Abstract
The ocean is highly stratified. Warm, fresh water sits on top of cold, salty water, influencing vertical oceanic exchange of heat, carbon, oxygen and nutrients. In this Review, we examine observed and projected stratification shifts and their impacts. Changes in ocean temperature and salinity have altered the ocean density field, leading to a 0.8 ± 0.1% dec−1 (90% confidence interval) increase in stratification in the global upper 2,000 m since the 1960s. These increases are most pronounced in the tropics and are primarily temperature driven. Model simulations project ongoing stratification increases in the future, with global 0–2,000 m stratification increasing 0.7 [0.3,1.1; 13–87% confidence interval], 1.4 [0.9,1.8] and 2.9 [2.1,3.8]% dec−1 by 2090–2100 relative to 2010–2020 under Shared Socioeconomic Pathways SSP1-2.6, SSP2-4.5 and SSP5-8.5, respectively; regional patterns of projected stratification changes generally follow observed trends. These observed and projected ocean stratification changes have important climate and ecological consequences, including alterations in ocean heat uptake, ocean currents, vertical mixing, tropical cyclone intensity, marine ecosystems and elevation of marine extremes. Further research should better quantify stratification change at critical layers and understand their drivers and impacts.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Sprintall, J., Cronin, M. & Farrar, J. T. in Encyclopedia of Ocean Sciences Vol. 1 (eds Cochran, J. K., Bokuniewicz, H. J. & Yager, P. L.) 97–105 (Elsevier, 2010).
Ivey, G. N., Winters, K. B. & Koseff, J. R. Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40, 169–184 (2008).
Yamaguchi, R. & Suga, T. Trend and variability in global upper-ocean stratification since the 1960s. J. Geophys. Res. Oceans 124, 8933–8948 (2019).
Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 117, C04031 (2012).
Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).
Sallée, J.-B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).
Yamaguchi, R., Suga, T., Richards, K. J. & Qiu, B. Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific. Clim. Dyn. 53, 4667–4681 (2019).
Peng, S. & Wang, Q. Fast enhancement of the stratification in the Indian Ocean over the past 20 years. J. Clim. 37, 2231–2245 (2024).
Simpson, J. H. et al. The shelf-sea fronts: implications of their existence and behaviour. Phil. Trans. R. Soc. A 302, 531–546 (1981).
Somavilla, R., González-Pola, C. & Fernández-Diaz, J. The warmer the ocean surface, the shallower the mixed layer. How much of this is true? J. Geophys. Res. Oceans 122, 7698–7716 (2017).
Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2013).
Cheng, L. et al. Past and future ocean warming. Nat. Rev. Earth Environ. 3, 776–794 (2022).
Gulev, S. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2021).
Cheng, L. et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim. 33, 10357–10381 (2020).
Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–587 (IPCC, Cambridge Univ. Press, 2019).
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 9 (IPCC, Cambridge Univ. Press, 2021).
Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).
Abram, N. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 73–129 (IPCC, Cambridge Univ. Press, 2019).
Liu, M., Vecchi, G., Soden, B., Yang, W. & Zhang, B. Enhanced hydrological cycle increases ocean heat uptake and moderates transient climate change. Nat. Clim. Change 11, 848–853 (2021).
Kuhlbrodt, T. & Gregory, J. M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett. 39, L18608 (2012).
Müller, J. D. et al. Decadal trends in the oceanic storage of anthropogenic carbon from 1994 to 2014. AGU Adv. 4, e2023AV000875 (2023).
Schlunegger, S. et al. Emergence of anthropogenic signals in the ocean carbon cycle. Nat. Clim. Change 9, 719–725 (2019).
Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).
Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Phil. Trans. R. Soc. A 369, 1980–1996 (2011).
Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).
Zhou, Y., Gong, H. & Zhou, F. Responses of horizontally expanding oceanic oxygen minimum zones to climate change based on observations. Geophys. Res. Lett. 49, e2022GL097724 (2022).
Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev. Mar. Sci. 10, 229–260 (2018).
Babbin, A. R., Bianchi, D., Jayakumar, A. & Ward, B. B. Rapid nitrous oxide cycling in the suboxic ocean. Science 348, 1127–1129 (2015).
Suarez, M. J. & Schopf, P. S. A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283–3287 (1988).
Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).
Kim, S. T., Cai, W., Jin, F.-F. & Yu, J.-Y. ENSO stability in coupled climate models and its association with mean state. Clim. Dyn. 42, 3313–3321 (2014).
Lukas, R. & Lindstrom, E. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res. Oceans 96, 3343–3357 (1991).
Liu, H., Grodsky, S. A. & Carton, J. A. Observed subseasonal variability of oceanic barrier and compensated layers. J. Clim. 22, 6104–6119 (2009).
George, J. V. et al. Mechanisms of barrier layer formation and erosion from in situ observations in the Bay of Bengal. J. Phys. Oceanogr. 49, 1183–1200 (2019).
Liang, Y.-C. et al. Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region. Nat. Commun. 11, 4390 (2020).
Sprintall, J. & Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. Oceans 97, 7305–7316 (1992).
Maes, C., Picaut, J. & Belamari, S. Importance of the salinity barrier layer for the buildup of El Niño. J. Clim. 18, 104–118 (2005).
Maes, C. & O’Kane, T. J. Seasonal variations of the upper ocean salinity stratification in the tropics. J. Geophys. Res. Oceans 119, 1706–1722 (2014).
Liu, L., Huang, R. X. & Wang, F. Ventilation of a monsoon-dominated ocean: subduction and obduction in the north Indian Ocean. J. Geophys. Res. Oceans 123, 4449–4463 (2018).
Rao, R. R. & Sivakumar, R. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res. Oceans 108, 9-1–9-14 (2003).
Li, Y. et al. Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. J. Geophys. Res. Oceans 122, 4312–4328 (2017).
Carton, J. A., Grodsky, S. A. & Liu, H. Variability of the oceanic mixed layer, 1960–2004. J. Clim. 21, 1029–1047 (2008).
Stommel, H. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl Acad. Sci. USA 76, 3051–3055 (1979).
Liu, L. L. & Huang, R. X. The global subduction/obduction rates: their interannual and decadal variability. J. Clim. 25, 1096–1115 (2012).
Luyten, J. R., Pedlosky, J. & Stommel, H. The ventilated thermocline. J. Phys. Oceanogr. 13, 292–309 (1983).
Emery, W. J., Lee, W. G. & Magaard, L. Geographic and seasonal distributions of Brunt–Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J. Phys. Oceanogr. 14, 294–317 (1984).
Timmermans, M.-L. & Marshall, J. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans 125, e2018JC014378 (2020).
Lucas, N. S. et al. Giant iceberg meltwater increases upper-ocean stratification and vertical mixing. Nat. Geosci. 18, 305–312 (2025).
Srokosz, M. A. & Bryden, H. L. Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science 348, 1255575 (2015).
Broecker, W. S. Unpleasant surprises in the greenhouse? Nature 328, 123–126 (1987).
Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).
Cheng, L. et al. IAPv4 ocean temperature and ocean heat content gridded dataset. Earth Syst. Sci. Data 16, 3517–3546 (2024).
Ishii, M. et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sola 13, 163–167 (2017).
Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).
Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).
Durack, P. J., Gleckler, P. J., Landerer, F. W. & Taylor, K. E. Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Change 4, 999–1005 (2014).
Cheng, L. & Zhu, J. Uncertainties of the ocean heat content estimation induced by insufficient vertical resolution of historical ocean subsurface observations. J. Atmos. Ocean. Technol. 31, 1383–1396 (2014).
Chen, C. & Wang, G. Role of North Pacific mixed layer in the response of SST annual cycle to global warming. J. Clim. 28, 9451–9458 (2015).
Shi, J.-R., Santer, B. D., Kwon, Y.-O. & Wijffels, S. E. The emerging human influence on the seasonal cycle of sea surface temperature. Nat. Clim. Change 14, 364–372 (2024).
Liu, F., Song, F. & Luo, Y. Human-induced intensified seasonal cycle of sea surface temperature. Nat. Commun. 15, 3948 (2024).
Geng, Y.-F., Xie, S.-P., Zheng, X.-T. & Wang, C.-Y. Seasonal dependency of tropical precipitation change under global warming. J. Clim. 33, 7897–7908 (2020).
Song, F., Leung, L. R., Lu, J., Zhou, T. & Huang, P. Advances in understanding the changes of tropical rainfall annual cycle: a review. Environ. Res. Climate 2, 042001 (2023).
Zhao, S. et al. Explainable El Niño predictability from climate mode interactions. Nature 630, 891–898 (2024).
Li, K.-x & Zheng, F. Effects of a freshening trend on upper-ocean stratification over the central tropical Pacific and their representation by CMIP6 models. Deep-Sea Res. II 195, 104999 (2022).
Vincent, E. M., Emanuel, K. A., Lengaigne, M., Vialard, J. & Madec, G. Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst. 6, 680–699 (2014).
Kumari, A., Kumar, S. P. & Chakraborty, A. Seasonal and interannual variability in the barrier layer of the Bay of Bengal. J. Geophys. Res. Oceans 123, 1001–1015 (2018).
Yadidya, B. & Rao, A. D. Interannual variability of internal tides in the Andaman Sea: an effect of Indian Ocean dipole. Sci. Rep. 12, 11104 (2022).
Capotondi, A. et al. Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Environ. 4, 754–769 (2023).
Yang, H. et al. Intensification and poleward shift of subtropical Western Boundary Currents in a warming climate. J. Geophys. Res. Oceans 121, 4928–4945 (2016).
Trenary, L. L. & Han, W. Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961–2000. Geophys. Res. Lett. 35, L17602 (2008).
Ju, W.-S., Zhang, Y. & Du, Y. Subsurface cooling in the tropical Pacific under a warming climate. J. Geophys. Res. Oceans 127, e2021JC018225 (2022).
Luo, Y., Liu, F. & Lu, J. Response of the equatorial Pacific thermocline to climate warming. Ocean Dyn. 68, 1419–1429 (2018).
Jiang, F., Seager, R. & Cane, M. A. Historical subsurface cooling in the tropical Pacific and its dynamics. J. Clim. 37, 5925–5938 (2024).
Li, Y. et al. Long-term trend of the tropical Pacific trade winds under global warming and its causes. J. Geophys. Res. Oceans 124, 2626–2640 (2019).
Latif, M. et al. Strengthening atmospheric circulation and trade winds slowed tropical Pacific surface warming. Commun. Earth Environ. 4, 249 (2023).
Lu, Y. et al. North Atlantic–Pacific salinity contrast enhanced by wind and ocean warming. Nat. Clim. Change 14, 723–731 (2024).
Zhu, C. & Liu, Z. Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nat. Clim. Change 10, 998–1003 (2020).
Haumann, F. A., Gruber, N. & Münnich, M. Sea-ice induced Southern Ocean subsurface warming and surface cooling in a warming climate. AGU Adv. 1, e2019AV000132 (2020).
Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023).
Moorman, R., Morrison, A. K. & McC. Hogg, A. Thermal responses to Antarctic ice shelf melt in an eddy-rich global ocean–sea ice model. J. Clim. 33, 6599–6620 (2020).
Peralta-Ferriz, C. & Woodgate, R. A. Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog. Oceanogr. 134, 19–53 (2015).
Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. & Rind, D. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res. Oceans https://doi.org/10.1029/2007JC004269 (2008).
Simpkins, G. R., Ciasto, L. M. & England, M. H. Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys. Res. Lett. 40, 3643–3648 (2013).
Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).
Johnson, G. C., Mahmud, A. K. M. S., Macdonald, A. M. & Twining, B. S. Antarctic bottom water warming, freshening, and contraction in the eastern Bellingshausen basin. Geophys. Res. Lett. 51, e2024GL109937 (2024).
Sobel, A. H. & Camargo, S. J. Projected future seasonal changes in tropical summer climate. J. Clim. 24, 473–487 (2011).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).
Eyring, V. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. P. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2021).
Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim. Dyn. 45, 1253–1280 (2015).
Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010).
Long, S.-M. et al. Effects of ocean slow response under low warming targets. J. Clim. 33, 477–496 (2020).
Jo, A. R. et al. Future amplification of sea surface temperature seasonality due to enhanced ocean stratification. Geophys. Res. Lett. 49, e2022GL098607 (2022).
Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. Elementa Sci. Anthrop. https://doi.org/10.1525/elementa.191 (2018).
Sathyanarayanan, A., Köhl, A. & Stammer, D. Ocean salinity changes in the global ocean under global warming conditions. Part I: Mechanisms in a strong warming scenario. J. Clim. 34, 8219–8236 (2021).
Jahn, A., Holland, M. M. & Kay, J. E. Projections of an ice-free Arctic Ocean. Nat. Rev. Earth Environ. 5, 164–176 (2024).
Shu, Q. et al. Arctic Ocean amplification in a warming climate in CMIP6 models. Sci. Adv. 8, eabn9755 (2022).
Liu, Y. et al. How well do CMIP6 and CMIP5 models simulate the climatological seasonal variations in ocean salinity? Adv. Atmos. Sci. 39, 1650–1672 (2022).
Shu, Q. et al. Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP). Geosci. Model Dev. 16, 2539–2563 (2023).
Khosravi, N. et al. The Arctic ocean in CMIP6 models: biases and projected changes in temperature and salinity. Earth’s Future 10, e2021EF002282 (2022).
Muilwijk, M. et al. Divergence in climate model projections of future Arctic atlantification. J. Clim. 36, 1727–1748 (2023).
Liu, H., Song, Z., Wang, X. & Misra, V. An ocean perspective on CMIP6 climate model evaluations. Deep Sea Res. I. 201, 105120 (2022).
Treguier, A. M. et al. The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies. Geosci. Model Dev. 16, 3849–3872 (2023).
Liu, M., Soden, B. J., Vecchi, G. A. & Wang, C. The spread of ocean heat uptake efficiency traced to ocean salinity. Geophys. Res. Lett. 50, e2022GL100171 (2023).
Sharma, S. et al. Future Indian Ocean warming patterns. Nat. Commun. 14, 1789 (2023).
Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).
Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).
Himmich, K. et al. Drivers of Antarctic sea ice advance. Nat. Commun. 14, 6219 (2023).
Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).
Toole, J. M. et al. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada basin. J. Geophys. Res. Oceans 115, C10018 (2010).
Long, S.-M., Xie, S.-P., Zheng, X.-T. & Liu, Q. Fast and slow responses to global warming: sea surface temperature and precipitation patterns. J. Clim. 27, 285–299 (2014).
Sun, S., Thompson, A. F., Xie, S.-P. & Long, S.-M. Indo-Pacific warming induced by a weakening of the Atlantic meridional overturning circulation. J. Clim. 35, 815–832 (2022).
Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).
Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).
Oliver, E. C. J., Wotherspoon, S. J., Chamberlain, M. A. & Holbrook, N. J. Projected Tasman sea extremes in sea surface temperature through the twenty-first century. J. Clim. 27, 1980–1998 (2014).
Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).
Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359 (2020).
Collins, M. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H. O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2019).
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Wyatt, A. S. J. et al. Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. Nat. Commun. 14, 25 (2023).
Schaeffer, A., Sen Gupta, A. & Roughan, M. Seasonal stratification and complex local dynamics control the sub-surface structure of marine heatwaves in eastern Australian coastal waters. Commun. Earth Environ. 4, 304 (2023).
Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
Köhn, E. E., Vogt, M., Münnich, M. & Gruber, N. On the vertical structure and propagation of marine heatwaves in the eastern Pacific. J. Geophys. Res. Oceans. 129, e2023JC020063 (2024).
Amaya, D. J. et al. Are long-term changes in mixed layer depth influencing North Pacific marine heatwaves? Bull. Am. Meteorol. Soc. 102, S59–S66 (2021).
Shi, J. et al. Role of mixed layer depth in the location and development of the Northeast Pacific warm blobs. Geophys. Res. Lett. 49, e2022GL098849 (2022).
Elzahaby, Y., Schaeffer, A., Roughan, M. & Delaux, S. Why the mixed layer depth matters when diagnosing marine heatwave drivers using a heat budget approach. Front. Clim. 4, 1–15 (2022).
Peng, Q. et al. Surface warming–induced global acceleration of upper ocean currents. Sci. Adv. 8, eabj8394 (2022).
Hu, S. et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 6, eaax7727 (2020).
Wang, G., Xie, S.-P., Huang, R. X. & Chen, C. Robust warming pattern of global subtropical oceans and its mechanism. J. Clim. 28, 8574–8584 (2015).
Peng, Q. et al. Indonesian throughflow slowdown under global warming: remote AMOC effect versus regional surface forcing. J. Clim. 36, 1301–1318 (2023).
Zhang, X., Wang, Q. & Mu, M. The impact of global warming on Kuroshio extension and its southern recirculation using CMIP5 experiments with a high-resolution climate model MIROC4h. Theor. Appl. Climatol. 127, 815–827 (2017).
Ju, W.-S., Long, S.-M., Xie, S.-P., Wang, G. & Du, Y. Changes in the North Pacific subtropical gyre under 1.5 °C low warming scenario. Clim. Dyn. 55, 3117–3131 (2020).
Huang, J.-H., Tseng, Y.-H. & Kuo, Y.-C. Projected changes of Kuroshio in a warming climate. J. Clim. 37, 6475–6489 (2024).
Li, Z. & Fedorov, A. V. A slower north equatorial countercurrent but faster equatorial undercurrent in a warming climate. J. Clim. 37, 6627–6640 (2024).
Yang, H. et al. Onshore intensification of subtropical Western Boundary Currents in a warming climate. Nat. Clim. Change 15, 301–307 (2025).
Chen, C., Wang, G., Xie, S.-P. & Liu, W. Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Clim. 32, 7437–7451 (2019).
Sévellec, F., Fedorov, A. V. & Liu, W. Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Clim. Change 7, 604–610 (2017).
Ma, X. et al. Evolving AMOC multidecadal variability under different CO2 forcings. Clim. Dyn. 57, 593–610 (2021).
Yang, Y., Wu, L. & Fang, C. Will global warming suppress north Atlantic tripole decadal variability? J. Clim. 25, 2040–2055 (2012).
Liu, W., Liu, Z., Cheng, J. & Hu, H. On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Clim. Dyn. 44, 1257–1275 (2015).
Weiffenbach, J. E. et al. Highly stratified mid-Pliocene Southern Ocean in PlioMIP2. Clim. Past 20, 1067–1086 (2024).
Liu, Y., Moore, J. K., Primeau, F. & Wang, W. L. Reduced CO2 uptake and growing nutrient sequestration from slowing overturning circulation. Nat. Clim. Change 13, 83–90 (2023).
Wang, S. et al. A more quiescent deep ocean under global warming. Nat. Clim. Change 14, 961–967 (2024).
Sun, S., Wu, L. & Qiu, B. Response of the inertial recirculation to intensified stratification in a two-layer quasigeostrophic ocean circulation model. J. Phys. Oceanogr. 43, 1254–1269 (2013).
DeCarlo, T. M., Karnauskas, K. B., Davis, K. A. & Wong, G. T. F. Climate modulates internal wave activity in the northern South China Sea. Geophys. Res. Lett. 42, 831–838 (2015).
Yang, Z. et al. Enhanced generation of internal tides under global warming. Nat. Commun. 15, 7657 (2024).
Opel, L., Schindelegger, M. & Ray, R. D. A likely role for stratification in long-term changes of the global ocean tides. Commun. Earth Environ. 5, 261 (2024).
Jithin, A. K. & Francis, P. A. Role of internal tide mixing in keeping the deep Andaman Sea warmer than the Bay of Bengal. Sci. Rep. 10, 11982 (2020).
Zhao, Z. Satellite evidence for strengthened M2 internal tides in the past 30 years. Geophys. Res. Lett. 50, e2023GL105764 (2023).
Bij de Vaate, I., Slobbe, D. C. & Verlaan, M. Secular trends in global tides derived from satellite radar altimetry. J. Geophys. Res. Oceans 127, e2022JC018845 (2022).
Müller, M., Cherniawsky, J. Y., Foreman, M. G. G. & von Storch, J.-S. Seasonal variation of the M2 tide. Ocean. Dyn. 64, 159–177 (2014).
Talke, S. A. & Jay, D. A. Changing tides: the role of natural and anthropogenic factors. Annu. Rev. Mar. Sci. 12, 121–151 (2020).
Gong, Y. et al. Accelerated internal tides in a warming climate. Sci. Adv. 11, eadq4577 (2025).
Guo, Z. et al. Variability of the M2 internal tides in the Luzon Strait under climate change. Clim. Dyn. 62, 5019–5028 (2024).
Yadidya, B. & Rao, A. D. Projected climate variability of internal waves in the Andaman Sea. Commun. Earth Environ. 3, 252 (2022).
DeVries, T. The ocean carbon cycle. Annu. Rev. Environ. Resour. 47, 317–341 (2022).
Parc, L., Bellenger, H., Bopp, L., Perrot, X. & Ho, D. T. Global ocean carbon uptake enhanced by rainfall. Nat. Geosci. 17, 851–857 (2024).
Ashton, I. G., Shutler, J. D., Land, P. E., Woolf, D. K. & Quartly, G. D. A sensitivity analysis of the impact of rain on regional and global sea–air fluxes of CO2. PLoS One 11, e0161105 (2016).
Ho, D. T., Bliven, L. F., Wanninkhof, R. & Schlosser, P. The effect of rain on air–water gas exchange. Tellus B 49, 149–158 (1997).
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).
Behrenfeld, M. J. et al. Biospheric primary production during an ENSO transition. Science 291, 2594–2597 (2001).
Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).
Shepherd, J. G., Brewer, P. G., Oschlies, A. & Watson, A. J. Ocean ventilation and deoxygenation in a warming world: introduction and overview. Phil. Trans. R. Soc. A 375, 20170240 (2017).
Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).
Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).
Lam, V. W. Y. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).
Sun, S., Thompson, A. F., Yu, J. & Wu, L. Transient overturning changes cause an upper-ocean nutrient decline in a warming climate. Nat. Commun. 15, 7727 (2024).
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences. 17, 3439–3470 (2020).
Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl Acad. Sci. USA 105, 20344–20349 (2008).
Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).
Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Chang. Biol. 25, 459–472 (2019).
Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Chang. 11, 973–981 (2021).
Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).
Hamdan, L. J. & Wickland, K. P. Methane emissions from oceans, coasts, and freshwater habitats: new perspectives and feedbacks on climate. Limnol. Oceanogr. 61, S3–S12 (2016).
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E. & Wüest, A. Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J. Geophys. Res. Oceans 111, C09007 (2006).
Weber, T., Wiseman, N. A. & Kock, A. Global ocean methane emissions dominated by shallow coastal waters. Nat. Commun. 10, 4584 (2019).
Westbrook, G. K. et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett. 36, L15608 (2009).
Novi, L., Bracco, A., Ito, T. & Takano, Y. Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models. Biogeosciences. 21, 3985–4005 (2024).
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).
Lachkar, Z., Mehari, M., Al Azhar, M., Lévy, M. & Smith, S. Fast local warming is the main driver of recent deoxygenation in the northern Arabian Sea. Biogeosciences 18, 5831–5849 (2021).
Hogikyan, A., Resplandy, L., Liu, M. & Vecchi, G. Hydrological cycle amplification reshapes warming-driven oxygen loss in the Atlantic Ocean. Nat. Clim. Change 14, 82–90 (2024).
Shay, L. K., Goni, G. J. & Black, P. G. Effects of a warm oceanic feature on Hurricane Opal. Mon. Weather Rev. 128, 1366–1383 (2000).
Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y. & Fasullo, J. Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future 6, 730–744 (2018).
Lin, I.-I. et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Weather Rev. 133, 2635–2649 (2005).
Emanuel, K. A. An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43, 585–605 (1986).
Zhang, X., Xu, F., Zhang, J. & Lin, Y. Decrease of annually accumulated tropical cyclone-induced sea surface cooling and diapycnal mixing in recent decades. Geophys. Res. Lett. 49, e2022GL099290 (2022).
Balaguru, K. et al. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl Acad. Sci. USA 109, 14343–14347 (2012).
Balaguru, K., Foltz, G. R., Leung, L. R. & Hagos, S. M. Impact of rainfall on tropical cyclone-induced sea surface cooling. Geophys. Res. Lett. 49, e2022GL098187 (2022).
Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).
Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).
Wang, G., Wu, L., Mei, W. & Xie, S.-P. Ocean currents show global intensification of weak tropical cyclones. Nature 611, 496–500 (2022).
Mei, W., Xie, S.-P., Primeau, F., McWilliams, J. C. & Pasquero, C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 1, e1500014 (2015).
Huang, P., Lin, I. I., Chou, C. & Huang, R.-H. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun. 6, 7188 (2015).
Wang, S. & Toumi, R. Recent tropical cyclone changes inferred from ocean surface temperature cold wakes. Sci. Rep. 11, 22269 (2021).
Da, N. D., Foltz, G. R. & Balaguru, K. Observed global increases in tropical cyclone-induced ocean cooling and primary production. Geophys. Res. Lett. 48, e2021GL092574 (2021).
Ma, Z. et al. Strengthening cold wakes lead to decreasing trend of tropical cyclone rainfall rates relative to background environmental rainfall rates. Npj Clim. Atmos. Sci. 6, 131 (2023).
Guan, S. et al. Ocean internal tides suppress tropical cyclones in the South China Sea. Nat. Commun. 15, 3903 (2024).
Zhang, L. & Delworth, T. L. Simulated response of the Pacific decadal oscillation to climate change. J. Clim. 29, 5999–6018 (2016).
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K. & Siwertz, N. Geographical variability of the first baroclinic rossby radius of deformation. J. Phys. Oceanogr. 28, 433–460 (1998).
Schneider, N., Miller, A. J. & Pierce, D. W. Anatomy of north Pacific decadal variability. J. Clim. 15, 586–605 (2002).
Kwon, Y.-O. & Deser, C. North Pacific decadal variability in the community climate system model version 2. J. Clim. 20, 2416–2433 (2007).
Li, S. et al. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).
Zhang, L. et al. The dependence of internal multidecadal variability in the Southern Ocean on the ocean background mean state. J. Clim. 34, 1061–1080 (2021).
Mochizuki, T. et al. Pacific Decadal Oscillation hindcasts relevant to near-term climate prediction. Proc. Natl Acad. Sci. 107, 1833–1837 (2010).
Timmermann, A. et al. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398, 694–697 (1999).
Thual, S., Dewitte, B., An, S.-I., Illig, S. & Ayoub, N. Influence of recent stratification changes on ENSO stability in a conceptual model of the equatorial Pacific. J. Clim. 26, 4790–4802 (2013).
An, S.-I. & Jin, F.-F. Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Clim. 14, 3421–3432 (2001).
Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).
Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Change 12, 228–231 (2022).
Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).
Geng, T. et al. Increased occurrences of consecutive La Niña events under global warming. Nature 619, 774–781 (2023).
Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).
Lu, Z. et al. Increased frequency of multi-year El Niño–Southern Oscillation events across the Holocene. Nat. Geosci. 18, 337–343 (2026).
Kohyama, T., Hartmann, D. L. & Battisti, D. S. Weakening of nonlinear ENSO under global warming. Geophys. Res. Lett. 45, 8557–8567 (2018).
Zheng, X.-T., Hui, C., Han, Z.-W. & Wu, Y. Advanced peak phase of ENSO under global warming. J. Clim. 37, 5271–5289 (2024).
Cai, W. et al. Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nat. Commun. 9, 1419 (2018).
Wang, G. et al. The Indian Ocean Dipole in a warming world. Nat. Rev. Earth Environ. 5, 588–604 (2024).
Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).
Senapati, B., O’Reilly, C. H. & Robson, J. Pivotal role of mixed-layer depth in tropical Atlantic multidecadal variability. Geophys. Res. Lett. 51, e2024GL110057 (2024).
Brovkin, V. et al. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nat. Geosci. 14, 550–558 (2021).
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
van Westen, R. M., Kliphuis, M. & Dijkstra, H. A. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 10, eadk1189 (2024).
Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic Meridional Overturning Circulation. Nat. Commun. 14, 4254 (2023).
Jackson, L. C. et al. The evolution of the north Atlantic Meridional Overturning Circulation since 1980. Nat. Rev. Earth Environ. 3, 241–254 (2022).
Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
Liu, W., Xie, S. P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).
Mann, M. E. Beyond the hockey stick: climate lessons from the common era. Proc. Natl Acad. Sci. USA 118, e2112797118 (2021).
Lenderink, G. & Haarsma, R. J. Modeling convective transitions in the presence of sea ice. J. Phys. Oceanogr. 26, 1448–1467 (1996).
Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).
Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).
Meyssignac, B. et al. Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci. 6, 1–31 (2019).
Wang, C., Zhang, L., Lee, S.-K., Wu, L. & Mechoso, C. R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205 (2014).
Luo, F., Ying, J., Liu, T. & Chen, D. Origins of Southern Ocean warm sea surface temperature bias in CMIP6 models. npj Clim. Atmos. Sci. 6, 127 (2023).
Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).
Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Greater committed warming after accounting for the pattern effect. Nat. Clim. Change 11, 132–136 (2021).
Armour, K. C. et al. Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity. Proc. Natl Acad. Sci. USA 121, e2312093121 (2024).
Sohail, T., Irving, D. B., Zika, J. D., Holmes, R. M. & Church, J. A. Fifty year trends in global ocean heat content traced to surface heat fluxes in the sub-polar ocean. Geophys. Res. Lett. 48, e2020GL091439 (2021).
Fox-Kemper, B. et al. Challenges and prospects in ocean circulation models. Front. Mar. Sci. 6, 2019 (2019).
Newsom, E., Zanna, L. & Gregory, J. Background pycnocline depth constrains future ocean heat uptake efficiency. Geophys. Res. Lett. 50, e2023GL105673 (2023).
Xu, G. et al. Enhanced upper ocean warming projected by the eddy-resolving Community Earth System Model. Geophys. Res. Lett. 50, e2023GL106100 (2023).
Terhaar, J., Frölicher, T. L. & Joos, F. Southern Ocean anthropogenic carbon sink constrained by sea surface salinity. Sci. Adv. 7, eabd5964 (2021).
Bourgeois, T., Goris, N., Schwinger, J. & Tjiputra, J. F. Stratification constrains future heat and carbon uptake in the Southern Ocean between 30° S and 55° S. Nat. Commun. 13, 340 (2022).
Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).
Bouttes, N., Roche, D. M. & Paillard, D. Impact of strong deep ocean stratification on the glacial carbon cycle. Paleoceanography 24, PA3203 (2009).
Trenberth, K. E. The definition of El Niño. Bull. Am. Meteorol. Soc. 78, 2771–2778 (1997).
Acknowledgements
The authors acknowledge support from the National Natural Science Foundation of China (grant numbers 42206208, 42261134536, 42076208), the International Partnership Program of the Chinese Academy of Sciences (grant no. 060GJHZ2024064MI), Asian Cooperation Fund, the new Cornerstone Science Foundation through the XPLORER PRIZE, Youth Innovation Promotion Association, Chinese Academy of Sciences, National Key Scientific and Technological Infrastructure project ‘Earth System Science Numerical Simulator Facility’ (EarthLab), Young Talent Support Project of Guangzhou Association for Science and Technology, and Ocean Negative Carbon Emissions (ONCE). They acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and thank the climate modelling groups for producing and making available their model output through the Earth System Grid Federation. Argo data were collected and made freely available by the International Argo Program and the national programmes contributing to it (https://argo.ucsd.edu, https://www.ocean-ops.org). The Argo Program is part of the Global Ocean Observing System. The observation and model data used in this Review are available at http://www.ocean.iap.ac.cn/. NSF-NCAR is sponsored by the US National Science Foundation. The authors acknowledge discussions with F. Liu, Q. Liu, Y. Gong, S. Li and F. Song. The authors also thank W. Cai, G. Wang, C. Wang, Y. Gong, W. Mei and S. Li for providing data in Fig. 7 of this Review, and W. Zhang for processing global-mean surface temperature data from CMIP6 simulations.
Author information
Authors and Affiliations
Contributions
All authors contributed to writing and editing the article. L.C. led the overall conceptual design and the activity and led and coordinated the writing in collaboration with K.T. and the editor. L.C., G.L., K.v.S., K.T., M.M. and J.A. jointly designed the structure of this Review. G.L. led the data analyses; Y.L. led the section on regional stratification and its seasonal variation; L.C. led the introduction and summary sections. X.C., H.L., Z.X., M.L., Q.P., G.X., Z.M. and H.Y. led different topics in the consequences section. All authors contributed to reviewing the stratification changes and the impacts, editing the manuscript and analysing the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Ryohei Yamaguchi, Chellappan Gnanaseelan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cheng, L., Li, G., Long, SM. et al. Ocean stratification in a warming climate. Nat Rev Earth Environ 6, 637–655 (2025). https://doi.org/10.1038/s43017-025-00715-5
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43017-025-00715-5