Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ocean stratification in a warming climate

Abstract

The ocean is highly stratified. Warm, fresh water sits on top of cold, salty water, influencing vertical oceanic exchange of heat, carbon, oxygen and nutrients. In this Review, we examine observed and projected stratification shifts and their impacts. Changes in ocean temperature and salinity have altered the ocean density field, leading to a 0.8 ± 0.1% dec−1 (90% confidence interval) increase in stratification in the global upper 2,000 m since the 1960s. These increases are most pronounced in the tropics and are primarily temperature driven. Model simulations project ongoing stratification increases in the future, with global 0–2,000 m stratification increasing 0.7 [0.3,1.1; 13–87% confidence interval], 1.4 [0.9,1.8] and 2.9 [2.1,3.8]% dec−1 by 2090–2100 relative to 2010–2020 under Shared Socioeconomic Pathways SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively; regional patterns of projected stratification changes generally follow observed trends. These observed and projected ocean stratification changes have important climate and ecological consequences, including alterations in ocean heat uptake, ocean currents, vertical mixing, tropical cyclone intensity, marine ecosystems and elevation of marine extremes. Further research should better quantify stratification change at critical layers and understand their drivers and impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Explaining ocean stratification.
Fig. 2: Global and regional ocean stratification.
Fig. 3: Observed and projected global ocean stratification changes.
Fig. 4: Observed regional stratification changes.
Fig. 5: Future stratification change sensitivity to emission scenario.
Fig. 6: Ocean stratification impacts on physical and biogeochemical ocean systems.
Fig. 7: Quantifying the impact of stratification on the climate system.

Similar content being viewed by others

References

  1. Sprintall, J., Cronin, M. & Farrar, J. T. in Encyclopedia of Ocean Sciences Vol. 1 (eds Cochran, J. K., Bokuniewicz, H. J. & Yager, P. L.) 97–105 (Elsevier, 2010).

  2. Ivey, G. N., Winters, K. B. & Koseff, J. R. Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40, 169–184 (2008).

    Article  Google Scholar 

  3. Yamaguchi, R. & Suga, T. Trend and variability in global upper-ocean stratification since the 1960s. J. Geophys. Res. Oceans 124, 8933–8948 (2019).

    Article  Google Scholar 

  4. Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 117, C04031 (2012).

    Article  Google Scholar 

  5. Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).

    Article  Google Scholar 

  6. Sallée, J.-B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).

    Article  Google Scholar 

  7. Yamaguchi, R., Suga, T., Richards, K. J. & Qiu, B. Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific. Clim. Dyn. 53, 4667–4681 (2019).

    Article  Google Scholar 

  8. Peng, S. & Wang, Q. Fast enhancement of the stratification in the Indian Ocean over the past 20 years. J. Clim. 37, 2231–2245 (2024).

    Article  Google Scholar 

  9. Simpson, J. H. et al. The shelf-sea fronts: implications of their existence and behaviour. Phil. Trans. R. Soc. A 302, 531–546 (1981).

    Google Scholar 

  10. Somavilla, R., González-Pola, C. & Fernández-Diaz, J. The warmer the ocean surface, the shallower the mixed layer. How much of this is true? J. Geophys. Res. Oceans 122, 7698–7716 (2017).

    Article  CAS  Google Scholar 

  11. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2013).

  12. Cheng, L. et al. Past and future ocean warming. Nat. Rev. Earth Environ. 3, 776–794 (2022).

    Article  Google Scholar 

  13. Gulev, S. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2021).

  14. Cheng, L. et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim. 33, 10357–10381 (2020).

    Article  Google Scholar 

  15. Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    Article  CAS  Google Scholar 

  16. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  17. Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–587 (IPCC, Cambridge Univ. Press, 2019).

  18. Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 9 (IPCC, Cambridge Univ. Press, 2021).

  19. Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  CAS  Google Scholar 

  20. Abram, N. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 73–129 (IPCC, Cambridge Univ. Press, 2019).

  21. Liu, M., Vecchi, G., Soden, B., Yang, W. & Zhang, B. Enhanced hydrological cycle increases ocean heat uptake and moderates transient climate change. Nat. Clim. Change 11, 848–853 (2021).

    Article  Google Scholar 

  22. Kuhlbrodt, T. & Gregory, J. M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett. 39, L18608 (2012).

    Article  Google Scholar 

  23. Müller, J. D. et al. Decadal trends in the oceanic storage of anthropogenic carbon from 1994 to 2014. AGU Adv. 4, e2023AV000875 (2023).

    Article  Google Scholar 

  24. Schlunegger, S. et al. Emergence of anthropogenic signals in the ocean carbon cycle. Nat. Clim. Change 9, 719–725 (2019).

    Article  CAS  Google Scholar 

  25. Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

    Article  CAS  Google Scholar 

  26. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article  Google Scholar 

  27. Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Phil. Trans. R. Soc. A 369, 1980–1996 (2011).

    Article  CAS  Google Scholar 

  28. Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).

    Article  CAS  Google Scholar 

  29. Zhou, Y., Gong, H. & Zhou, F. Responses of horizontally expanding oceanic oxygen minimum zones to climate change based on observations. Geophys. Res. Lett. 49, e2022GL097724 (2022).

    Article  Google Scholar 

  30. Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev. Mar. Sci. 10, 229–260 (2018).

    Article  Google Scholar 

  31. Babbin, A. R., Bianchi, D., Jayakumar, A. & Ward, B. B. Rapid nitrous oxide cycling in the suboxic ocean. Science 348, 1127–1129 (2015).

    Article  CAS  Google Scholar 

  32. Suarez, M. J. & Schopf, P. S. A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283–3287 (1988).

    Article  Google Scholar 

  33. Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Article  Google Scholar 

  34. Kim, S. T., Cai, W., Jin, F.-F. & Yu, J.-Y. ENSO stability in coupled climate models and its association with mean state. Clim. Dyn. 42, 3313–3321 (2014).

    Article  Google Scholar 

  35. Lukas, R. & Lindstrom, E. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res. Oceans 96, 3343–3357 (1991).

    Article  Google Scholar 

  36. Liu, H., Grodsky, S. A. & Carton, J. A. Observed subseasonal variability of oceanic barrier and compensated layers. J. Clim. 22, 6104–6119 (2009).

    Article  Google Scholar 

  37. George, J. V. et al. Mechanisms of barrier layer formation and erosion from in situ observations in the Bay of Bengal. J. Phys. Oceanogr. 49, 1183–1200 (2019).

    Article  Google Scholar 

  38. Liang, Y.-C. et al. Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region. Nat. Commun. 11, 4390 (2020).

    Article  CAS  Google Scholar 

  39. Sprintall, J. & Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. Oceans 97, 7305–7316 (1992).

    Article  Google Scholar 

  40. Maes, C., Picaut, J. & Belamari, S. Importance of the salinity barrier layer for the buildup of El Niño. J. Clim. 18, 104–118 (2005).

    Article  Google Scholar 

  41. Maes, C. & O’Kane, T. J. Seasonal variations of the upper ocean salinity stratification in the tropics. J. Geophys. Res. Oceans 119, 1706–1722 (2014).

    Article  Google Scholar 

  42. Liu, L., Huang, R. X. & Wang, F. Ventilation of a monsoon-dominated ocean: subduction and obduction in the north Indian Ocean. J. Geophys. Res. Oceans 123, 4449–4463 (2018).

    Article  Google Scholar 

  43. Rao, R. R. & Sivakumar, R. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res. Oceans 108, 9-1–9-14 (2003).

    Article  Google Scholar 

  44. Li, Y. et al. Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. J. Geophys. Res. Oceans 122, 4312–4328 (2017).

    Article  Google Scholar 

  45. Carton, J. A., Grodsky, S. A. & Liu, H. Variability of the oceanic mixed layer, 1960–2004. J. Clim. 21, 1029–1047 (2008).

    Article  Google Scholar 

  46. Stommel, H. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl Acad. Sci. USA 76, 3051–3055 (1979).

    Article  CAS  Google Scholar 

  47. Liu, L. L. & Huang, R. X. The global subduction/obduction rates: their interannual and decadal variability. J. Clim. 25, 1096–1115 (2012).

    Article  Google Scholar 

  48. Luyten, J. R., Pedlosky, J. & Stommel, H. The ventilated thermocline. J. Phys. Oceanogr. 13, 292–309 (1983).

    Article  Google Scholar 

  49. Emery, W. J., Lee, W. G. & Magaard, L. Geographic and seasonal distributions of Brunt–Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J. Phys. Oceanogr. 14, 294–317 (1984).

    Article  Google Scholar 

  50. Timmermans, M.-L. & Marshall, J. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans 125, e2018JC014378 (2020).

    Article  Google Scholar 

  51. Lucas, N. S. et al. Giant iceberg meltwater increases upper-ocean stratification and vertical mixing. Nat. Geosci. 18, 305–312 (2025).

    Article  CAS  Google Scholar 

  52. Srokosz, M. A. & Bryden, H. L. Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science 348, 1255575 (2015).

    Article  CAS  Google Scholar 

  53. Broecker, W. S. Unpleasant surprises in the greenhouse? Nature 328, 123–126 (1987).

    Article  CAS  Google Scholar 

  54. Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).

    Article  Google Scholar 

  55. Cheng, L. et al. IAPv4 ocean temperature and ocean heat content gridded dataset. Earth Syst. Sci. Data 16, 3517–3546 (2024).

    Article  Google Scholar 

  56. Ishii, M. et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sola 13, 163–167 (2017).

    Article  Google Scholar 

  57. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  58. Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

    Article  Google Scholar 

  59. Durack, P. J., Gleckler, P. J., Landerer, F. W. & Taylor, K. E. Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Change 4, 999–1005 (2014).

    Article  Google Scholar 

  60. Cheng, L. & Zhu, J. Uncertainties of the ocean heat content estimation induced by insufficient vertical resolution of historical ocean subsurface observations. J. Atmos. Ocean. Technol. 31, 1383–1396 (2014).

    Article  Google Scholar 

  61. Chen, C. & Wang, G. Role of North Pacific mixed layer in the response of SST annual cycle to global warming. J. Clim. 28, 9451–9458 (2015).

    Article  Google Scholar 

  62. Shi, J.-R., Santer, B. D., Kwon, Y.-O. & Wijffels, S. E. The emerging human influence on the seasonal cycle of sea surface temperature. Nat. Clim. Change 14, 364–372 (2024).

    Article  Google Scholar 

  63. Liu, F., Song, F. & Luo, Y. Human-induced intensified seasonal cycle of sea surface temperature. Nat. Commun. 15, 3948 (2024).

    Article  CAS  Google Scholar 

  64. Geng, Y.-F., Xie, S.-P., Zheng, X.-T. & Wang, C.-Y. Seasonal dependency of tropical precipitation change under global warming. J. Clim. 33, 7897–7908 (2020).

    Article  Google Scholar 

  65. Song, F., Leung, L. R., Lu, J., Zhou, T. & Huang, P. Advances in understanding the changes of tropical rainfall annual cycle: a review. Environ. Res. Climate 2, 042001 (2023).

    Article  Google Scholar 

  66. Zhao, S. et al. Explainable El Niño predictability from climate mode interactions. Nature 630, 891–898 (2024).

    Article  CAS  Google Scholar 

  67. Li, K.-x & Zheng, F. Effects of a freshening trend on upper-ocean stratification over the central tropical Pacific and their representation by CMIP6 models. Deep-Sea Res. II 195, 104999 (2022).

    Google Scholar 

  68. Vincent, E. M., Emanuel, K. A., Lengaigne, M., Vialard, J. & Madec, G. Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst. 6, 680–699 (2014).

    Article  Google Scholar 

  69. Kumari, A., Kumar, S. P. & Chakraborty, A. Seasonal and interannual variability in the barrier layer of the Bay of Bengal. J. Geophys. Res. Oceans 123, 1001–1015 (2018).

    Article  Google Scholar 

  70. Yadidya, B. & Rao, A. D. Interannual variability of internal tides in the Andaman Sea: an effect of Indian Ocean dipole. Sci. Rep. 12, 11104 (2022).

    Article  CAS  Google Scholar 

  71. Capotondi, A. et al. Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Environ. 4, 754–769 (2023).

    Article  Google Scholar 

  72. Yang, H. et al. Intensification and poleward shift of subtropical Western Boundary Currents in a warming climate. J. Geophys. Res. Oceans 121, 4928–4945 (2016).

    Article  Google Scholar 

  73. Trenary, L. L. & Han, W. Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961–2000. Geophys. Res. Lett. 35, L17602 (2008).

    Article  Google Scholar 

  74. Ju, W.-S., Zhang, Y. & Du, Y. Subsurface cooling in the tropical Pacific under a warming climate. J. Geophys. Res. Oceans 127, e2021JC018225 (2022).

    Article  Google Scholar 

  75. Luo, Y., Liu, F. & Lu, J. Response of the equatorial Pacific thermocline to climate warming. Ocean Dyn. 68, 1419–1429 (2018).

    Article  Google Scholar 

  76. Jiang, F., Seager, R. & Cane, M. A. Historical subsurface cooling in the tropical Pacific and its dynamics. J. Clim. 37, 5925–5938 (2024).

    Article  Google Scholar 

  77. Li, Y. et al. Long-term trend of the tropical Pacific trade winds under global warming and its causes. J. Geophys. Res. Oceans 124, 2626–2640 (2019).

    Article  Google Scholar 

  78. Latif, M. et al. Strengthening atmospheric circulation and trade winds slowed tropical Pacific surface warming. Commun. Earth Environ. 4, 249 (2023).

    Article  Google Scholar 

  79. Lu, Y. et al. North Atlantic–Pacific salinity contrast enhanced by wind and ocean warming. Nat. Clim. Change 14, 723–731 (2024).

    Article  Google Scholar 

  80. Zhu, C. & Liu, Z. Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nat. Clim. Change 10, 998–1003 (2020). 

    Article  Google Scholar 

  81. Haumann, F. A., Gruber, N. & Münnich, M. Sea-ice induced Southern Ocean subsurface warming and surface cooling in a warming climate. AGU Adv. 1, e2019AV000132 (2020).

    Article  Google Scholar 

  82. Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023).

    Article  CAS  Google Scholar 

  83. Moorman, R., Morrison, A. K. & McC. Hogg, A. Thermal responses to Antarctic ice shelf melt in an eddy-rich global ocean–sea ice model. J. Clim. 33, 6599–6620 (2020).

    Article  Google Scholar 

  84. Peralta-Ferriz, C. & Woodgate, R. A. Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog. Oceanogr. 134, 19–53 (2015).

    Article  Google Scholar 

  85. Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. & Rind, D. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res. Oceans https://doi.org/10.1029/2007JC004269 (2008).

  86. Simpkins, G. R., Ciasto, L. M. & England, M. H. Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys. Res. Lett. 40, 3643–3648 (2013).

    Article  Google Scholar 

  87. Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    Article  CAS  Google Scholar 

  88. Johnson, G. C., Mahmud, A. K. M. S., Macdonald, A. M. & Twining, B. S. Antarctic bottom water warming, freshening, and contraction in the eastern Bellingshausen basin. Geophys. Res. Lett. 51, e2024GL109937 (2024).

    Article  Google Scholar 

  89. Sobel, A. H. & Camargo, S. J. Projected future seasonal changes in tropical summer climate. J. Clim. 24, 473–487 (2011).

    Article  Google Scholar 

  90. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  91. Eyring, V. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. P. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2021).

  92. Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim. Dyn. 45, 1253–1280 (2015).

    Article  Google Scholar 

  93. Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010).

    Article  Google Scholar 

  94. Long, S.-M. et al. Effects of ocean slow response under low warming targets. J. Clim. 33, 477–496 (2020).

    Article  Google Scholar 

  95. Jo, A. R. et al. Future amplification of sea surface temperature seasonality due to enhanced ocean stratification. Geophys. Res. Lett. 49, e2022GL098607 (2022).

    Article  Google Scholar 

  96. Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. Elementa Sci. Anthrop. https://doi.org/10.1525/elementa.191 (2018).

  97. Sathyanarayanan, A., Köhl, A. & Stammer, D. Ocean salinity changes in the global ocean under global warming conditions. Part I: Mechanisms in a strong warming scenario. J. Clim. 34, 8219–8236 (2021).

    Google Scholar 

  98. Jahn, A., Holland, M. M. & Kay, J. E. Projections of an ice-free Arctic Ocean. Nat. Rev. Earth Environ. 5, 164–176 (2024).

    Article  Google Scholar 

  99. Shu, Q. et al. Arctic Ocean amplification in a warming climate in CMIP6 models. Sci. Adv. 8, eabn9755 (2022).

    Article  Google Scholar 

  100. Liu, Y. et al. How well do CMIP6 and CMIP5 models simulate the climatological seasonal variations in ocean salinity? Adv. Atmos. Sci. 39, 1650–1672 (2022).

    Article  Google Scholar 

  101. Shu, Q. et al. Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP). Geosci. Model Dev. 16, 2539–2563 (2023).

    Article  Google Scholar 

  102. Khosravi, N. et al. The Arctic ocean in CMIP6 models: biases and projected changes in temperature and salinity. Earth’s Future 10, e2021EF002282 (2022).

    Article  Google Scholar 

  103. Muilwijk, M. et al. Divergence in climate model projections of future Arctic atlantification. J. Clim. 36, 1727–1748 (2023).

    Article  Google Scholar 

  104. Liu, H., Song, Z., Wang, X. & Misra, V. An ocean perspective on CMIP6 climate model evaluations. Deep Sea Res. I. 201, 105120 (2022).

    Article  Google Scholar 

  105. Treguier, A. M. et al. The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies. Geosci. Model Dev. 16, 3849–3872 (2023).

    Article  Google Scholar 

  106. Liu, M., Soden, B. J., Vecchi, G. A. & Wang, C. The spread of ocean heat uptake efficiency traced to ocean salinity. Geophys. Res. Lett. 50, e2022GL100171 (2023).

    Article  Google Scholar 

  107. Sharma, S. et al. Future Indian Ocean warming patterns. Nat. Commun. 14, 1789 (2023).

    Article  CAS  Google Scholar 

  108. Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).

    Article  Google Scholar 

  109. Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article  CAS  Google Scholar 

  110. Himmich, K. et al. Drivers of Antarctic sea ice advance. Nat. Commun. 14, 6219 (2023).

    Article  CAS  Google Scholar 

  111. Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    Article  CAS  Google Scholar 

  112. Toole, J. M. et al. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada basin. J. Geophys. Res. Oceans 115, C10018 (2010).

    Article  Google Scholar 

  113. Long, S.-M., Xie, S.-P., Zheng, X.-T. & Liu, Q. Fast and slow responses to global warming: sea surface temperature and precipitation patterns. J. Clim. 27, 285–299 (2014).

    Article  Google Scholar 

  114. Sun, S., Thompson, A. F., Xie, S.-P. & Long, S.-M. Indo-Pacific warming induced by a weakening of the Atlantic meridional overturning circulation. J. Clim. 35, 815–832 (2022).

    Article  Google Scholar 

  115. Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).

    Article  Google Scholar 

  116. Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).

    Article  Google Scholar 

  117. Oliver, E. C. J., Wotherspoon, S. J., Chamberlain, M. A. & Holbrook, N. J. Projected Tasman sea extremes in sea surface temperature through the twenty-first century. J. Clim. 27, 1980–1998 (2014).

    Article  Google Scholar 

  118. Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    Article  Google Scholar 

  119. Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359 (2020).

    Article  Google Scholar 

  120. Collins, M. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H. O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2019).

  121. Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article  Google Scholar 

  122. Wyatt, A. S. J. et al. Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. Nat. Commun. 14, 25 (2023).

    Article  CAS  Google Scholar 

  123. Schaeffer, A., Sen Gupta, A. & Roughan, M. Seasonal stratification and complex local dynamics control the sub-surface structure of marine heatwaves in eastern Australian coastal waters. Commun. Earth Environ. 4, 304 (2023).

    Article  Google Scholar 

  124. Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    Article  Google Scholar 

  125. Köhn, E. E., Vogt, M., Münnich, M. & Gruber, N. On the vertical structure and propagation of marine heatwaves in the eastern Pacific. J. Geophys. Res. Oceans. 129, e2023JC020063 (2024).

    Article  Google Scholar 

  126. Amaya, D. J. et al. Are long-term changes in mixed layer depth influencing North Pacific marine heatwaves? Bull. Am. Meteorol. Soc. 102, S59–S66 (2021).

    Article  Google Scholar 

  127. Shi, J. et al. Role of mixed layer depth in the location and development of the Northeast Pacific warm blobs. Geophys. Res. Lett. 49, e2022GL098849 (2022).

    Article  Google Scholar 

  128. Elzahaby, Y., Schaeffer, A., Roughan, M. & Delaux, S. Why the mixed layer depth matters when diagnosing marine heatwave drivers using a heat budget approach. Front. Clim. 4, 1–15 (2022).

    Article  Google Scholar 

  129. Peng, Q. et al. Surface warming–induced global acceleration of upper ocean currents. Sci. Adv. 8, eabj8394 (2022).

    Article  Google Scholar 

  130. Hu, S. et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 6, eaax7727 (2020).

    Article  Google Scholar 

  131. Wang, G., Xie, S.-P., Huang, R. X. & Chen, C. Robust warming pattern of global subtropical oceans and its mechanism. J. Clim. 28, 8574–8584 (2015).

    Article  Google Scholar 

  132. Peng, Q. et al. Indonesian throughflow slowdown under global warming: remote AMOC effect versus regional surface forcing. J. Clim. 36, 1301–1318 (2023).

    Article  Google Scholar 

  133. Zhang, X., Wang, Q. & Mu, M. The impact of global warming on Kuroshio extension and its southern recirculation using CMIP5 experiments with a high-resolution climate model MIROC4h. Theor. Appl. Climatol. 127, 815–827 (2017).

    Article  Google Scholar 

  134. Ju, W.-S., Long, S.-M., Xie, S.-P., Wang, G. & Du, Y. Changes in the North Pacific subtropical gyre under 1.5 °C low warming scenario. Clim. Dyn. 55, 3117–3131 (2020).

    Article  Google Scholar 

  135. Huang, J.-H., Tseng, Y.-H. & Kuo, Y.-C. Projected changes of Kuroshio in a warming climate. J. Clim. 37, 6475–6489 (2024).

    Article  Google Scholar 

  136. Li, Z. & Fedorov, A. V. A slower north equatorial countercurrent but faster equatorial undercurrent in a warming climate. J. Clim. 37, 6627–6640 (2024).

    Article  Google Scholar 

  137. Yang, H. et al. Onshore intensification of subtropical Western Boundary Currents in a warming climate. Nat. Clim. Change 15, 301–307 (2025).

    Article  CAS  Google Scholar 

  138. Chen, C., Wang, G., Xie, S.-P. & Liu, W. Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Clim. 32, 7437–7451 (2019).

    Article  Google Scholar 

  139. Sévellec, F., Fedorov, A. V. & Liu, W. Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Clim. Change 7, 604–610 (2017).

    Article  Google Scholar 

  140. Ma, X. et al. Evolving AMOC multidecadal variability under different CO2 forcings. Clim. Dyn. 57, 593–610 (2021).

    Article  Google Scholar 

  141. Yang, Y., Wu, L. & Fang, C. Will global warming suppress north Atlantic tripole decadal variability? J. Clim. 25, 2040–2055 (2012).

    Article  Google Scholar 

  142. Liu, W., Liu, Z., Cheng, J. & Hu, H. On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Clim. Dyn. 44, 1257–1275 (2015).

    Article  Google Scholar 

  143. Weiffenbach, J. E. et al. Highly stratified mid-Pliocene Southern Ocean in PlioMIP2. Clim. Past 20, 1067–1086 (2024).

    Article  Google Scholar 

  144. Liu, Y., Moore, J. K., Primeau, F. & Wang, W. L. Reduced CO2 uptake and growing nutrient sequestration from slowing overturning circulation. Nat. Clim. Change 13, 83–90 (2023).

    Article  Google Scholar 

  145. Wang, S. et al. A more quiescent deep ocean under global warming. Nat. Clim. Change 14, 961–967 (2024).

    Article  CAS  Google Scholar 

  146. Sun, S., Wu, L. & Qiu, B. Response of the inertial recirculation to intensified stratification in a two-layer quasigeostrophic ocean circulation model. J. Phys. Oceanogr. 43, 1254–1269 (2013).

    Article  Google Scholar 

  147. DeCarlo, T. M., Karnauskas, K. B., Davis, K. A. & Wong, G. T. F. Climate modulates internal wave activity in the northern South China Sea. Geophys. Res. Lett. 42, 831–838 (2015).

    Article  Google Scholar 

  148. Yang, Z. et al. Enhanced generation of internal tides under global warming. Nat. Commun. 15, 7657 (2024).

    Article  CAS  Google Scholar 

  149. Opel, L., Schindelegger, M. & Ray, R. D. A likely role for stratification in long-term changes of the global ocean tides. Commun. Earth Environ. 5, 261 (2024).

    Article  Google Scholar 

  150. Jithin, A. K. & Francis, P. A. Role of internal tide mixing in keeping the deep Andaman Sea warmer than the Bay of Bengal. Sci. Rep. 10, 11982 (2020).

    Article  CAS  Google Scholar 

  151. Zhao, Z. Satellite evidence for strengthened M2 internal tides in the past 30 years. Geophys. Res. Lett. 50, e2023GL105764 (2023).

    Article  Google Scholar 

  152. Bij de Vaate, I., Slobbe, D. C. & Verlaan, M. Secular trends in global tides derived from satellite radar altimetry. J. Geophys. Res. Oceans 127, e2022JC018845 (2022).

    Article  Google Scholar 

  153. Müller, M., Cherniawsky, J. Y., Foreman, M. G. G. & von Storch, J.-S. Seasonal variation of the M2 tide. Ocean. Dyn. 64, 159–177 (2014).

    Article  Google Scholar 

  154. Talke, S. A. & Jay, D. A. Changing tides: the role of natural and anthropogenic factors. Annu. Rev. Mar. Sci. 12, 121–151 (2020).

    Article  Google Scholar 

  155. Gong, Y. et al. Accelerated internal tides in a warming climate. Sci. Adv. 11, eadq4577 (2025).

    Article  Google Scholar 

  156. Guo, Z. et al. Variability of the M2 internal tides in the Luzon Strait under climate change. Clim. Dyn. 62, 5019–5028 (2024).

    Article  Google Scholar 

  157. Yadidya, B. & Rao, A. D. Projected climate variability of internal waves in the Andaman Sea. Commun. Earth Environ. 3, 252 (2022).

    Article  Google Scholar 

  158. DeVries, T. The ocean carbon cycle. Annu. Rev. Environ. Resour. 47, 317–341 (2022).

    Article  Google Scholar 

  159. Parc, L., Bellenger, H., Bopp, L., Perrot, X. & Ho, D. T. Global ocean carbon uptake enhanced by rainfall. Nat. Geosci. 17, 851–857 (2024).

    Article  CAS  Google Scholar 

  160. Ashton, I. G., Shutler, J. D., Land, P. E., Woolf, D. K. & Quartly, G. D. A sensitivity analysis of the impact of rain on regional and global sea–air fluxes of CO2. PLoS One 11, e0161105 (2016).

    Article  CAS  Google Scholar 

  161. Ho, D. T., Bliven, L. F., Wanninkhof, R. & Schlosser, P. The effect of rain on air–water gas exchange. Tellus B 49, 149–158 (1997).

    Article  CAS  Google Scholar 

  162. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  163. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).

    Article  Google Scholar 

  164. Behrenfeld, M. J. et al. Biospheric primary production during an ENSO transition. Science 291, 2594–2597 (2001).

    Article  CAS  Google Scholar 

  165. Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    Article  CAS  Google Scholar 

  166. Shepherd, J. G., Brewer, P. G., Oschlies, A. & Watson, A. J. Ocean ventilation and deoxygenation in a warming world: introduction and overview. Phil. Trans. R. Soc. A 375, 20170240 (2017).

    Article  Google Scholar 

  167. Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    Article  CAS  Google Scholar 

  168. Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).

    Article  Google Scholar 

  169. Lam, V. W. Y. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).

    Article  Google Scholar 

  170. Sun, S., Thompson, A. F., Yu, J. & Wu, L. Transient overturning changes cause an upper-ocean nutrient decline in a warming climate. Nat. Commun. 15, 7727 (2024).

    Article  CAS  Google Scholar 

  171. Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences. 17, 3439–3470 (2020).

    Article  CAS  Google Scholar 

  172. Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl Acad. Sci. USA 105, 20344–20349 (2008).

    Article  Google Scholar 

  173. Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).

    Article  CAS  Google Scholar 

  174. Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Chang. Biol. 25, 459–472 (2019).

    Article  Google Scholar 

  175. Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Chang. 11, 973–981 (2021).

    Article  Google Scholar 

  176. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article  CAS  Google Scholar 

  177. Hamdan, L. J. & Wickland, K. P. Methane emissions from oceans, coasts, and freshwater habitats: new perspectives and feedbacks on climate. Limnol. Oceanogr. 61, S3–S12 (2016).

    Article  Google Scholar 

  178. McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E. & Wüest, A. Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J. Geophys. Res. Oceans 111, C09007 (2006).

    Article  Google Scholar 

  179. Weber, T., Wiseman, N. A. & Kock, A. Global ocean methane emissions dominated by shallow coastal waters. Nat. Commun. 10, 4584 (2019).

    Article  Google Scholar 

  180. Westbrook, G. K. et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett. 36, L15608 (2009).

    Article  Google Scholar 

  181. Novi, L., Bracco, A., Ito, T. & Takano, Y. Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models. Biogeosciences. 21, 3985–4005 (2024).

    Article  CAS  Google Scholar 

  182. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article  CAS  Google Scholar 

  183. Lachkar, Z., Mehari, M., Al Azhar, M., Lévy, M. & Smith, S. Fast local warming is the main driver of recent deoxygenation in the northern Arabian Sea. Biogeosciences 18, 5831–5849 (2021).

    Article  Google Scholar 

  184. Hogikyan, A., Resplandy, L., Liu, M. & Vecchi, G. Hydrological cycle amplification reshapes warming-driven oxygen loss in the Atlantic Ocean. Nat. Clim. Change 14, 82–90 (2024).

    Article  CAS  Google Scholar 

  185. Shay, L. K., Goni, G. J. & Black, P. G. Effects of a warm oceanic feature on Hurricane Opal. Mon. Weather Rev. 128, 1366–1383 (2000).

    Article  Google Scholar 

  186. Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y. & Fasullo, J. Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future 6, 730–744 (2018).

    Article  Google Scholar 

  187. Lin, I.-I. et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Weather Rev. 133, 2635–2649 (2005).

    Article  Google Scholar 

  188. Emanuel, K. A. An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43, 585–605 (1986).

    Article  Google Scholar 

  189. Zhang, X., Xu, F., Zhang, J. & Lin, Y. Decrease of annually accumulated tropical cyclone-induced sea surface cooling and diapycnal mixing in recent decades. Geophys. Res. Lett. 49, e2022GL099290 (2022).

    Article  Google Scholar 

  190. Balaguru, K. et al. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl Acad. Sci. USA 109, 14343–14347 (2012).

    Article  CAS  Google Scholar 

  191. Balaguru, K., Foltz, G. R., Leung, L. R. & Hagos, S. M. Impact of rainfall on tropical cyclone-induced sea surface cooling. Geophys. Res. Lett. 49, e2022GL098187 (2022).

    Article  Google Scholar 

  192. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).

    Article  CAS  Google Scholar 

  193. Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

    Article  CAS  Google Scholar 

  194. Wang, G., Wu, L., Mei, W. & Xie, S.-P. Ocean currents show global intensification of weak tropical cyclones. Nature 611, 496–500 (2022).

    Article  CAS  Google Scholar 

  195. Mei, W., Xie, S.-P., Primeau, F., McWilliams, J. C. & Pasquero, C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 1, e1500014 (2015).

    Article  Google Scholar 

  196. Huang, P., Lin, I. I., Chou, C. & Huang, R.-H. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun. 6, 7188 (2015).

    Article  CAS  Google Scholar 

  197. Wang, S. & Toumi, R. Recent tropical cyclone changes inferred from ocean surface temperature cold wakes. Sci. Rep. 11, 22269 (2021).

    Article  CAS  Google Scholar 

  198. Da, N. D., Foltz, G. R. & Balaguru, K. Observed global increases in tropical cyclone-induced ocean cooling and primary production. Geophys. Res. Lett. 48, e2021GL092574 (2021).

    Article  Google Scholar 

  199. Ma, Z. et al. Strengthening cold wakes lead to decreasing trend of tropical cyclone rainfall rates relative to background environmental rainfall rates. Npj Clim. Atmos. Sci. 6, 131 (2023).

    Article  Google Scholar 

  200. Guan, S. et al. Ocean internal tides suppress tropical cyclones in the South China Sea. Nat. Commun. 15, 3903 (2024).

    Article  CAS  Google Scholar 

  201. Zhang, L. & Delworth, T. L. Simulated response of the Pacific decadal oscillation to climate change. J. Clim. 29, 5999–6018 (2016).

    Article  Google Scholar 

  202. Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K. & Siwertz, N. Geographical variability of the first baroclinic rossby radius of deformation. J. Phys. Oceanogr. 28, 433–460 (1998).

    Article  Google Scholar 

  203. Schneider, N., Miller, A. J. & Pierce, D. W. Anatomy of north Pacific decadal variability. J. Clim. 15, 586–605 (2002).

    Article  Google Scholar 

  204. Kwon, Y.-O. & Deser, C. North Pacific decadal variability in the community climate system model version 2. J. Clim. 20, 2416–2433 (2007).

    Article  Google Scholar 

  205. Li, S. et al. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).

    Article  CAS  Google Scholar 

  206. Zhang, L. et al. The dependence of internal multidecadal variability in the Southern Ocean on the ocean background mean state. J. Clim. 34, 1061–1080 (2021).

    Article  Google Scholar 

  207. Mochizuki, T. et al. Pacific Decadal Oscillation hindcasts relevant to near-term climate prediction. Proc. Natl Acad. Sci. 107, 1833–1837 (2010).

    Article  CAS  Google Scholar 

  208. Timmermann, A. et al. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398, 694–697 (1999).

    Article  CAS  Google Scholar 

  209. Thual, S., Dewitte, B., An, S.-I., Illig, S. & Ayoub, N. Influence of recent stratification changes on ENSO stability in a conceptual model of the equatorial Pacific. J. Clim. 26, 4790–4802 (2013).

    Article  Google Scholar 

  210. An, S.-I. & Jin, F.-F. Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Clim. 14, 3421–3432 (2001).

    Article  Google Scholar 

  211. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Article  CAS  Google Scholar 

  212. Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Change 12, 228–231 (2022).

    Article  Google Scholar 

  213. Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Article  Google Scholar 

  214. Geng, T. et al. Increased occurrences of consecutive La Niña events under global warming. Nature 619, 774–781 (2023).

    Article  CAS  Google Scholar 

  215. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).

    Article  Google Scholar 

  216. Lu, Z. et al. Increased frequency of multi-year El Niño–Southern Oscillation events across the Holocene. Nat. Geosci. 18, 337–343 (2026).

    Article  Google Scholar 

  217. Kohyama, T., Hartmann, D. L. & Battisti, D. S. Weakening of nonlinear ENSO under global warming. Geophys. Res. Lett. 45, 8557–8567 (2018).

    Article  Google Scholar 

  218. Zheng, X.-T., Hui, C., Han, Z.-W. & Wu, Y. Advanced peak phase of ENSO under global warming. J. Clim. 37, 5271–5289 (2024).

    Article  Google Scholar 

  219. Cai, W. et al. Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nat. Commun. 9, 1419 (2018).

    Article  Google Scholar 

  220. Wang, G. et al. The Indian Ocean Dipole in a warming world. Nat. Rev. Earth Environ. 5, 588–604 (2024).

    Article  Google Scholar 

  221. Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).

    Article  Google Scholar 

  222. Senapati, B., O’Reilly, C. H. & Robson, J. Pivotal role of mixed-layer depth in tropical Atlantic multidecadal variability. Geophys. Res. Lett. 51, e2024GL110057 (2024).

    Article  Google Scholar 

  223. Brovkin, V. et al. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nat. Geosci. 14, 550–558 (2021).

    Article  CAS  Google Scholar 

  224. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  CAS  Google Scholar 

  225. van Westen, R. M., Kliphuis, M. & Dijkstra, H. A. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 10, eadk1189 (2024).

    Article  Google Scholar 

  226. Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic Meridional Overturning Circulation. Nat. Commun. 14, 4254 (2023).

    Article  CAS  Google Scholar 

  227. Jackson, L. C. et al. The evolution of the north Atlantic Meridional Overturning Circulation since 1980. Nat. Rev. Earth Environ. 3, 241–254 (2022).

    Article  Google Scholar 

  228. Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  Google Scholar 

  229. Liu, W., Xie, S. P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).

    Article  Google Scholar 

  230. Mann, M. E. Beyond the hockey stick: climate lessons from the common era. Proc. Natl Acad. Sci. USA 118, e2112797118 (2021).

    Article  CAS  Google Scholar 

  231. Lenderink, G. & Haarsma, R. J. Modeling convective transitions in the presence of sea ice. J. Phys. Oceanogr. 26, 1448–1467 (1996).

    Article  Google Scholar 

  232. Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    Article  CAS  Google Scholar 

  233. Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  234. Meyssignac, B. et al. Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci. 6, 1–31 (2019).

    Article  Google Scholar 

  235. Wang, C., Zhang, L., Lee, S.-K., Wu, L. & Mechoso, C. R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205 (2014).

    Article  Google Scholar 

  236. Luo, F., Ying, J., Liu, T. & Chen, D. Origins of Southern Ocean warm sea surface temperature bias in CMIP6 models. npj Clim. Atmos. Sci. 6, 127 (2023).

    Article  Google Scholar 

  237. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article  Google Scholar 

  238. Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Greater committed warming after accounting for the pattern effect. Nat. Clim. Change 11, 132–136 (2021).

    Article  CAS  Google Scholar 

  239. Armour, K. C. et al. Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity. Proc. Natl Acad. Sci. USA 121, e2312093121 (2024).

    Article  CAS  Google Scholar 

  240. Sohail, T., Irving, D. B., Zika, J. D., Holmes, R. M. & Church, J. A. Fifty year trends in global ocean heat content traced to surface heat fluxes in the sub-polar ocean. Geophys. Res. Lett. 48, e2020GL091439 (2021).

    Article  Google Scholar 

  241. Fox-Kemper, B. et al. Challenges and prospects in ocean circulation models. Front. Mar. Sci. 6, 2019 (2019).

    Article  Google Scholar 

  242. Newsom, E., Zanna, L. & Gregory, J. Background pycnocline depth constrains future ocean heat uptake efficiency. Geophys. Res. Lett. 50, e2023GL105673 (2023).

    Article  Google Scholar 

  243. Xu, G. et al. Enhanced upper ocean warming projected by the eddy-resolving Community Earth System Model. Geophys. Res. Lett. 50, e2023GL106100 (2023).

    Article  Google Scholar 

  244. Terhaar, J., Frölicher, T. L. & Joos, F. Southern Ocean anthropogenic carbon sink constrained by sea surface salinity. Sci. Adv. 7, eabd5964 (2021).

    Article  CAS  Google Scholar 

  245. Bourgeois, T., Goris, N., Schwinger, J. & Tjiputra, J. F. Stratification constrains future heat and carbon uptake in the Southern Ocean between 30° S and 55° S. Nat. Commun. 13, 340 (2022).

    Article  CAS  Google Scholar 

  246. Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).

    Article  CAS  Google Scholar 

  247. Bouttes, N., Roche, D. M. & Paillard, D. Impact of strong deep ocean stratification on the glacial carbon cycle. Paleoceanography 24, PA3203 (2009).

    Article  Google Scholar 

  248. Trenberth, K. E. The definition of El Niño. Bull. Am. Meteorol. Soc. 78, 2771–2778 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (grant numbers 42206208, 42261134536, 42076208), the International Partnership Program of the Chinese Academy of Sciences (grant no. 060GJHZ2024064MI), Asian Cooperation Fund, the new Cornerstone Science Foundation through the XPLORER PRIZE, Youth Innovation Promotion Association, Chinese Academy of Sciences, National Key Scientific and Technological Infrastructure project ‘Earth System Science Numerical Simulator Facility’ (EarthLab), Young Talent Support Project of Guangzhou Association for Science and Technology, and Ocean Negative Carbon Emissions (ONCE). They acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and thank the climate modelling groups for producing and making available their model output through the Earth System Grid Federation. Argo data were collected and made freely available by the International Argo Program and the national programmes contributing to it (https://argo.ucsd.edu, https://www.ocean-ops.org). The Argo Program is part of the Global Ocean Observing System. The observation and model data used in this Review are available at http://www.ocean.iap.ac.cn/. NSF-NCAR is sponsored by the US National Science Foundation. The authors acknowledge discussions with F. Liu, Q. Liu, Y. Gong, S. Li and F. Song. The authors also thank W. Cai, G. Wang, C. Wang, Y. Gong, W. Mei and S. Li for providing data in Fig. 7 of this Review, and W. Zhang for processing global-mean surface temperature data from CMIP6 simulations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and editing the article. L.C. led the overall conceptual design and the activity and led and coordinated the writing in collaboration with K.T. and the editor. L.C., G.L., K.v.S., K.T., M.M. and J.A. jointly designed the structure of this Review. G.L. led the data analyses; Y.L. led the section on regional stratification and its seasonal variation; L.C. led the introduction and summary sections. X.C., H.L., Z.X., M.L., Q.P., G.X., Z.M. and H.Y. led different topics in the consequences section. All authors contributed to reviewing the stratification changes and the impacts, editing the manuscript and analysing the results.

Corresponding author

Correspondence to Lijing Cheng  (成里京).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Ryohei Yamaguchi, Chellappan Gnanaseelan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Li, G., Long, SM. et al. Ocean stratification in a warming climate. Nat Rev Earth Environ 6, 637–655 (2025). https://doi.org/10.1038/s43017-025-00715-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00715-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing