfall in the Horn of Africa. Sci. Adv. 1, e1500682 (2015).

    Article  Google Scholar 

  140. Wainwright, C. M. et al. ‘Eastern African paradox’ rainfall decline due to shorter not less intense long rains. npj Clim. Atmos. Sci. 2, 34 (2019).

    Article  Google Scholar 

  141. Cai, W. et al. Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci. 6, 999–1007 (2013).

    Article  CAS  Google Scholar 

  142. Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Change 11, 27–32 (2021).

    Article  Google Scholar 

  143. Munday, C. & Washington, R. Controls on the diversity in climate model projections of early summer drying over southern Africa. J. Clim. 32, 3707–3725 (2019).

    Article  Google Scholar 

  144. Lazenby, M. & Todd, M. Evaluating future changes in the South Indian Ocean convergence zone projected by CMIP5 models and associated uncertainty. Clim. Res. 91, 191–209 (2023).

    Article  Google Scholar 

  145. Howard, E. & Washington, R. Tracing future spring and summer drying in southern Africa to tropical lows and the Congo air boundary. J. Clim. 33, 6205–6228 (2020).

    Article  Google Scholar 

  146. Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Change 12, 228–231 (2022).

    Article  Google Scholar 

  147. Crespo, L. R. et al. Weakening of the Atlantic Nino variability under global warming. Nat. Clim. Change 12, 822–827 (2022).

    Article  Google Scholar 

  148. Yang, Y. et al. Suppressed Atlantic Nino/Nina variability under greenhouse warming. Nat. Clim. Change 12, 814–821 (2022).

    Article  Google Scholar 

  149. Li, S. J. et al. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).

    Article  CAS  Google Scholar 

  150. Li, G. & Xie, S. P. Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J. Clim. 27, 1765–1780 (2014).

    Article  Google Scholar 

  151. Hirons, L. & Turner, A. The impact of Indian Ocean mean-state biases in climate models on the representation of the East African short rains. J. Clim. 31, 6611–6631 (2018).

    Article  Google Scholar 

  152. Jia, F. et al. Weakening Atlantic Nino–Pacific connection under greenhouse warming. Sci. Adv. 5, eaax4111 (2019).

    Article  CAS  Google Scholar 

  153. Wang, S. et al. El Niño/Southern Oscillation inhibited by submesoscale ocean eddies. Nat. Geosci. 15, 112–117 (2022).

    Article  CAS  Google Scholar 

  154. Giorgi, F., Jones, C. & Asrar, G. R. Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull. 58, 175–183 (2009).

    Google Scholar 

  155. Endris, H. S. et al. Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J. Clim. 26, 8453–8475 (2013).

    Article  Google Scholar 

  156. Engelbrecht, F. et al. Multi-scale climate modelling over southern Africa using a variable-resolution global model. Water Sa 37, 647-658 (2011).

    Article  Google Scholar 

  157. Dosio, A. & Panitz, H.-J. Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Clim. Dyn. 46, 1599–1625 (2016).

    Article  Google Scholar 

  158. Hong, S. Y. & Kanamitsu, M. Dynamical downscaling: fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci. 50, 83–104 (2014).

    Article  Google Scholar 

  159. Geng, T., Cai, W., Jia, F. & Wu, L. Decreased ENSO post-2100 in response to formation of a permanent El Niño-like state under greenhouse warming. Nat. Commun. 15, 5810 (2024).

    Article  CAS  Google Scholar 

  160. Peng, Q., Xie, S.-P. & Deser, C. Collapsed upwelling projected to weaken ENSO under sustained warming beyond the twenty-first century. Nat. Clim. Change 14, 815–822 (2024).

    Article  Google Scholar 

  161. Funk, C. in Drought, Flood, Fire: How Climate Change Contributes to Catastrophes (ed. Funk, C. C.) 186–211 (Cambridge Univ. Press, 2021).

  162. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  163. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article  Google Scholar 

  164. Schneider, U., Fuchs, T., Meyer-Christoffer, A. & Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115, 15–40 (2008).

    Article  Google Scholar 

  165. Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article  Google Scholar 

  166. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. https://doi.org/10.1029/2002JD002670 (2003).

    Article  Google Scholar 

  167. Huang, B. et al. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Clim. 34, 2923–2939 (2021).

    Article  Google Scholar 

  168. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  Google Scholar 

  169. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article  Google Scholar 

  170. Henley, B. J. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Article  Google Scholar 

  171. Deser, C. & Phillips, A. S. Defining the internal component of Atlantic multidecadal variability in a changing climate. Geophys. Res. Lett. 48, e2021GL095023 (2021).

    Article  Google Scholar 

  172. Harrison, M. S. J. A generalized classification of South African summer rain-bearing synoptic systems. J. Climatol. 4, 547–560 (1984).

    Article  Google Scholar 

  173. Yang, W., Seager, R., Cane, M. A. & Lyon, B. The annual cycle of East African precipitation. J. Clim. 28, 2385–2404 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Gan and the team from the Centre for Ocean Research, Hong Kong University of Science and Technology, for hosting the workshop on “Climate Variability and Impact on Africa” and for providing travel support. This project is supported by SKLLQGYS01. H.C.N was supported by Deutsche Forschungsgemeinschaft (DFG) grant 456490637. N.K. was supported by the research council of Norway (grant no. 328935). E.M. and B.R.-F. received funding from the Spanish Ministry of Science and Innovation projects (PID2021-125806NB-I00 and TED2021-130106B-I00). G.W., B.N., A.S.T. and X.Z. are supported by the Climate Systems Hub of the Australian Government’s National Environment Science Program. S.L. was supported by the National Natural Science Foundation of China (NSFC) projects 42376198 and 42006173. PMEL contribution no. 5586. The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and they thank the climate modelling groups for producing and making available their model output, and the US Department of Energy Program for Climate Model Diagnosis and Intercomparison for coordinating support and leading development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The authors are grateful to various reanalysis groups for making the datasets available.

Author information

Authors and Affiliations

Authors

Contributions

W.C. and M.J.M. conceived the article. The manuscript was written as a group effort through participation in several “Climate Impact on Africa” workshops held online and at Hong Kong University of Science and Technology. W.C. designed the article and coordinated the writing. A.S. synthesized workshop key points. J.M. led Box 1. C.R., E.M. and B.R.-F. led discussion and revision of content synthesized into the ‘Dynamical connections of ENSO to Africa’ and ‘ENSO effects on the African climate’ sections. W.C. led other sections. Xichen. L., B.N., Y.L. and T.G. performed analyses and created the figures. All authors contributed to the manuscript preparation, interpretation and discussions.

Corresponding authors

Correspondence to Wenju Cai or Agus Santoso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Titike Bahaga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. 

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Reason, C., Mohino, E. et al. Climate impacts of the El Niño–Southern Oscillation in Africa. Nat Rev Earth Environ 6, 503–520 (2025). https://doi.org/10.1038/s43017-025-00705-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00705-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing