Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extreme and compound events in lakes

Subjects

Abstract

Extreme and compound events disrupt lake ecosystems worldwide, with their frequency, intensity and duration increasing in response to climate change. In this Review we outline evidence of the occurrence, drivers and impact of extreme and compound events in lakes. Univariate extremes, which include lake heatwaves, droughts and floods, underwater dimming episodes and hypoxia, can occur concurrently, sequentially or simultaneously at different locations to form multivariate, temporal or spatial compound events, respectively. The probability of extreme and compound events is increasing owing to climate warming, declining lake water levels in half of lakes globally, and basin-scale anthropogenic stressors, such as nutrient pollution. Most in-lake extreme events are inherently compound in nature owing to tightly coupled physical, chemical and biological underlying processes. The cascading effects of compound events propagate or dissipate through lakes. For example, a heatwave might trigger stratification and oxygen depletion, subsequently leading to fish mortality or the proliferation of harmful algal blooms. Interactions between extremes are increasingly observed and can trigger feedback loops that exacerbate harmful algal blooms and fishery declines, leading to severe ecological and socio-economic consequences. Managing the increasing risk of compound events requires integrated models, coordinated monitoring and proactive adaptation strategies tailored to the vulnerabilities of lake ecosystems.

Key points

  • Lake heatwaves have increased in average intensity, average duration and total duration globally, at rates of 0.15 ± 0.3 °C per decade, 2.1 ± 3.1 days per decade and 8.8 ± 7.6 days per decade, respectively, since the 1980s.

  • The probability of lake heatwave events is three times more likely in a 1.5 °C warming scenario and 25 times more likely in a 3.5 °C scenario compared with pre-industrial conditions.

  • Half of the world’s largest lakes experienced declines in water storage between 1992 and 2020, accompanied by corresponding reductions in surface extent.

  • Extreme events in lakes can cause considerable impacts, including the onset of hypoxia, harmful algal blooms, disruption of food webs and loss of ecosystem services.

  • Basin-scale anthropogenic stressors, such as nutrient enrichment, land-use change and water withdrawal, interact with climate extremes to increase the frequency, intensity and ecological consequences of in-lake extremes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drivers, types and impacts of univariate and compound extremes in lakes.
Fig. 2: Intensification of lake heatwaves over recent decades.
Fig. 3: Contrasting lake water levels and hydrological pressures.
Fig. 4: Drivers of underwater dimming episodes in lakes.
Fig. 5: Dissolved oxygen responses to extreme weather events in lakes.
Fig. 6: Interactions and impacts of extreme and compound events in lakes.
Fig. 7: Strategies to enhance lake recovery, resilience and long-term sustainability.

Similar content being viewed by others

Data availability

Code and data used in this manuscript are available via Zenodo at https://doi.org/10.5281/ZENODO.15771655 (ref. 231).

References

  1. Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    Article  Google Scholar 

  2. Weyhenmeyer, G. A. et al. Global lake health in the Anthropocene: societal implications and treatment strategies. Earths Future 12, e2023EF004387 (2024).

    Article  Google Scholar 

  3. Woolway, R. I. et al. Lake heatwaves under climate change. Nature 589, 402–407 (2021).

    Article  Google Scholar 

  4. Cheng, X., Wang, S., Chen, J. & AghaKouchak, A. Global assessment and hotspots of lake drought. Commun. Earth Environ. 6, 308 (2025).

    Article  Google Scholar 

  5. Xu, F. et al. Widespread societal and ecological impacts from projected Tibetan Plateau lake expansion. Nat. Geosci. 17, 516–523 (2024).

    Article  Google Scholar 

  6. Jane, S. F. et al. Longer duration of seasonal stratification contributes to widespread increases in lake hypoxia and anoxia. Glob. Change Biol. 29, 1009–1023 (2023).

    Article  Google Scholar 

  7. Zhang, Q. & Ma, X. How does lake water clarity affect lake thermal processes? Heliyon 8, e10359 (2022).

    Article  Google Scholar 

  8. Till, A., Rypel, A. L., Bray, A. & Fey, S. B. Fish die-offs are concurrent with thermal extremes in north temperate lakes. Nat. Clim. Change 9, 637–641 (2019).

    Article  Google Scholar 

  9. Jenny, J.-P. et al. Scientists’ warning to humanity: rapid degradation of the world’s large lakes. J. Gt Lakes Res. 46, 686–702 (2020).

    Article  Google Scholar 

  10. Woolway, R. I. et al. Multivariate extremes in lakes. Nat. Commun. 15, 4559 (2024).

    Article  Google Scholar 

  11. Woolway, R. I., Kraemer, B. M., Zscheischler, J. & Albergel, C. Compound hot temperature and high chlorophyll extreme events in global lakes. Environ. Res. Lett. 16, 124066 (2021).

    Article  Google Scholar 

  12. Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020).

    Article  Google Scholar 

  13. Woolway, R. I. & Maberly, S. C. Climate velocity in inland standing waters. Nat. Clim. Change 10, 1124–1129 (2020).

    Article  Google Scholar 

  14. Rader, R. B., Unmack, P. J., Christensen, W. F. & Jiang, X. Connectivity of two species with contrasting dispersal abilities: a test of the isolated tributary hypothesis. Freshw. Sci. 38, 142–155 (2019).

    Article  Google Scholar 

  15. Wang, X., Shi, K., Qin, B., Zhang, Y. & Woolway, R. I. Disproportionate impact of atmospheric heat events on lake surface water temperature increases. Nat. Clim. Change 14, 1172–1177 (2024).

    Article  Google Scholar 

  16. Woolway, R. I. et al. Northern Hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett. 46, 11983–11992 (2019).

    Article  Google Scholar 

  17. Woolway, R. I., Anderson, E. J. & Albergel, C. Rapidly expanding lake heatwaves under climate change. Environ. Res. Lett. 16, 094013 (2021).

    Article  Google Scholar 

  18. Wang, X., Woolway, R. I., Shi, K., Qin, B. & Zhang, Y. More rapid lake heatwave development. Sci. Bull. 69, 3672–3676 (2024).

    Article  Google Scholar 

  19. Wang, X. et al. Climate change drives rapid warming and increasing heatwaves of lakes. Sci. Bull. 68, 1574–1584 (2023).

    Article  Google Scholar 

  20. Woolway, R. I., Albergel, C., Frölicher, T. L. & Perroud, M. Severe lake heatwaves attributable to human‐induced global warming. Geophys. Res. Lett. 49, e2021GL097031 (2022).

    Article  Google Scholar 

  21. Huang, L. et al. Emergence of lake conditions that exceed natural temperature variability. Nat. Geosci. 17, 763–769 (2024).

    Article  Google Scholar 

  22. Woolway, R. I. et al. Subsurface heatwaves in lakes. Nat. Clim. Change 15, 554–559 (2025).

    Article  Google Scholar 

  23. Benson, B. J. et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Change 112, 299–323 (2012).

    Article  Google Scholar 

  24. Amaya, D. J. et al. Marine heatwaves need clear definitions so coastal communities can adapt. Nature 616, 29–32 (2023).

    Article  Google Scholar 

  25. Giménez, L., Boersma, M. & Wiltshire, K. H. A multiple baseline approach for marine heatwaves. Limnol. Oceanogr. 69, 638–651 (2024).

    Article  Google Scholar 

  26. Kelly, S. et al. Warming winters threaten peripheral Arctic charr populations of Europe. Clim. Change 163, 599–618 (2020).

    Article  Google Scholar 

  27. Jeppesen, E. et al. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694, 1–39 (2012).

    Article  Google Scholar 

  28. Duan, Z., Gao, W., Cheng, G., Zhang, Y. & Chang, X. Warming surface and lake heatwaves as key drivers to harmful algal blooms: a case study of Lake Dianchi, China. J. Hydrol. 632, 130971 (2024).

    Article  Google Scholar 

  29. Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).

    Article  Google Scholar 

  30. Watson, S. B. et al. The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. Harmful Algae 56, 44–66 (2016).

    Article  Google Scholar 

  31. Fleischmann, A. et al. Extreme warming of Amazon waters in a changing climate. Preprint at https://doi.org/10.31223/X56D9T (2024).

  32. Souza, C. M. et al. Amazon severe drought in 2023 triggered surface water loss. Environ. Res. Clim. 3, 041002 (2024).

    Article  Google Scholar 

  33. Bai, B., Mu, L., Ma, C., Chen, G. & Tan, Y. Extreme water level changes in global lakes revealed by altimetry satellites since the 2000s. Int. J. Appl. Earth Obs. Geoinf. 127, 103694 (2024).

    Google Scholar 

  34. Liu, Y. & Wu, G. Hydroclimatological influences on recently increased droughts in China’s largest freshwater lake. Hydrol. Earth Syst. Sci. 20, 93–107 (2016).

    Article  Google Scholar 

  35. Chen, L. et al. Global increase in the occurrence and impact of multiyear droughts. Science 387, 278–284 (2025).

    Article  Google Scholar 

  36. Li, L., Long, D., Wang, Y. & Woolway, R. I. Global dominance of seasonality in shaping lake-surface-extent dynamics. Nature https://doi.org/10.1038/s41586-025-09046-3 (2025).

    Article  Google Scholar 

  37. Çolak, M. A. et al. Increased water abstraction and climate change have substantial effect on morphometry, salinity, and biotic communities in lakes: examples from the semi-arid Burdur basin (Turkey). Water 14, 1241 (2022).

    Article  Google Scholar 

  38. Wurtsbaugh, W. A. et al. Decline of the world’s saline lakes. Nat. Geosci. 10, 816–821 (2017).

    Article  Google Scholar 

  39. Yao, F. et al. Satellites reveal widespread decline in global lake water storage. Science 380, 743–749 (2023).

    Article  Google Scholar 

  40. Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

    Article  Google Scholar 

  41. Maciel, D. A. et al. Sentinel-1 data reveals unprecedented reduction of open water extent due to 2023–2024 drought in the central Amazon basin. Environ. Res. Lett. 19, 124034 (2024).

    Article  Google Scholar 

  42. Marengo, J. A. et al. Extreme drought in the Brazilian pantanal in 2019–2020: characterization, causes, and impacts. Front. Water 3, 639204 (2021).

    Article  Google Scholar 

  43. Fleischmann, A. S. et al. Increased floodplain inundation in the Amazon since 1980. Environ. Res. Lett. 18, 034024 (2023).

    Article  Google Scholar 

  44. Hwang, J. & Lall, U. Increasing dam failure risk in the USA due to compound rainfall clusters as climate changes. npj Nat. Hazards 1, 27 (2024).

    Article  Google Scholar 

  45. Mugume, S. N. et al. Assessment of the impact of the rise in Lake Victoria water levels on urban flooding using a GIS-based spatial flood modelling approach. Urban Water J. 21, 219–233 (2024).

    Article  Google Scholar 

  46. Pietroiusti, R. et al. Possible role of anthropogenic climate change in the record-breaking 2020 Lake Victoria levels and floods. Earth Syst. Dyn. 15, 225–264 (2024).

    Article  Google Scholar 

  47. Li, X. et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 11, 1603–1627 (2019).

    Article  Google Scholar 

  48. Shugar, D. H. et al. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 10, 939–945 (2020).

    Article  Google Scholar 

  49. Hamilton, D. P. & MacIntyre, S. in Wetzel’s Limnology (eds. Jones, I. D & Smol, J. P.) 155–207 (Elsevier, 2024).

  50. Hollan, E., Rao, D. B. & Bäuerle, E. Free surface oscillations in Lake Constance with an interpretation of the “Wonder of the Rising Water” at Konstanz in 1549. Arch. Meteorol. Geophys. Bioklimatol. Ser. A 29, 301–325 (1980).

    Article  Google Scholar 

  51. Watson, E. R. Movements of the waters of Loch Ness, as indicated by temperature observations. Geogr. J. 24, 430 (1904).

    Article  Google Scholar 

  52. Austin, J. Simple linear models of coastal setup and seiching behavior across the Laurentian Great Lakes. J. Gt Lakes Res. 51, 102491 (2025).

    Article  Google Scholar 

  53. Iwaki, M. & Toda, T. Seismic seiche-related oscillations in Lake Biwa, Japan, after the 2011 Tohoku earthquake. Sci. Rep. 12, 19357 (2022).

    Article  Google Scholar 

  54. Saharia, A. M., Zhu, Z. & Atkinson, J. F. Compound flooding from lake seiche and river flow in a freshwater coastal river. J. Hydrol. 603, 126969 (2021).

    Article  Google Scholar 

  55. Zhang, G. et al. Characteristics and changes of glacial lakes and outburst floods. Nat. Rev. Earth Environ. 5, 447–462 (2024).

    Article  Google Scholar 

  56. Peng, M. et al. Cascading hazards from two recent glacial lake outburst floods in the Nyainqêntanglha range, Tibetan Plateau. J. Hydrol. 626, 130155 (2023).

    Article  Google Scholar 

  57. Shugar, D. H. et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373, 300–306 (2021).

    Article  Google Scholar 

  58. Zheng, G. et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Change 11, 411–417 (2021).

    Article  Google Scholar 

  59. Zohary, T. & Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1, 47–59 (2011).

    Article  Google Scholar 

  60. Medellín-Azuara, R. P. et al. Economic Impacts of the 2020–22 Drought on California Agriculture (Water Systems Management Lab, 2022); https://wsm.ucmerced.edu/wp-content/uploads/2023/01/Economic_Impact_CA_Drought_V02-1.pdf.

  61. Little, A. G., Loughland, I. & Seebacher, F. What do warming waters mean for fish physiology and fisheries? J. Fish Biol. 97, 328–340 (2020).

    Article  Google Scholar 

  62. Olsson, F. et al. Annual water residence time effects on thermal structure: a potential lake restoration measure? J. Environ. Manage. 314, 115082 (2022).

    Article  Google Scholar 

  63. Gaeta, J. W., Sass, G. G. & Carpenter, S. R. Drought-driven lake level decline: effects on coarse woody habitat and fishes. Can. J. Fish. Aquat. Sci. 71, 315–325 (2014).

    Article  Google Scholar 

  64. Hofmann, H. et al. in Ecological Effects of Water-Level Fluctuations in Lakes (eds Wantzen, K. M. et al.) 85–96 (Springer, 2008).

  65. Jeppesen, E. et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750, 201–227 (2015).

    Article  Google Scholar 

  66. Jeppesen, E. et al. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 633, 1–12 (2011).

    Article  Google Scholar 

  67. Özen, A., Karapınar, B., Kucuk, İ., Jeppesen, E. & Beklioglu, M. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646, 61–72 (2010).

    Article  Google Scholar 

  68. Naselli-Flores, L. & Barone, R. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548, 85–99 (2005).

    Article  Google Scholar 

  69. Romo, S., Soria, J., Fernández, F., Ouahid, Y. & Barón‐Solá, Á. Water residence time and the dynamics of toxic cyanobacteria. Freshw. Biol. 58, 513–522 (2013).

    Article  Google Scholar 

  70. Brauns, M., Garcia, X.-F. & Pusch, M. T. Potential effects of water-level fluctuations on littoral invertebrates in lowland lakes. Hydrobiologia 613, 5–12 (2008).

    Article  Google Scholar 

  71. Winfield, I. J. Fish in the littoral zone: ecology, threats and management. Limnologica 34, 124–131 (2004).

    Article  Google Scholar 

  72. Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).

    Article  Google Scholar 

  73. Parra, G. et al. The future of temporary wetlands in drylands under global change. Inland Waters 11, 445–456 (2021).

    Article  Google Scholar 

  74. Uzarski, D. G., Burton, T. M., Kolar, R. E. & Cooper, M. J. The ecological impacts of fragmentation and vegetation removal in Lake Huron’s coastal wetlands. Aquat. Ecosyst. Health Manag. 12, 45–62 (2009).

    Article  Google Scholar 

  75. Nazari Sharabian, M., Ahmad, S. & Karakouzian, M. Climate change and eutrophication: a short review. Eng. Technol. Appl. Sci. Res. 8, 3668–3672 (2018).

    Article  Google Scholar 

  76. Stockwell, J. D. et al. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26, 2756–2784 (2020).

    Article  Google Scholar 

  77. Si, F. et al. Effects of flood discharge on the water quality of a drinking water reservoir in China — characteristics and management strategies. J. Environ. Manage. 314, 115072 (2022).

    Article  Google Scholar 

  78. Carrivick, J. L. & Tweed, F. S. A review of glacier outburst floods in Iceland and Greenland with a megafloods perspective. Earth Sci. Rev. 196, 102876 (2019).

    Article  Google Scholar 

  79. Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106, 110–127 (1989).

    Google Scholar 

  80. Saros, J. E. et al. Abrupt transformation of West Greenland lakes following compound climate extremes associated with atmospheric rivers. Proc. Natl Acad. Sci. USA 122, e2413855122 (2025).

    Article  Google Scholar 

  81. Strock, K. E., Theodore, N., Gawley, W. G., Ellsworth, A. C. & Saros, J. E. Increasing dissolved organic carbon concentrations in northern boreal lakes: implications for lake water transparency and thermal structure. J. Geophys. Res. Biogeosci. 122, 1022–1035 (2017).

    Article  Google Scholar 

  82. Zhang, Y. et al. Radiation dimming and decreasing water clarity fuel underwater darkening in lakes. Sci. Bull. 65, 1675–1684 (2020).

    Article  Google Scholar 

  83. Zhang, M. et al. Influence of cyanobacterial bloom accumulation and dissipation on underwater light attenuation in a large and shallow lake. Environ. Sci. Pollut. Res. 29, 79082–79094 (2022).

    Article  Google Scholar 

  84. Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).

    Article  Google Scholar 

  85. Kasprzak, P. et al. Extreme weather event triggers cascade towards extreme turbidity in a clear-water lake. Ecosystems 20, 1407–1420 (2017).

    Article  Google Scholar 

  86. Havens, K. E. et al. Hurricane effects on the planktonic food web of a large subtropical lake. J. Plankton Res. 33, 1081–1094 (2011).

    Article  Google Scholar 

  87. James, T. R. et al. Hurricane effects on a shallow lake ecosystem, Lake Okeechobee, Florida (USA). Fundam. Appl. Limnol. 172, 273–287 (2008).

    Article  Google Scholar 

  88. Klug, J. L. et al. Ecosystem effects of a tropical cyclone on a network of lakes in Northeastern North America. Environ. Sci. Technol. 46, 11693–11701 (2012).

    Article  Google Scholar 

  89. Jennings, E. et al. Effects of weather‐related episodic events in lakes: an analysis based on high‐frequency data. Freshw. Biol. 57, 589–601 (2012).

    Article  Google Scholar 

  90. Kelly, S. et al. Impacts of a record-breaking storm on physical and biogeochemical regimes along a catchment-to-coast continuum. PLoS ONE 15, e0235963 (2020).

    Article  Google Scholar 

  91. Fassoni-Andrade, A. C. & Paiva, R. C. D. D. Mapping spatial-temporal sediment dynamics of river-floodplains in the Amazon. Remote. Sens. Environ. 221, 94–107 (2019).

    Article  Google Scholar 

  92. Rudorff, C. M., Dunne, T. & Melack, J. M. Recent increase of river–floodplain suspended sediment exchange in a reach of the lower Amazon River. Earth Surf. Process. Landf. 43, 322–332 (2018).

    Article  Google Scholar 

  93. Fee, E. J., Hecky, R. E., Kasian, S. E. M. & Cruikshank, D. R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 41, 912–920 (1996).

    Article  Google Scholar 

  94. Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. 5, 18666 (2015).

    Article  Google Scholar 

  95. Liu, X. et al. Determining critical light and hydrologic conditions for macrophyte presence in a large shallow lake: the ratio of euphotic depth to water depth. Ecol. Indic. 71, 317–326 (2016).

    Article  Google Scholar 

  96. Søndergaard, M., Jeppesen, E., Peder Jensen, J. & Lildal Amsinck, S. Water framework directive: ecological classification of Danish lakes. J. Appl. Ecol. 42, 616–629 (2005).

    Article  Google Scholar 

  97. Van Wijk, D., Chang, M., Janssen, A. B. G., Teurlincx, S. & Mooij, W. M. Regime shifts in shallow lakes explained by critical turbidity. Water Res. 242, 119950 (2023).

    Article  Google Scholar 

  98. Scheffer, M., Hosper, S. H., Meijer, M.-L., Moss, B. & Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279 (1993).

    Article  Google Scholar 

  99. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  Google Scholar 

  100. Schwarz, A. ‐M., Hawes, I. I. & Howard‐Williams, C. The role of photosynthesis/light relationships in determining lower depth limits of Characeae in South Island, New Zealand lakes. Freshw. Biol. 35, 69–80 (1996).

    Article  Google Scholar 

  101. Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509 (2009).

    Article  Google Scholar 

  102. Phillips, G., Willby, N. & Moss, B. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquat. Bot. 135, 37–45 (2016).

    Article  Google Scholar 

  103. Luo, J. et al. Global trends and regime state shifts of lacustrine aquatic vegetation. Innovation https://doi.org/10.1016/j.xinn.2024.100784 (2025).

    Article  Google Scholar 

  104. Jeppesen, E., Søndergaard, M., Søndergaard, M. & Christoffersen, K. in Ecological Studies (ed. Christoffersen, K.) Vol. 131, 421 (Springer, 1998).

  105. He, H. et al. Effects of dissolved organic matter removal and molecular transformation in different water treatment processes on formation of disinfection byproducts. Water Res. 245, 120626 (2023).

    Article  Google Scholar 

  106. Franklin, H. M. et al. Terrestrial dissolved organic matter source affects disinfection by-product formation during water treatment and subsequent toxicity. Environ. Pollut. 283, 117232 (2021).

    Article  Google Scholar 

  107. Angradi, T. R., Ringold, P. L. & Hall, K. Water clarity measures as indicators of recreational benefits provided by US lakes: swimming and aesthetics. Ecol. Indic. 93, 1005–1019 (2018).

    Article  Google Scholar 

  108. Li, X. & Tsigaris, P. The global value of freshwater lakes. Ecol. Lett. 27, e14388 (2024).

    Article  Google Scholar 

  109. Livingstone, D. M. & Imboden, D. M. The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Can. J. Fish. Aquat. Sci. 53, 924–932 (1996).

    Article  Google Scholar 

  110. Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303 (1995).

    Google Scholar 

  111. Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).

    Article  Google Scholar 

  112. Davis, J. C. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Board Can. 32, 2295–2332 (1975).

    Article  Google Scholar 

  113. Spoor, W. A. Distribution of fingerling brook trout, Salvelinus fontinalis (Mitchill), in dissolved oxygen concentration gradients. J. Fish Biol. 36, 363–373 (1990).

    Article  Google Scholar 

  114. Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    Article  Google Scholar 

  115. Hutchinson, G. E. Treatise on Limnology Vol. 1 (1958).

  116. Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 46, 9964–9971 (2012).

    Article  Google Scholar 

  117. Pace, M. L. & Prairie, Y. T. in Respiration in Aquatic Ecosystems (eds. del Giorgio, P.A. & Williams, P. J. B.) 103–121 (Oxford Univ. Press, 2005).

  118. Bouffard, D., Ackerman, J. D. & Boegman, L. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: hourly to seasonal patterns. Water Resour. Res. 49, 2380–2394 (2013).

    Article  Google Scholar 

  119. Hutchinson, G. E. On the relation between the oxygen deficit and the productivity and typology of lakes. Int. Rev. Gesamten Hydrobiol. Hydrogr. 36, 336–355 (1938).

    Article  Google Scholar 

  120. McClure, R. P. et al. Metalimnetic oxygen minima alter the vertical profiles of carbon dioxide and methane in a managed freshwater reservoir. Sci. Total Environ. 636, 610–620 (2018).

    Article  Google Scholar 

  121. Zhou, Y., Michalak, A. M., Beletsky, D., Rao, Y. R. & Richards, R. P. Record-breaking Lake Erie hypoxia during 2012 drought. Environ. Sci. Technol. 49, 800–807 (2015).

    Article  Google Scholar 

  122. Kragh, T., Martinsen, K. T., Kristensen, E. & Sand-Jensen, K. From drought to flood: sudden carbon inflow causes whole-lake anoxia and massive fish kill in a large shallow lake. Sci. Total Environ. 739, 140072 (2020).

    Article  Google Scholar 

  123. Zhang, Y., Shi, K., Woolway, R. I., Wang, X. & Zhang, Y. Climate warming and heatwaves accelerate global lake deoxygenation. Sci. Adv. 11, eadt5369 (2025).

    Article  Google Scholar 

  124. Jankowski, T., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006).

    Article  Google Scholar 

  125. Bartosiewicz, M., Laurion, I., Clayer, F. & Maranger, R. Heat-wave effects on oxygen, nutrients, and phytoplankton can alter global warming potential of gases emitted from a small shallow lake. Environ. Sci. Technol. 50, 6267–6275 (2016).

    Article  Google Scholar 

  126. Dugan, H. A. A comparison of ecological memory of lake ice‐off in eight north‐temperate lakes. J. Geophys. Res. Biogeosci. 126, e2020JG006232 (2021).

    Article  Google Scholar 

  127. Calderó-Pascual, M. et al. Effects of consecutive extreme weather events on a temperate dystrophic lake: a detailed insight into physical, chemical and biological responses. Water 12, 1411 (2020).

    Article  Google Scholar 

  128. Søndergaard, M., Nielsen, A., Johansson, L. S. & Davidson, T. A. Temporarily summer-stratified lakes are common: profile data from 436 lakes in lowland Denmark. Inland Waters 13, 153–166 (2023).

    Article  Google Scholar 

  129. Wilhelm, S. & Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 53, 226–237 (2008).

    Article  Google Scholar 

  130. Deng, J. et al. Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Sci. Total. Environ. 645, 1361–1370 (2018).

    Article  Google Scholar 

  131. Monismith, S. G. & MacIntyre, S. in Encyclopedia of Inland Waters 636–650 (2009).

  132. Shinohara, R. et al. Heat waves can cause hypoxia in shallow lakes. Geophys. Res. Lett. 50, e2023GL102967 (2023).

    Article  Google Scholar 

  133. Audet, J. et al. Heat‐wave effects on greenhouse gas emissions from shallow lake mesocosms. Freshw. Biol. 62, 1130–1142 (2017).

    Article  Google Scholar 

  134. Caraballo, P., Forsberg, B. R., Almeida, F. F. D. & Leite, R. G. Diel patterns of temperature, conductivity and dissolved oxygen in an Amazon floodplain lake: description of a friagem phenomenon. Acta Limnol. Bras. 26, 318–331 (2014).

    Article  Google Scholar 

  135. Fang, X. & Stefan, H. G. Simulated climate change effects on dissolved oxygen characteristics in ice-covered lakes. Ecol. Model. 103, 209–229 (1997).

    Article  Google Scholar 

  136. Jones, S. E., Kratz, T. K., Chiu, C. & McMahon, K. D. Influence of typhoons on annual CO2 flux from a subtropical, humic lake. Glob. Change Biol. 15, 243–254 (2009).

    Article  Google Scholar 

  137. Woolway, R. I. et al. Physical and chemical impacts of a major storm on a temperate lake: a taste of things to come? Clim. Change 151, 333–347 (2018).

    Article  Google Scholar 

  138. Flood, B. et al. Intense variability of dissolved oxygen and temperature in the internal swash zone of Hamilton Harbour, Lake Ontario. Inland Waters 11, 162–179 (2021).

    Article  Google Scholar 

  139. De Eyto, E. et al. Response of a humic lake ecosystem to an extreme precipitation event: physical, chemical, and biological implications. Inland Waters 6, 483–498 (2016).

    Article  Google Scholar 

  140. Sadro, S. & Melack, J. M. The effect of an extreme rain event on the biogeochemistry and ecosystem metabolism of an oligotrophic high-elevation lake. Arct. Antarct. Alp. Res. 44, 222–231 (2012).

    Article  Google Scholar 

  141. Zhou, Y. et al. Rainstorm events shift the molecular composition and export of dissolved organic matter in a large drinking water reservoir in China: high frequency buoys and field observations. Water Res. 187, 116471 (2020).

    Article  Google Scholar 

  142. Townsend, S. A. & Edwards, C. A. A fish kill event, hypoxia and other limnological impacts associated with early wet season flow into a lake on the Mary River floodplain, tropical northern Australia. Lakes Reserv. Sci. Policy Manag. Sustain. Use 8, 169–176 (2003).

    Google Scholar 

  143. Reavie, E. D. et al. Winter–spring diatom production in Lake Erie is an important driver of summer hypoxia. J. Gt Lakes Res. 42, 608–618 (2016).

    Article  Google Scholar 

  144. Zhang, Y. et al. Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. Sci. Total Environ. 569–570, 1517–1529 (2016).

    Article  Google Scholar 

  145. Lewis, A. S. L. et al. Anoxia begets anoxia: a positive feedback to the deoxygenation of temperate lakes. Glob. Change Biol. 30, e17046 (2024).

    Article  Google Scholar 

  146. Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    Article  Google Scholar 

  147. Missaghi, S., Hondzo, M. & Herb, W. Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate. Clim. Change 141, 747–757 (2017).

    Article  Google Scholar 

  148. Villnäs, A., Norkko, J., Lukkari, K., Hewitt, J. & Norkko, A. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning. PLoS ONE 7, e44920 (2012).

    Article  Google Scholar 

  149. Nürnberg, G. K. et al. Evidence for internal phosphorus loading, hypoxia and effects on phytoplankton in partially polymictic Lake Simcoe, Ontario. J. Gt Lakes Res. 39, 259–270 (2013).

    Article  Google Scholar 

  150. Scavia, D. et al. Water quality–fisheries tradeoffs in a changing climate underscore the need for adaptive ecosystem–based management. Proc. Natl Acad. Sci. USA 121, e2322595121 (2024).

    Article  Google Scholar 

  151. Hamilton, D. P., Wood, S. A., Dietrich, D. R. & Puddick, J. in Cyanobacteria (eds Sharma, N. K., Rai, A. K. & Stal, L. J.) 245–256 (Wiley, 2014).

  152. Arend, K. K. et al. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie: hypoxia effects on fish habitat. Freshw. Biol. 56, 366–383 (2011).

    Article  Google Scholar 

  153. Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article  Google Scholar 

  154. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article  Google Scholar 

  155. Doubek, J. P. et al. The extent and variability of storm‐induced temperature changes in lakes measured with long‐term and high‐frequency data. Limnol. Oceanogr. 66, 1979–1992 (2021).

    Article  Google Scholar 

  156. Gill, J. C. & Malamud, B. D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 7, 659–679 (2016).

    Article  Google Scholar 

  157. Tilloy, A., Malamud, B. D., Winter, H. & Joly-Laugel, A. A review of quantification methodologies for multi-hazard interrelationships. Earth Sci. Rev. 196, 102881 (2019).

    Article  Google Scholar 

  158. Lewis, J. P. et al. Nutrients and saltwater exchange as drivers of environmental change in a Danish brackish coastal lake over the past 100 years. Water 15, 1116 (2023).

    Article  Google Scholar 

  159. Tye, S. P. et al. Climate warming amplifies the frequency of fish mass mortality events across north temperate lakes. Limnol. Oceanogr. Lett. 7, 510–519 (2022).

    Article  Google Scholar 

  160. Jeppesen, E. et al. in Advances in Ecological Research (ed Woodward, G. et al.) Vol. 47, 411–488 (Elsevier, 2012).

  161. Brett, L. et al. Review article: the growth in compound weather events research in the decade since SREX. Preprint at https://doi.org/10.5194/nhess-2024-182 (2024).

  162. Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).

    Article  Google Scholar 

  163. Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).

    Article  Google Scholar 

  164. Burger, F. A., Terhaar, J. & Frölicher, T. L. Compound marine heatwaves and ocean acidity extremes. Nat. Commun. 13, 4722 (2022).

    Article  Google Scholar 

  165. Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).

    Article  Google Scholar 

  166. Richardson, J. et al. Effects of multiple stressors on cyanobacteria abundance vary with lake type. Glob. Change Biol. 24, 5044–5055 (2018).

    Article  Google Scholar 

  167. Jacobson, P. C., Jones, T. S., Rivers, P. & Pereira, D. L. Field estimation of a lethal oxythermal niche boundary for adult Ciscoes in Minnesota lakes. Trans. Am. Fish. Soc. 137, 1464–1474 (2008).

    Article  Google Scholar 

  168. Iglesias, C. et al. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667, 133–147 (2011).

    Article  Google Scholar 

  169. Feng, L. et al. Harmful algal blooms in inland waters. Nat. Rev. Earth Environ. 5, 631–644 (2024).

    Article  Google Scholar 

  170. Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).

    Article  Google Scholar 

  171. Wu, T. et al. Light limitation during a compound drought and heat event inhibited algal blooms in a nutrient-rich shallow lake. Harmful Algae 142, 102796 (2025).

    Article  Google Scholar 

  172. Perga, M., Bruel, R., Rodriguez, L., Guénand, Y. & Bouffard, D. Storm impacts on alpine lakes: antecedent weather conditions matter more than the event intensity. Glob. Change Biol. 24, 5004–5016 (2018).

    Article  Google Scholar 

  173. Banfi, F. & De Michele, C. Compound flood hazard at Lake Como, Italy, is driven by temporal clustering of rainfall events. Commun. Earth Environ. 3, 234 (2022).

    Article  Google Scholar 

  174. Brunner, M. I. Floods and droughts: a multivariate perspective. Hydrol. Earth Syst. Sci. 27, 2479–2497 (2023).

    Article  Google Scholar 

  175. Chagas, V. B. P., Chaffe, P. L. B. & Blöschl, G. Drought‐rich periods are more likely than flood‐rich periods in Brazil. Water Resour. Res. 60, e2023WR035851 (2024).

    Article  Google Scholar 

  176. Gesualdo, G. C., Benso, M. R., Mendiondo, E. M. & Brunner, M. I. Spatially compounding drought events in Brazil. Water Resour. Res. 60, e2023WR036629 (2024).

    Article  Google Scholar 

  177. Whitworth, K. L., Baldwin, D. S. & Kerr, J. L. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia). J. Hydrol. 450–451, 190–198 (2012).

    Article  Google Scholar 

  178. Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

    Article  Google Scholar 

  179. Thayne, M. W. et al. Lake surface water temperature and oxygen saturation resistance and resilience following extreme storms: chlorophyll a shapes resistance to storms. Inland Waters 13, 339–361 (2023).

    Article  Google Scholar 

  180. Thayne, M. W., Kraemer, B. M., Mesman, J. P., Ibelings, B. W. & Adrian, R. Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms. Limnol. Oceanogr. 67, S101–S120 (2022).

    Article  Google Scholar 

  181. Jackson, L. J., Lauridsen, T. L., Søndergaard, M. & Jeppesen, E. A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshw. Biol. 52, 1782–1792 (2007).

    Article  Google Scholar 

  182. Ruuhijärvi, J. et al. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646, 145–158 (2010).

    Article  Google Scholar 

  183. Balayla, D., Lauridsen, T. L., Søndergaard, M. & Jeppesen, E. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 646, 159–172 (2010).

    Article  Google Scholar 

  184. Lhotka, O. & Kyselý, J. The 2021 European heat wave in the context of past major heat waves. Earth Space Sci. 9, e2022EA002567 (2022).

    Article  Google Scholar 

  185. Koks, E. E., Van Ginkel, K. C. H., Van Marle, M. J. E. & Lemnitzer, A. Brief communication: critical infrastructure impacts of the 2021 mid-July western European flood event. Nat. Hazards Earth Syst. Sci. 22, 3831–3838 (2022).

    Article  Google Scholar 

  186. Duan, H. et al. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 43, 3522–3528 (2009).

    Article  Google Scholar 

  187. Braz-Mota, S. & Luis Val, A. Fish mortality in the Amazonian drought of 2023: the role of experimental biology in our response to climate change. J. Exp. Biol. 227, jeb247255 (2024).

    Article  Google Scholar 

  188. Fabré, N. N., Castello, L., Isaac, V. J. & Batista, V. S. Fishing and drought effects on fish assemblages of the central Amazon Basin. Fish. Res. 188, 157–165 (2017).

    Article  Google Scholar 

  189. Van Vliet, M. T. H., Sheffield, J., Wiberg, D. & Wood, E. F. Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environ. Res. Lett. 11, 124021 (2016).

    Article  Google Scholar 

  190. Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).

    Article  Google Scholar 

  191. Röpke, C. P. et al. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Sci. Rep. 7, 40170 (2017).

    Article  Google Scholar 

  192. O’Farrell, I. et al. Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long-term study in a floodplain lake. Aquat. Sci. 73, 275–287 (2011).

    Article  Google Scholar 

  193. Xue, F. et al. Floodplain lakes: linking hydrology to ecology and conservation. Earth Sci. Rev. 258, 104967 (2024).

    Article  Google Scholar 

  194. Luis Val, A. & Wood, C. M. Global change and physiological challenges for fish of the Amazon today and in the near future. J. Exp. Biol. 225, jeb216440 (2022).

    Article  Google Scholar 

  195. Santos et al. Severe droughts reduce river navigability and isolate communities in the Brazilian Amazon. Commun. Earth Environ. 5, 370 (2024).

    Article  Google Scholar 

  196. Torres-Batlló, J., Martí-Cardona, B. & Pillco-Zolá, R. Mapping evapotranspiration, vegetation and precipitation trends in the catchment of the shrinking Lake Poopó. Remote Sens. 12, 73 (2019).

    Article  Google Scholar 

  197. Kazanjian, G., Brothers, S., Köhler, J. & Hilt, S. Incomplete recovery of a shallow lake from a natural browning event. Freshw. Biol. 66, 1089–1100 (2021).

    Article  Google Scholar 

  198. Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).

    Article  Google Scholar 

  199. Jeppesen, E., Pierson, D. & Jennings, E. Effect of extreme climate events on lake ecosystems. Water 13, 282 (2021).

    Article  Google Scholar 

  200. Chou, Q. et al. The impacts of extreme climate on summer-stratified temperate lakes: Lake Søholm, Denmark, as an example. Hydrobiologia 848, 3521–3537 (2021).

    Article  Google Scholar 

  201. Schelske, C. L. et al. How anthropogenic darkening of Lake Apopka induced benthic light limitation and forced the shift from macrophyte to phytoplankton dominance. Limnol. Oceanogr. 55, 1201–1212 (2010).

    Article  Google Scholar 

  202. Johnson, K. G., Dotson, J. R., Pouder, W. F., Trippel, N. A. & Eisenhauer, R. L. Effects of hurricane-induced hydrilla reduction on the largemouth bass fishery at two central Florida lakes. Lake Reserv. Manag. 30, 217–225 (2014).

    Article  Google Scholar 

  203. Olsson, F. et al. Can reductions in water residence time be used to disrupt seasonal stratification and control internal loading in a eutrophic monomictic lake? J. Environ. Manage. 304, 114169 (2022).

    Article  Google Scholar 

  204. Carpenter, S. R. & Cottingham, K. L. Resilience and restoration of Lakes. Conserv. Ecol. 1, art2 (1997).

    Google Scholar 

  205. Lake, P. S. Drought and Aquatic Ecosystems: Effects and Responses (Wiley, 2011).

  206. Niedda, M., Pirastru, M., Castellini, M. & Giadrossich, F. Simulating the hydrological response of a closed catchment-lake system to recent climate and land-use changes in semi-arid Mediterranean environment. J. Hydrol. 517, 732–745 (2014).

    Article  Google Scholar 

  207. Verdonschot, P. F. M. et al. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704, 453–474 (2013).

    Article  Google Scholar 

  208. Karbassi, A., Bidhendi, G. N., Pejman, A. & Bidhendi, M. E. Environmental impacts of desalination on the ecology of Lake Urmia. J. Gt Lakes Res. 36, 419–424 (2010).

    Article  Google Scholar 

  209. Whitfield, A. K. & Taylor, R. H. A review of the importance of freshwater inflow to the future conservation of Lake St Lucia. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 838–848 (2009).

    Article  Google Scholar 

  210. Waters, S., Hamilton, D., Pan, G., Michener, S. & Ogilvie, S. Oxygen nanobubbles for lake restoration — where are we at? A review of a new-generation approach to managing lake eutrophication. Water 14, 1989 (2022).

    Article  Google Scholar 

  211. Gächter, R. & Wehrli, B. Ten years of artificial mixing and oxygenation: no effect on the internal phosphorus loading of two eutrophic lakes. Environ. Sci. Technol. 32, 3659–3665 (1998).

    Article  Google Scholar 

  212. Schwefel, R., Gaudard, A., Wüest, A. & Bouffard, D. Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): comparing observational findings and modeling. Water Resour. Res. 52, 8811–8826 (2016).

    Article  Google Scholar 

  213. Jansen, J. et al. Climate-driven deoxygenation of northern lakes. Nat. Clim. Change 14, 832–838 (2024).

    Article  Google Scholar 

  214. Boys, C. A., Baldwin, D. S., Ellis, I., Pera, J. & Cheshire, K. Review of options for creating and maintaining oxygen refuges for fish during destratification-driven hypoxia in rivers. Mar. Freshw. Res. 73, 200–210 (2021).

    Article  Google Scholar 

  215. Gibbs, M. M. & Howard-Williams, C. in Lake Restoration Handbook: A New Zealand Perspective (eds Hamilton, D. P. et al.) (Springer, 2019).

  216. Mander, Ü., Tournebize, J., Tonderski, K., Verhoeven, J. T. A. & Mitsch, W. J. Planning and establishment principles for constructed wetlands and riparian buffer zones in agricultural catchments. Ecol. Eng. 103, 296–300 (2017).

    Article  Google Scholar 

  217. Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).

    Article  Google Scholar 

  218. Carpenter, S. R., Gahler, M. R., Kucharik, C. J. & Stanley, E. H. Long-range dependence and extreme values of precipitation, phosphorus load, and Cyanobacteria. Proc. Natl Acad. Sci. USA 119, e2214343119 (2022).

    Article  Google Scholar 

  219. Petersen, R. J., Blicher-Mathiesen, G., Rolighed, J., Andersen, H. E. & Kronvang, B. Three decades of regulation of agricultural nitrogen losses: experiences from the Danish agricultural monitoring program. Sci. Total. Environ. 787, 147619 (2021).

    Article  Google Scholar 

  220. Nielsen, A. et al. Watershed land use effects on lake water quality in Denmark. Ecol. Appl. 22, 1187–1200 (2012).

    Article  Google Scholar 

  221. Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).

    Article  Google Scholar 

  222. Liu, S. et al. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes. Sci. Total Environ. 616–617, 602–613 (2018).

    Article  Google Scholar 

  223. Gutierrez, M. F. et al. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813, 237–255 (2018).

    Article  Google Scholar 

  224. Wang, G. et al. Integrated watershed management: evolution, development and emerging trends. J. For. Res. 27, 967–994 (2016).

    Article  Google Scholar 

  225. Crossman, J. et al. Optimizing land management strategies for maximum improvements in lake dissolved oxygen concentrations. Sci. Total Environ. 652, 382–397 (2019).

    Article  Google Scholar 

  226. Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Article  Google Scholar 

  227. Hipsey, M. R. et al. A general lake model (GLM 3.0) for linking with high-frequency sensor data from the global lake ecological observatory network (GLEON). Geosci. Model Dev. 12, 473–523 (2019).

    Article  Google Scholar 

  228. Burchard, H. et al. Description of a flexible and extendable physical–biogeochemical model system for the water column. J. Mar. Syst. 61, 180–211 (2006).

    Article  Google Scholar 

  229. Saloranta, T. M. & Andersen, T. MyLake — a multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations. Ecol. Model. 207, 45–60 (2007).

    Article  Google Scholar 

  230. Lopez, L. S. et al. Establishing a long‐term citizen science project? Lessons learned from the community lake ice collaboration spanning over 30 yr and 1000 lakes. Limnol. Oceanogr. Lett. 9, 99–111 (2024).

    Article  Google Scholar 

  231. Woolway, R. I., Jane, S., Tong, Y., Jansen, J. & Wang, W. Supporting code and data for ‘Extreme and compound events in lakes’ (Nature Reviews Earth & Environment). Zenodo https://doi.org/10.5281/ZENODO.15771655 (2025).

  232. Tong, Y. et al. Global lakes are warming slower than surface air temperature due to accelerated evaporation. Nat. Water 1, 929–940 (2023).

    Article  Google Scholar 

  233. Jansen, J. Lake water quality monitoring data from 8287 northern lakes. Zenodo https://doi.org/10.5281/ZENODO.11243331 (2024).

Download references

Acknowledgements

The authors thank the following for financial support: R.I.W. thanks the UKRI Natural Environment Research Council (NERC) Independent Research Fellowship (no. NE/T011246/1); R.I.W. and A.F. thank the Royal Society International Science Partnerships Fund International Collaboration Award (no. ICAO/R1/241102); Y.Z. thanks the National Key Research and Development Program of China (no. 2022YFC3204100) and the PIFI Project of the Chinese Academy of Sciences (nos. 2024PG0017 and 2024DC0005); S.F.J. thanks the University of Notre Dame (Society of Science Postdoctoral Fellowship); H.S. thanks NERC (no. NE/X019071/1, UK EO Climate Information Service); W.W. thanks NERC (no. NE/X013537/1); G.A.W. thanks the Swedish Research Council (VR grant no. 2020-03222 and FORMAS grant no. 2020-01091); E. Jeppesen thanks the Yunnan Provincial Council of Academicians and Experts Workstations (no. 202405AF140006); J.Z. thanks the Helmholtz Initiative and Networking Fund (Young Investigator Group COMPOUNDX, grant agreement VH-NG-1537); and Y.T. thanks the Postdoctoral Fellowship Program (Grade C) of the China Postdoctoral Science Foundation (grant no. GZC20240637). The authors also thank the National Natural Science Foundation of China (nos. 42425102 and U22A20561).

Author information

Authors and Affiliations

Authors

Contributions

R.I.W. and Y.Z. conceived the idea for the Review and led the organization and writing of the paper. E. Jennings, J.J., L.F., Y.T. and S.F.J. contributed to the writing, creating figures and data analysis. E. Jennings, T.Z., S.F.J., J.J., E. Jeppesen and J.Z. led the writing of individual sections of the paper. G.A.W., A.F., D.L., L.F., B.Q., K.S., H.S., W.W., Y.T., G.Z. and Z.R. contributed to writing and literature review. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding authors

Correspondence to R. Iestyn Woolway or Yunlin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks William Pringle, Jasmine Saros and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Images from the US Geological Survey (USGS): https://glovis.usgs.gov/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woolway, R.I., Zhang, Y., Jennings, E. et al. Extreme and compound events in lakes. Nat Rev Earth Environ 6, 593–611 (2025). https://doi.org/10.1038/s43017-025-00710-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00710-w

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene