Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Seasonal and regional jet stream changes and drivers

Abstract

The eddy-driven jet streams, which are regions of strong westerly wind in the mid-latitudes of both hemispheres, exert a leading influence on regional climate. In this Review, we outline the seasonally and regionally varying drivers, characteristics and changes in the jet streams. State-of-the-art models commonly predict a future polewards shift of the zonal-mean and annual-mean jet streams, typically ranging between 0° and 2° latitude by the end of the century under a high-emissions scenario, but with large model-to-model uncertainty. Furthermore, regional and seasonal projections can deviate substantially from the annual-mean and zonal-mean picture, and the drivers of these projected changes are not fully understood. Jet trends have emerged in the reanalysis record since 1979, of which a polewards shift of the summertime austral jet of ~0.3° per decade is the trend most clearly attributable to anthropogenic forcing. Although other trends have been observed, potentially large internal variability and incomplete understanding of the drivers of these trends precludes clear anthropogenic attribution at this point. Research is unevenly distributed across regions and seasons, with winter receiving the most attention, particularly in the North Atlantic. To support physical understanding and impact assessments, future research should provide a more complete picture of the seasonally and regionally varying jet stream drivers, and their changes, especially in spring and autumn.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical 700 hPa zonal reanalysis wind fields with corresponding CMIP6 model bias.
Fig. 2: Indices of jet latitude and strength in numerical models and observations.
Fig. 3: Drivers of the jet stream climatology and future response in different regions.
Fig. 4: Projected end-of-century change in zonal-wind fields under a high-emissions scenario.
Fig. 5: Observed trends in zonal-wind fields.

Similar content being viewed by others

Data availability

CMIP6 data used in this study is publicly available from the Earth System Grid Federation (https://aims2.llnl.gov/search/cmip6/). ERA5 data is publicly available from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/datasets). Code used to analyse the data and produce the figures will be shared upon request.

References

  1. Held, I. M. & Hou, A. Y. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980).

    Article  Google Scholar 

  2. Kornhuber, K. et al. Amplified rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2020).

    Article  Google Scholar 

  3. Xu, G. et al. Jet stream controls on European climate and agriculture since 1300 CE. Nature 634, 600–608 (2024).

    Article  CAS  Google Scholar 

  4. Kushner, P. J., Held, I. M. & Delworth, T. L. Southern Hemisphere atmospheric circulation response to global warming. J. Clim. 14, 2238–2249 (2001).

    Article  Google Scholar 

  5. Fyfe, J. C. & Saenko, O. A. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025332 (2006).

  6. Barnes, E. A. & Polvani, L. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Clim. 26, 7117–7135 (2013).

    Article  Google Scholar 

  7. Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).

    Article  Google Scholar 

  8. Simpson, I. R., Shaw, T. A. & Seager, R. A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci. 71, 2489–2515 (2014).

    Article  Google Scholar 

  9. Harvey, B. J., Cook, P., Shaffrey, L. C. & Schiemann, R. The response of the northern hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos. 125, e2020JD032701 (2020).

    Article  Google Scholar 

  10. Zhou, W., Leung, L. R. & Lu, J. Seasonally and regionally dependent shifts of the atmospheric westerly jets under global warming. J. Clim. 35, 5433–5447 (2022).

    Article  Google Scholar 

  11. Manzini, E. et al. Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J. Geophys. Res. Atmos. 119, 7979–7998 (2014).

    Article  Google Scholar 

  12. Zappa, G. & Shepherd, T. G. Storylines of atmospheric circulation change for european regional climate impact assessment. J. Clim. 30, 6561–6577 (2017).

    Article  Google Scholar 

  13. Baker, H. S., Woollings, T., Forest, C. E. & Allen, M. R. The linear sensitivity of the North Atlantic oscillation and eddy-driven jet to SSTs. J. Clim. 32, 6491–6511 (2019).

    Article  Google Scholar 

  14. Kretschmer, M. et al. Quantifying causal pathways of teleconnections. Bull. Am. Meteorol. Soc. 102, E2247–E2263 (2021).

    Article  Google Scholar 

  15. Shaw, T. A. Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Clim. Change Rep. 5, 345–357 (2019).

    Article  Google Scholar 

  16. Chang, E. K. M., Zheng, C., Lanigan, P., Yau, A. M. W. & Neelin, J. D. Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity. Geophys. Res. Lett. 42, 5983–5991 (2015).

    Article  Google Scholar 

  17. Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).

    Article  Google Scholar 

  18. Afargan, H. & Kaspi, Y. A midwinter minimum in north atlantic storm track intensity in years of a strong jet. Geophys. Res. Lett. 44, 12,511–12,518 (2017).

    Article  Google Scholar 

  19. Drouard, M., Kornhuber, K. & Woollings, T. Disentangling dynamic contributions to summer 2018 anomalous weather over Europe. Geophys. Res. Lett. 46, 12537–12546 (2019).

    Article  Google Scholar 

  20. Brönnimann, S. et al. Past hydroclimate extremes in Europe driven by Atlantic jet stream and recurrent weather patterns. Nat. Geosci. 18, 246–253 (2025).

    Article  Google Scholar 

  21. Seager, R. et al. Causes of the 2011–14 California drought. J. Clim. 28, 6997–7024 (2015).

    Article  Google Scholar 

  22. Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).

    Article  Google Scholar 

  23. Ceppi, P., Zappa, G., Shepherd, T. G. & Gregory, J. M. Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing. J. Clim. 31, 1091–1105 (2018).

    Article  Google Scholar 

  24. Nakamura, H. & Shimpo, A. Seasonal variations in the southern hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Clim. 17, 1828–1844 (2004).

    Article  Google Scholar 

  25. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  26. Inatsu, M. & Hoskins, B. J. The zonal asymmetry of the southern hemisphere winter storm track. J. Clim. 17, 4882–4892 (2004).

    Article  Google Scholar 

  27. Simpson, I. R. & Polvani, L. M. Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett. 43, 2896–2903 (2016).

    Article  Google Scholar 

  28. Curtis, P. E., Ceppi, P. & Zappa, G. Role of the mean state for the Southern hemispheric jet stream response to CO2 forcing in CMIP6 models. Environ. Res. Lett. 15, 064011 (2020).

    Article  CAS  Google Scholar 

  29. Simpson, I. R. et al. An evaluation of the large-scale atmospheric circulation and its variability in CESM2 and other CMIP models. J. Geophys. Res. Atmos. 125, e2020JD032835 (2020).

    Article  Google Scholar 

  30. Brayshaw, D. J., Hoskins, B. & Blackburn, M. The storm-track response to idealized sst perturbations in an aquaplanet GCM. J. Atmos. Sci. 65, 2842–2860 (2008).

    Article  Google Scholar 

  31. Butler, A. H., Thompson, D. W. J. & Heikes, R. The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Clim. 23, 3474–3496 (2010).

    Article  Google Scholar 

  32. Chen, G., Plumb, R. A. & Lu, J. Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophys. Res. Lett. 37, L12701 (2010).

    Article  Google Scholar 

  33. Rivière, G. A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci. 68, 1253–1272 (2011).

    Article  Google Scholar 

  34. Ceppi, P., Hwang, Y.-T., Frierson, D. M. W. & Hartmann, D. L. Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett. https://doi.org/10.1029/2012GL053115 (2012).

  35. Nakamura, H., Sampe, T., Tanimoto, Y. & Shimpo, A. in Geophysical Monograph Series (eds Wang, C., Xie, S. P. & Carton, J. A.) (American Geophysical Union, 2004); https://doi.org/10.1029/147GM18.

  36. Brayshaw, D. J., Hoskins, B. & Blackburn, M. The basic ingredients of the north atlantic storm track. Part II: sea surface temperatures. J. Atmos. Sci. 68, 1784–1805 (2011).

    Article  Google Scholar 

  37. Foussard, A., Lapeyre, G. & Plougonven, R. Storm track response to oceanic eddies in idealized atmospheric simulations. J. Clim. 32, 445–463 (2019).

    Article  Google Scholar 

  38. Voigt, A. et al. Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change. WIREs Clim. Change 12, e694 (2021).

    Article  Google Scholar 

  39. Deser, C., Magnusdottir, G., Saravanan, R. & Phillips, A. The Effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J. Clim. 17, 877–889 (2004).

    Article  Google Scholar 

  40. Kidston, J., Taschetto, A. S., Thompson, D. W. J. & England, M. H. The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048056 (2011).

  41. Lorenz, D. J. Understanding midlatitude jet variability and change using rossby wave chromatography: poleward-shifted jets in response to external forcing. J. Atmos. Sci. 71, 2370–2389 (2014).

    Article  Google Scholar 

  42. Branstator, G. Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: forced solutions. J. Atmos. Sci. 42, 2225–2241 (1985).

    Article  Google Scholar 

  43. Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article  Google Scholar 

  44. Kidston, J. et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 8, 433–440 (2015).

    Article  CAS  Google Scholar 

  45. Garfinkel, C. I., Waugh, D. W. & Gerber, E. P. The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Clim. 26, 2077–2095 (2013).

    Article  Google Scholar 

  46. Byrne, N. J., Shepherd, T. G., Woollings, T. & Plumb, R. A. Nonstationarity in Southern Hemisphere climate variability associated with the seasonal breakdown of the stratospheric polar vortex. J. Clim. 30, 7125–7139 (2017).

    Article  Google Scholar 

  47. Pithan, F., Shepherd, T. G., Zappa, G. & Sandu, I. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett. 43, 7231–7240 (2016).

    Article  Google Scholar 

  48. White, R. H., Wallace, J. M. & Battisti, D. S. Revisiting the role of mountains in the Northern Hemisphere winter atmospheric circulation. J. Atmos. Sci. 78, 2221–2235 (2021).

    Article  Google Scholar 

  49. Held, I. M., Ting, M. & Wang, H. Northern winter stationary waves: theory and modeling. J. Clim. 15, 2125–2144 (2002).

    Article  Google Scholar 

  50. Shaw, T. A. On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci. 71, 1724–1746 (2014).

    Article  Google Scholar 

  51. Gerber, E. P., Polvani, L. M. & Ancukiewicz, D. Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett. https://doi.org/10.1029/2008GL035712 (2008).

  52. Harvey, B. J., Methven, J. & Ambaum, M. H. P. Rossby wave propagation on potential vorticity fronts with finite width. J. Fluid Mech. 794, 775–797 (2016).

    Article  CAS  Google Scholar 

  53. Seager, R. et al. Is the Gulf Stream responsible for Europe’s mild winters? Q. J. R. Meteorol. Soc. 128, 2563–2586 (2002).

    Article  Google Scholar 

  54. Brayshaw, D. J., Hoskins, B. & Blackburn, M. The basic ingredients of the north atlantic storm track. Part I: land–sea contrast and orography. J. Atmos. Sci. 66, 2539–2558 (2009).

    Article  Google Scholar 

  55. Tamarin, T. & Kaspi, Y. Mechanisms controlling the downstream poleward deflection of midlatitude storm tracks. J. Atmos. Sci. 74, 553–572 (2017).

    Article  Google Scholar 

  56. Harnik, N., Galanti, E., Martius, O. & Adam, O. The anomalous merging of the African and North atlantic jet streams during the Northern Hemisphere winter of 2010. J. Clim. 27, 7319–7334 (2014).

    Article  Google Scholar 

  57. Son, S.-W. & Lee, S. The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci. 62, 3741–3757 (2005).

    Article  Google Scholar 

  58. Santos, J. A., Woollings, T. & Pinto, J. G. Are the winters 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic jet stream? Mon. Weather Rev. 141, 3626–3640 (2013).

    Article  Google Scholar 

  59. Scaife, A. A., Woollings, T., Knight, J., Martin, G. & Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 23, 6143–6152 (2010).

    Article  Google Scholar 

  60. Athanasiadis, P. J. et al. Mitigating climate biases in the midlatitude North Atlantic by increasing model resolution: sst gradients and their relation to blocking and the jet. J. Clim. 35, 6985–7006 (2022).

    Article  Google Scholar 

  61. Berckmans, J., Woollings, T., Demory, M.-E., Vidale, P.-L. & Roberts, M. Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing. Atmos. Sci. Lett. 14, 34–40 (2013).

    Article  Google Scholar 

  62. Schemm, S. Toward eliminating the decades-old “too zonal and too equatorward” storm-track bias in climate models. J. Adv. Model. Earth Syst. 15, e2022MS003482 (2023).

    Article  Google Scholar 

  63. De Luca, P., Jiménez-Esteve, B., Degenhardt, L., Schemm, S. & Pfahl, S. Enhanced blocking frequencies in very-high resolution idealized climate model simulations. Geophys. Res. Lett. 51, e2024GL111016 (2024).

    Article  Google Scholar 

  64. Williams, K. D. et al. Addressing the causes of large-scale circulation error in the MET office unified model. Q. J. R. Meteorol. Soc. 146, 2597–2613 (2020).

    Article  Google Scholar 

  65. Hoskins, B. J. & Hodges, K. I. The annual cycle of Northern Hemisphere storm tracks. Part I: seasons. J. Clim. 32, 1743–1760 (2019).

    Article  Google Scholar 

  66. Li, C. & Wettstein, J. J. Thermally driven and eddy-driven jet variability in reanalysis. J. Clim. 25, 1587–1596 (2012).

    Article  Google Scholar 

  67. Franzke, C., Lee, S. & Feldstein, S. B. Is the North Atlantic oscillation a breaking wave? J. Atmos. Sci. 61, 145–160 (2004).

    Article  Google Scholar 

  68. Strong, C. & Magnusdottir, G. Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci. 65, 2861–2876 (2008).

    Article  Google Scholar 

  69. Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q. J. R. Meteorol. Soc. 136, 856–868 (2010).

    Article  Google Scholar 

  70. Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic–European sector. Q. J. R. Meteorol. Soc. 143, 2960–2972 (2017).

    Article  Google Scholar 

  71. Perez, J., Maycock, A. C., Griffiths, S. D., Hardiman, S. C. & McKenna, C. M. A new characterisation of the North Atlantic eddy-driven jet using two-dimensional moment analysis. Weather Clim. Dyn. 5, 1061–1078 (2024).

    Article  Google Scholar 

  72. Franzke, C. & Woollings, T. On the persistence and predictability properties of North Atlantic climate variability. J. Clim. 24, 466–472 (2011).

    Article  Google Scholar 

  73. Scaife, A. A. & Smith, D. A signal-to-noise paradox in climate science. npj Clim. Atmos. Sci. 1, 1–8 (2018).

    Article  Google Scholar 

  74. Hall, R., Erdélyi, R., Hanna, E., Jones, J. & Scaife, A. Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol. https://doi.org/10.1002/joc.4121 (2014).

  75. Schemm, S., Rivière, G., Ciasto, L. M. & Li, C. Extratropical cyclogenesis changes in connection with tropospheric ENSO teleconnections to the North Atlantic: role of stationary and transient waves. J. Atmos. Sci. 75, 3943–3964 (2018).

    Article  Google Scholar 

  76. Drouard, M., Rivière, G. & Arbogast, P. The link between the North PPacific climate variability and the North Atlantic oscillation via downstream propagation of synoptic waves. J. Clim. 28, 3957–3976 (2015).

    Article  Google Scholar 

  77. White, R. H., Hilgenbrink, C. & Sheshadri, A. The importance of greenland in setting the northern preferred position of the North Atlantic eddy-driven jet. Geophys. Res. Lett. 46, 14126–14134 (2019).

    Article  Google Scholar 

  78. Czaja, A. & Frankignoul, C. Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Clim. 15, 606–623 (2002).

    Article  Google Scholar 

  79. Simpson, I. R., Deser, C., McKinnon, K. A. & Barnes, E. A. Modeled and observed multidecadal variability in the North Atlantic jet stream and its connection to sea surface temperatures. J. Clim. 31, 8313–8338 (2018).

    Article  Google Scholar 

  80. Strommen, K., Woollings, T., Davini, P., Ruggieri, P. & Simpson, I. R. Predictable decadal forcing of the North Atlantic jet speed by sub-polar North Atlantic sea surface temperatures. Weather Clim. Dyn. 4, 853–874 (2023).

    Article  Google Scholar 

  81. Czaja, A., Frankignoul, C., Minobe, S. & Vannière, B. Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air–sea interactions? Curr. Clim. Change Rep. 5, 390–406 (2019).

    Article  Google Scholar 

  82. Wills, R. C. J., Herrington, A. R., Simpson, I. R. & Battisti, D. S. Resolving weather fronts increases the large-scale circulation response to Gulf Stream SST anomalies in variable-resolution CESM2 simulations. J. Adv. Model. Earth Syst. 16, e2023MS004123 (2024).

    Article  Google Scholar 

  83. Ruggieri, P. et al. Atlantic multidecadal variability and North Atlantic jet: a multimodel view from the decadal climate prediction project. J. Clim. 34, 347–360 (2021).

    Article  Google Scholar 

  84. Schiemann, R. et al. Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution. Weather Clim. Dyn. 1, 277–292 (2020).

    Article  Google Scholar 

  85. Wernli, H. & Gray, S. L. The importance of diabatic processes for the dynamics of synoptic-scale extratropical weather systems — a review. Weather Clim. Dyn. 5, 1299–1408 (2024).

    Article  Google Scholar 

  86. Bracegirdle, T. J., Lu, H., Eade, R. & Woollings, T. Do CMIP5 models reproduce observed low-frequency North Atlantic jet variability? Geophys. Res. Lett. 45, 7204–7212 (2018).

    Article  Google Scholar 

  87. Harvey, B., Hawkins, E. & Sutton, R. Storylines for future changes of the North Atlantic jet and associated impacts on the UK. Int. J. Climatol. 43, 4424–4441 (2023).

    Article  Google Scholar 

  88. O’Reilly, C. H. Signal-to-noise errors in early winter Euro-Atlantic predictions linked to weak ENSO teleconnections and pervasive jet biases. Q. J. R. Meteorol. Soc. 151, e4952 (2025).

    Article  Google Scholar 

  89. Shi, Z., Liu, X., Liu, Y., Sha, Y. & Xu, T. Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean. Clim. Dyn. 44, 3067–3076 (2015).

    Article  Google Scholar 

  90. White, R. H., Battisti, D. S. & Roe, G. H. Mongolian mountains matter most: impacts of the latitude and height of Asian orography on Pacific wintertime atmospheric circulation. J. Clim. 30, 4065–4082 (2017).

    Article  Google Scholar 

  91. Orlanski, I. Poleward deflection of storm tracks. J. Atmos. Sci. 55, 2577–2602 (1998).

    Article  Google Scholar 

  92. Priestley, M. D. K. et al. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 33, 6315–6343 (2020).

    Article  Google Scholar 

  93. Seager, R., Harnik, N., Kushnir, Y., Robinson, W. & Miller, J. Mechanisms of hemispherically symmetric climate variability. J. Clim. 16, 2960–2978 (2003).

    Article  Google Scholar 

  94. Deser, C., Simpson, I. R., McKinnon, K. A. & Phillips, A. S. The Northern Hemisphere extratropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly? J. Clim. 30, 5059–5082 (2017).

    Article  Google Scholar 

  95. Fasullo, J. T., Phillips, A. S. & Deser, C. Evaluation of leading modes of climate variability in the CMIP archives. J. Clim. 33, 5527–5545 (2020).

    Article  Google Scholar 

  96. Garfinkel, C. I. et al. The winter North Pacific teleconnection in response to ENSO and the MJO in operational subseasonal forecasting models is too weak. J. Clim. 35, 8013–8030 (2022).

    Article  Google Scholar 

  97. Chen, R., Simpson, I. R., Deser, C. & Wang, B. Model biases in the simulation of the springtime North Pacific ENSO teleconnection. J. Clim. 33, 9985–10002 (2020).

    Article  Google Scholar 

  98. Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O. & Frankignoul, C. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28, 1126–1147 (2015).

    Article  Google Scholar 

  99. Codron, F. Relation between annular modes and the mean state: Southern Hemisphere summer. J. Clim. 18, 320–330 (2005).

    Article  Google Scholar 

  100. Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article  CAS  Google Scholar 

  101. Thompson, D. W. J., Baldwin, M. P. & Solomon, S. Stratosphere–troposphere coupling in the Southern Hemisphere. J. Atmos. Sci. 62, 708–715 (2005).

    Article  Google Scholar 

  102. Black, R. X. & McDaniel, B. A. Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J. Atmos. Sci. 64, 2968–2974 (2007).

    Article  Google Scholar 

  103. Lim, E.-P., Hendon, H. H. & Thompson, D. W. J. Seasonal evolution of stratosphere–troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. J. Geophys. Res. Atmos. 123, 12,002–12,016 (2018).

    Article  Google Scholar 

  104. Butchart, N. The stratosphere: a review of the dynamics and variability. Weather Clim. Dyn. 3, 1237–1272 (2022).

    Article  Google Scholar 

  105. Baldwin, M. P. et al. Stratospheric memory and skill of extended-range weather forecasts. Science 301, 636–640 (2003).

    Article  CAS  Google Scholar 

  106. Gerber, E. P. et al. Stratosphere–troposphere coupling and annular mode variability in chemistry-climate models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2009JD013770 (2010).

  107. Simpson, I. R., Hitchcock, P., Shepherd, T. G. & Scinocca, J. F. Stratospheric variability and tropospheric annular-mode timescales. Geophys. Res. Lett. https://doi.org/10.1029/2011GL049304 (2011).

  108. Bracegirdle, T. J. et al. Improvements in circumpolar Southern Hemisphere extratropical atmospheric circulation in CMIP6 compared to CMIP5. Earth Space Sci. 7, e2019EA001065 (2020).

    Article  Google Scholar 

  109. Breul, P., Ceppi, P. & Shepherd, T. G. Relationship between Southern hemispheric jet variability and forced response: the role of the stratosphere. Weather Clim. Dyn. 3, 645–658 (2022).

    Article  Google Scholar 

  110. Kim, J. & Reichler, T. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere. Clim. Dyn. 47, 637–649 (2016).

    Article  CAS  Google Scholar 

  111. Lim, E.-P. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).

    Article  CAS  Google Scholar 

  112. L’Heureux, M. L. & Thompson, D. W. J. Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Clim. 19, 276–287 (2006).

    Article  Google Scholar 

  113. Fogt, R. L., Jones, J. M. & Renwick, J. Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Clim. 25, 6253–6270 (2012).

    Article  Google Scholar 

  114. Lim, E.-P., Hendon, H. H. & Rashid, H. Seasonal predictability of the Southern Annular Mode due to its association with ENSO. J. Clim. 26, 8037–8054 (2013).

    Article  Google Scholar 

  115. Kim, B.-M., Choi, H., Kim, S.-J. & Choi, W. Amplitude-dependent relationship between the Southern Annular Mode and the El Niño Southern Oscillation in austral summer. Asia-Pac. J. Atmos. Sci. 53, 85–100 (2017).

    Article  Google Scholar 

  116. Byrne, N. J., Shepherd, T. G. & Polichtchouk, I. Subseasonal-to-seasonal predictability of the Southern Hemisphere eddy-driven jet during austral spring and early summer. J. Geophys. Res. Atmos. 124, 6841–6855 (2019).

    Article  Google Scholar 

  117. Stone, K. A., Solomon, S., Thompson, D. W. J., Kinnison, D. E. & Fyfe, J. C. On the Southern Hemisphere stratospheric response to ENSO and its impacts on tropospheric circulation. J. Clim. 35, 1963–1981 (2022).

    Article  Google Scholar 

  118. Goyal, R., Sen Gupta, A., Jucker, M. & England, M. H. Historical and projected changes in the Southern Hemisphere surface westerlies. Geophys. Res. Lett. 48, e2020GL090849 (2021).

    Article  Google Scholar 

  119. Priestley, M. D. K., Ackerley, D., Catto, J. L. & Hodges, K. I. Drivers of biases in the CMIP6 extratropical storm tracks. Part II: Southern Hemisphere. J. Clim. 36, 1469–1486 (2023).

    Article  Google Scholar 

  120. Chang, E. K. M. Characteristics of wave packets in the upper troposphere. Part II: seasonal and hemispheric variations. J. Atmos. Sci. 56, 1729–1747 (1999).

    Article  Google Scholar 

  121. Bals-Elsholz, T. M. et al. The wintertime Southern Hemisphere split jet: structure, variability, and evolution. J. Clim. 14, 4191–4215 (2001).

    Article  Google Scholar 

  122. Codron, F. Relations between annular modes and the mean state: Southern Hemisphere winter. J. Atmos. Sci. 64, 3328–3339 (2007).

    Article  Google Scholar 

  123. Inatsu, M. & Hoskins, B. J. The seasonal and wintertime interannual variability of the split jet and the storm-track activity minimum near New Zealand. J. Meteorol. Soc. Jpn Ser. II 84, 433–445 (2006).

    Article  Google Scholar 

  124. Patterson, M., Woollings, T., Bracegirdle, T. J. & Lewis, N. T. Wintertime Southern hemisphere jet streams shaped by interaction of transient eddies with antarctic orography. J. Clim. 33, 10505–10522 (2020).

    Article  Google Scholar 

  125. Williams, L. N., Lee, S. & Son, S.-W. Dynamics of the Southern Hemisphere spiral jet. J. Atmos. Sci. 64, 548–563 (2007).

    Article  Google Scholar 

  126. Ogawa, F., Nakamura, H., Nishii, K., Miyasaka, T. & Kuwano-Yoshida, A. Importance of midlatitude oceanic frontal zones for the annular mode variability: interbasin differences in the Southern Annular Mode signature. J. Clim. 29, 6179–6199 (2016).

    Article  Google Scholar 

  127. Breul, P., Ceppi, P. & Shepherd, T. G. Revisiting the wintertime emergent constraint of the Southern hemispheric midlatitude jet response to global warming. Weather Clim. Dyn. 4, 39–47 (2023).

    Article  Google Scholar 

  128. Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 141, 1479–1501 (2015).

    Article  Google Scholar 

  129. Baker, H. S., Woollings, T. & Mbengue, C. Eddy-driven jet sensitivity to diabatic heating in an idealized GCM. J. Clim. 30, 6413–6431 (2017).

    Article  Google Scholar 

  130. Harvey, B. J., Shaffrey, L. C. & Woollings, T. J. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 43, 1171–1182 (2014).

    Article  Google Scholar 

  131. Ceppi, P., Zelinka, M. D. & Hartmann, D. L. The response of the Southern hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett. 41, 3244–3250 (2014).

    Article  Google Scholar 

  132. Deser, C. & Phillips, A. S. Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Clim. 22, 396–413 (2009).

    Article  Google Scholar 

  133. Grise, K. M. & Polvani, L. M. The response of midlatitude jets to increased CO2: distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett. 41, 6863–6871 (2014).

    Article  CAS  Google Scholar 

  134. Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).

    Article  CAS  Google Scholar 

  135. Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 32, 3–15 (1975).

    Article  CAS  Google Scholar 

  136. Woollings, T., Drouard, M., O’Reilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ. 4, 1–8 (2023).

    Article  Google Scholar 

  137. Peings, Y., Cattiaux, J., Vavrus, S. J. & Magnusdottir, G. Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett. 13, 074016 (2018).

    Article  Google Scholar 

  138. Ceppi, P. & Shepherd, T. G. Contributions of climate feedbacks to changes in atmospheric circulation. J. Clim. 30, 9097–9118 (2017).

    Article  Google Scholar 

  139. Lorenz, D. J. & DeWeaver, E. T. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2006JD008087 (2007).

  140. Ghosh, S., Lachmy, O. & Kaspi, Y. The role of diabatic heating in the midlatitude atmospheric circulation response to climate change. J. Clim. 37, 2987–3009 (2024).

    Article  Google Scholar 

  141. Chemke, R. & Coumou, D. Human influence on the recent weakening of storm tracks in boreal summer. npj Clim. Atmos. Sci. 7, 1–8 (2024).

    Article  Google Scholar 

  142. Allen, R. J. & Ajoku, O. Future aerosol reductions and widening of the northern tropical belt. J. Geophys. Res. Atmos. 121, 6765–6786 (2016).

    Article  Google Scholar 

  143. Polvani, L. M. & Kushner, P. J. Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett. 29, 18-1–18-4 (2002).

    Article  Google Scholar 

  144. Simpson, I. R., Hitchcock, P., Seager, R., Wu, Y. & Callaghan, P. The downward influence of uncertainty in the Northern Hemisphere stratospheric polar vortex response to climate change. J. Clim. 31, 6371–6391 (2018).

    Article  Google Scholar 

  145. Ceppi, P. & Shepherd, T. G. The role of the stratospheric polar vortex for the austral jet response to greenhouse gas forcing. Geophys. Res. Lett. 46, 6972–6979 (2019).

    Article  Google Scholar 

  146. Son, S.-W., Tandon, N. F., Polvani, L. M. & Waugh, D. W. Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett. https://doi.org/10.1029/2009GL038671 (2009).

  147. Polvani, L. M., Previdi, M. & Deser, C. Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett. https://doi.org/10.1029/2011GL046712 (2011).

  148. Sigmond, M., Scinocca, J. F. & Kushner, P. J. Impact of the stratosphere on tropospheric climate change. Geophys. Res. Lett. https://doi.org/10.1029/2008GL033573 (2008).

  149. Karpechko, A. Y. & Manzini, E. Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017036 (2012).

  150. Mindlin, J. et al. Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing. Clim. Dyn. 54, 4399–4421 (2020).

    Article  Google Scholar 

  151. Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).

    Article  Google Scholar 

  152. Ulbrich, U. et al. Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Clim. 21, 1669–1679 (2008).

    Article  Google Scholar 

  153. Schemm, S., Papritz, L. & Rivière, G. Storm track response to uniform global warming downstream of an idealized sea surface temperature front. Weather. Clim. Dyn. 3, 601–623 (2022).

    Article  Google Scholar 

  154. García-Burgos, M., Ayarzagüena, B., Barriopedro, D., Woollings, T. & García-Herrera, R. Intraseasonal shift in the wintertime North Atlantic jet structure projected by CMIP6 models. npj Clim. Atmos. Sci. 7, 1–11 (2024).

    Article  Google Scholar 

  155. Zappa, G., Pithan, F. & Shepherd, T. G. Multimodel evidence for an atmospheric circulation response to Arctic sea ice loss in the CMIP5 future projections. Geophys. Res. Lett. 45, 1011–1019 (2018).

    Article  CAS  Google Scholar 

  156. Harvey, B. J., Shaffrey, L. C. & Woollings, T. J. Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Clim. Dyn. 45, 2847–2860 (2015).

    Article  Google Scholar 

  157. Oudar, T. et al. Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation. Clim. Dyn. 49, 3693–3713 (2017).

    Article  Google Scholar 

  158. Hermoso, A., Rivière, G., Harvey, B., Methven, J. & Schemm, S. A dynamical interpretation of the intensification of the winter North Atlantic jet stream in reanalysis. J. Clim. 37, 5853–5881 (2024).

    Article  Google Scholar 

  159. Portal, A. et al. Influence of reduced winter land–sea contrast on the midlatitude atmospheric circulation. J. Clim. 35, 6237–6251 (2022).

    Article  Google Scholar 

  160. Gervais, M., Shaman, J. & Kushnir, Y. Impacts of the North Atlantic warming hole in future climate projections: mean atmospheric circulation and the North Atlantic jet. J. Clim. 32, 2673–2689 (2019).

    Article  Google Scholar 

  161. Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun. 12, 3659 (2021).

    Article  CAS  Google Scholar 

  162. Chemke, R., Zanna, L., Orbe, C., Sentman, L. T. & Polvani, L. M. The future intensification of the North Atlantic winter storm track: the key role of dynamic ocean coupling. J. Clim. 35, 2407–2421 (2022).

    Article  Google Scholar 

  163. Delcambre, S. C., Lorenz, D. J., Vimont, D. J. & Martin, J. E. Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections. J. Clim. 26, 4930–4946 (2013).

    Article  Google Scholar 

  164. Ciasto, L. M., Li, C., Wettstein, J. J. & Kvamstø, N. G. North Atlantic storm-track sensitivity to projected sea surface temperature: local versus remote influences. J. Clim. 29, 6973–6991 (2016).

    Article  Google Scholar 

  165. Oudar, T., Cattiaux, J. & Douville, H. Drivers of the northern extratropical eddy-driven jet change in CMIP5 and CMIP6 models. Geophys. Res. Lett. 47, e2019GL086695 (2020).

    Article  Google Scholar 

  166. Chadwick, R., Douville, H. & Skinner, C. B. Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation. Clim. Dyn. 49, 3011–3029 (2017).

    Article  Google Scholar 

  167. Zappa, G. Regional climate impacts of future changes in the mid-latitude atmospheric circulation: a storyline view. Curr. Clim. Change Rep. 5, 358–371 (2019).

    Article  Google Scholar 

  168. Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M. & Brayshaw, D. J. Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci. 5, 313–317 (2012).

    Article  CAS  Google Scholar 

  169. Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).

    Article  Google Scholar 

  170. Albern, N., Voigt, A. & Pinto, J. G. Tropical cloud-radiative changes contribute to robust climate change-induced jet exit strengthening over Europe during boreal winter. Environ. Res. Lett. 16, 084041 (2021).

    Article  Google Scholar 

  171. Stendel, M., Francis, J., White, R., Williams, P. D. & Woollings, T. in Climate Change (Elsevier, 2021); https://doi.org/10.1016/B978-0-12-821575-3.00015-3.

  172. Haarsma, R. J., Selten, F. M. & Drijfhout, S. S. Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett. 10, 094007 (2015).

    Article  Google Scholar 

  173. Schemm, S. & Röthlisberger, M. Aquaplanet simulations with winter and summer hemispheres: model setup and circulation response to warming. Weather Clim. Dyn. 5, 43–63 (2024).

    Article  Google Scholar 

  174. Dong, B., Sutton, R. T., Shaffrey, L. & Harvey, B. Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions. Nat. Commun. 13, 1148 (2022).

    Article  CAS  Google Scholar 

  175. Allen, R. J. & Luptowitz, R. El Niño-like teleconnection increases California precipitation in response to warming. Nat. Commun. 8, 16055 (2017).

    Article  CAS  Google Scholar 

  176. Seager, R. et al. Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: variability of transient eddy propagation in the Pacific–North America sector. Q. J. R. Meteorol. Soc. 136, 277–296 (2010).

    Article  Google Scholar 

  177. Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article  Google Scholar 

  178. Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).

    Article  Google Scholar 

  179. Rugenstein, M., Zelinka, M., Karnauskas, K., Ceppi, P. & Andrews, T. Patterns of surface warming matter for climate sensitivity. Eos https://doi.org/10.1029/2023EO230411 (2023).

  180. Petrie, R. E., Shaffrey, L. C. & Sutton, R. T. Atmospheric impact of arctic sea ice loss in a coupled ocean–atmosphere simulation. J. Clim. 28, 9606–9622 (2015).

    Article  Google Scholar 

  181. Keel, T., Brierley, C., Edwards, T. & Frame, T. H. A. Exploring uncertainty of trends in the North Pacific jet position. Geophys. Res. Lett. 51, e2024GL109500 (2024).

    Article  Google Scholar 

  182. Kidston, J. & Gerber, E. P. Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett. https://doi.org/10.1029/2010GL042873 (2010).

  183. Deng, K. et al. Changes of Southern Hemisphere westerlies in the future warming climate. Atmos. Res. 270, 106040 (2022).

    Article  Google Scholar 

  184. Sun, L., Chen, G. & Robinson, W. A. The role of stratospheric polar vortex breakdown in Southern Hemisphere climate trends. J. Atmos. Sci. 71, 2335–2353 (2014).

    Article  Google Scholar 

  185. McLandress, C. et al. Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere. J. Clim. 23, 5002–5020 (2010).

    Article  Google Scholar 

  186. Wilcox, L. J. & Charlton-Perez, A. J. Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models: SH final warming in CMIP5. J. Geophys. Res. Atmos. 118, 2535–2546 (2013).

    Article  Google Scholar 

  187. Son, S.-W. et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J. Geophys. Res. 115, D00M07 (2010).

    Article  Google Scholar 

  188. Revell, L. E., Robertson, F., Douglas, H., Morgenstern, O. & Frame, D. Influence of ozone forcing on 21st century Southern Hemisphere surface westerlies in CMIP6 models. Geophys. Res. Lett. 49, e2022GL098252 (2022).

    Article  CAS  Google Scholar 

  189. Arblaster, J. M., Meehl, G. A. & Karoly, D. J. Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045384 (2011).

  190. Patterson, M., Woollings, T. & Bracegirdle, T. J. Tropical and subtropical forcing of future Southern Hemisphere stationary wave changes. J. Clim. 34, 7897–7912 (2021).

    Google Scholar 

  191. Ivy, D. J. et al. Observed changes in the Southern hemispheric circulation in May. J. Clim. 30, 527–536 (2017).

    Article  Google Scholar 

  192. Hermoso, A. & Schemm, S. Disentangling forced trends in the North Atlantic jet from natural variability using deep learning. J. Geophys. Res. Atmos. 129, e2023JD040638 (2024).

    Article  Google Scholar 

  193. Barnes, E. A. & Simpson, I. R. Seasonal sensitivity of the Northern Hemisphere jet streams to Arctic temperatures on subseasonal time scales. J. Clim. 30, 10117–10137 (2017).

    Article  Google Scholar 

  194. Held, I. M. Large-scale dynamics and global warming. Bull. Am. Meteorol. Soc. 74, 228–241 (1993).

    Article  Google Scholar 

  195. Screen, J. A., Eade, R., Smith, D. M., Thomson, S. & Yu, H. Net equatorward shift of the jet streams when the contribution from sea-ice loss is constrained by observed eddy feedback. Geophys. Res. Lett. 49, e2022GL100523 (2022).

    Article  Google Scholar 

  196. Williams, R. S. et al. Future antarctic climate: storylines of mid-latitude jet strengthening and shift emergent from CMIP6. J. Clim. https://doi.org/10.1175/JCLI-D-23-0122.1 (2024).

    Article  Google Scholar 

  197. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Article  Google Scholar 

  198. Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 11, 491–508 (2020).

    Article  Google Scholar 

  199. Manney, G. L. & Hegglin, M. I. Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses. J. Clim. 31, 423–448 (2018).

    Article  Google Scholar 

  200. Simmons, A. J. Trends in the tropospheric general circulation from 1979 to 2022. Weather Clim. Dyn. 3, 777–809 (2022).

    Article  Google Scholar 

  201. Archer, C. L. & Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. https://doi.org/10.1029/2008GL033614 (2008).

  202. Gulev, S. K. et al. in Climate Change 2021—The Physical Science Basis (eds Masson-Delmotte, V. et al.) 287–422 (IPCC, Cambridge Univ. Press, 2021).

  203. Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).

    Article  CAS  Google Scholar 

  204. Shaw, T. A. & Miyawaki, O. Fast upper-level jet stream winds get faster under climate change. Nat. Clim. Change 14, 61–67 (2024).

    Article  Google Scholar 

  205. Simpson, I. R., Yeager, S. G., McKinnon, K. A. & Deser, C. Decadal predictability of late winter precipitation in Western Europe through an ocean–jet stream connection. Nat. Geosci. 12, 613–619 (2019).

    Article  CAS  Google Scholar 

  206. Lee, S. H., Williams, P. D. & Frame, T. H. A. Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature 572, 639–642 (2019).

    Article  CAS  Google Scholar 

  207. Blackport, R. & Fyfe, J. C. Climate models fail to capture strengthening wintertime North Atlantic jet and impacts on Europe. Sci. Adv. 8, eabn3112 (2022).

    Article  Google Scholar 

  208. Woollings, T. et al. Daily to decadal modulation of jet variability. J. Clim. 31, 1297–1314 (2018).

    Article  Google Scholar 

  209. Hallam, S., Josey, S. A., McCarthy, G. D. & Hirschi, J. J.-M. A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Clim. Dyn. 59, 1897–1918 (2022).

    Article  Google Scholar 

  210. Dong, B. & Sutton, R. T. Recent trends in summer atmospheric circulation in the North Atlantic/European region: is there a role for anthropogenic aerosols? J. Clim. 34, 6777–6795 (2021).

    Google Scholar 

  211. Alizadeh, O. & Babaei, M. Changes in the North Pacific jet stream in recent decades. Pure Appl. Geophys. 180, 4371–4380 (2023).

    Article  Google Scholar 

  212. Kang, J. M., Shaw, T. A. & Sun, L. Anthropogenic aerosols have significantly weakened the regional summertime circulation in the Northern Hemisphere during the satellite era. AGU Adv. https://doi.org/10.1029/2024AV001318 (2024).

  213. Patterson, M. & O’Reilly, C. H. Climate models struggle to simulate observed North Pacific jet trends, even accounting for tropical Pacific sea surface temperature trends. Geophys. Res. Lett. 52, e2024GL113561 (2025).

    Article  Google Scholar 

  214. Polvani, L. M., Waugh, D. W., Correa, G. J. P. & Son, S.-W. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795–812 (2011).

    Article  Google Scholar 

  215. McLandress, C. et al. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Clim. 24, 1850–1868 (2011).

    Article  Google Scholar 

  216. Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D. & Chang, K.-L. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548 (2020).

    Article  CAS  Google Scholar 

  217. Lee, S. & Feldstein, S. B. Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science 339, 563–567 (2013).

    Article  CAS  Google Scholar 

  218. Kang, J. M., Shaw, T. A., Kang, S. M., Simpson, I. R. & Yu, Y. Revisiting the reanalysis-model discrepancy in Southern Hemisphere winter storm track trends. npj Clim. Atmos. Sci. 7, 1–10 (2024).

    Article  Google Scholar 

  219. Waugh, D. W., Banerjee, A., Fyfe, J. C. & Polvani, L. M. Contrasting recent trends in Southern Hemisphere westerlies across different ocean basins. Geophys. Res. Lett. 47, e2020GL088890 (2020).

    Article  Google Scholar 

  220. Yang, D., Arblaster, J. M., Meehl, G. A. & England, M. H. The role of coupled feedbacks in the decadal variability of the Southern Hemisphere eddy-driven jet. J. Geophys. Res. Atmos. 126, e2021JD035023 (2021).

    Article  Google Scholar 

  221. Mindlin, J., Shepherd, T. G., Osman, M., Vera, C. S. & Kretschmer, M. Explaining and predicting the Southern Hemisphere eddy-driven jet. Proc. Natl Acad. Sci. USA 122, e2500697122 (2025).

    Article  CAS  Google Scholar 

  222. Zappa, G., Hoskins, B. J. & Shepherd, T. G. Improving climate change detection through optimal seasonal averaging: the case of the North Atlantic jet and European precipitation. J. Clim. 28, 6381–6397 (2015).

    Article  Google Scholar 

  223. Koch, P., Wernli, H. & Davies, H. An event-based jet-stream climatology and typology. Int. J. Climatol. 26, 283–301 (2006).

    Article  Google Scholar 

  224. Barriopedro, D., Ayarzagüena, B., García-Burgos, M. & García-Herrera, R. A multi-parametric perspective of the North Atlantic eddy-driven jet. Clim. Dyn. 61, 375–397 (2023).

    Article  Google Scholar 

  225. Spensberger, C., Li, C. & Spengler, T. Linking instantaneous and climatological perspectives on eddy-driven and subtropical jets. J. Clim. 36, 8525–8537 (2023).

    Article  Google Scholar 

  226. Saggioro, E., Shepherd, T. G. & Knight, J. Probabilistic causal network modeling of Southern Hemisphere jet subseasonal to seasonal predictability. J. Clim. 37, 3055–3071 (2024).

    Article  Google Scholar 

  227. Nowack, P. & Watson-Parris, D. Opinion: why all emergent constraints are wrong but some are useful — a machine learning perspective. EGUsphere https://doi.org/10.5194/egusphere-2024-1636 (2024).

  228. Ceppi, P. & Nowack, P. Observational evidence that cloud feedback amplifies global warming. Proc. Natl Acad. Sci. USA 118, e2026290118 (2021).

    Article  CAS  Google Scholar 

  229. Weisheimer, A. et al. The signal-to-noise paradox in climate forecasts: revisiting our understanding and identifying future priorities. Bull. Am. Meteorol. Soc. 105, E651–E659 (2024).

    Article  Google Scholar 

  230. Jeevanjee, N., Hassanzadeh, P., Hill, S. & Sheshadri, A. A perspective on climate model hierarchies. J. Adv. Model. Earth Syst. 9, 1760–1771 (2017).

    Article  Google Scholar 

  231. Maher, P. et al. Model hierarchies for understanding atmospheric circulation. Rev. Geophys. 57, 250–280 (2019).

    Article  Google Scholar 

  232. Theil, H. in Henri Theil’s Contributions to Economics and Econometrics (eds Raj, B. & Koerts, J.) Vol. 23 345–381 (Springer, 1992).

  233. Yue, S. & Wang, C. Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resour. Res. 38, 4-1–4–7 (2002).

    Article  Google Scholar 

  234. KENDALL, M. G. A new measure of rank correlation. Biometrika 30, 81–93 (1938).

    Article  Google Scholar 

  235. Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    Article  Google Scholar 

  236. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  237. Hussain, M. M. & Mahmud, I. pyMannKendall: a Python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 4, 1556 (2019).

    Article  Google Scholar 

  238. Wilks, D. S. “The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Am. Meteorol. Soc. 97, 2263–2273 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous referees and S. Schemm for their constructive feedback. P.C. acknowledges support from UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding Guarantee, grant EP/Y036123/1, and from UKRI Natural Environmental Research Council (NERC) grants NE/V012045/1 and NE/T006250/1. T.W. acknowledges support from UKRI NERC grant NE/W005875/1. This work used JASMIN, the UK collaborative data analysis facility. The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and thank the climate modelling groups for producing and making available their model output. The authors also thank the Earth System Grid Federation (ESGF) for archiving the model output and providing access, and the multiple funding agencies who support CMIP and ESGF. I.R.S. acknowledges funding from the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977.

Author information

Authors and Affiliations

Authors

Contributions

P.B. and P.C. initiated and led the synthesis and writing. I.R.S. created Figs. 1 and 4; P.B. created all other figures. All authors contributed to the writing and editing of the article and gave feedback on the figures.

Corresponding author

Correspondence to Philipp Breul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Sebastian Schemm and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breul, P., Ceppi, P., Simpson, I.R. et al. Seasonal and regional jet stream changes and drivers. Nat Rev Earth Environ 6, 824–842 (2025). https://doi.org/10.1038/s43017-025-00749-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00749-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing