Abstract
The eddy-driven jet streams, which are regions of strong westerly wind in the mid-latitudes of both hemispheres, exert a leading influence on regional climate. In this Review, we outline the seasonally and regionally varying drivers, characteristics and changes in the jet streams. State-of-the-art models commonly predict a future polewards shift of the zonal-mean and annual-mean jet streams, typically ranging between 0° and 2° latitude by the end of the century under a high-emissions scenario, but with large model-to-model uncertainty. Furthermore, regional and seasonal projections can deviate substantially from the annual-mean and zonal-mean picture, and the drivers of these projected changes are not fully understood. Jet trends have emerged in the reanalysis record since 1979, of which a polewards shift of the summertime austral jet of ~0.3° per decade is the trend most clearly attributable to anthropogenic forcing. Although other trends have been observed, potentially large internal variability and incomplete understanding of the drivers of these trends precludes clear anthropogenic attribution at this point. Research is unevenly distributed across regions and seasons, with winter receiving the most attention, particularly in the North Atlantic. To support physical understanding and impact assessments, future research should provide a more complete picture of the seasonally and regionally varying jet stream drivers, and their changes, especially in spring and autumn.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
CMIP6 data used in this study is publicly available from the Earth System Grid Federation (https://aims2.llnl.gov/search/cmip6/). ERA5 data is publicly available from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/datasets). Code used to analyse the data and produce the figures will be shared upon request.
References
Held, I. M. & Hou, A. Y. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980).
Kornhuber, K. et al. Amplified rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2020).
Xu, G. et al. Jet stream controls on European climate and agriculture since 1300 CE. Nature 634, 600–608 (2024).
Kushner, P. J., Held, I. M. & Delworth, T. L. Southern Hemisphere atmospheric circulation response to global warming. J. Clim. 14, 2238–2249 (2001).
Fyfe, J. C. & Saenko, O. A. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025332 (2006).
Barnes, E. A. & Polvani, L. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Clim. 26, 7117–7135 (2013).
Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).
Simpson, I. R., Shaw, T. A. & Seager, R. A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci. 71, 2489–2515 (2014).
Harvey, B. J., Cook, P., Shaffrey, L. C. & Schiemann, R. The response of the northern hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos. 125, e2020JD032701 (2020).
Zhou, W., Leung, L. R. & Lu, J. Seasonally and regionally dependent shifts of the atmospheric westerly jets under global warming. J. Clim. 35, 5433–5447 (2022).
Manzini, E. et al. Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J. Geophys. Res. Atmos. 119, 7979–7998 (2014).
Zappa, G. & Shepherd, T. G. Storylines of atmospheric circulation change for european regional climate impact assessment. J. Clim. 30, 6561–6577 (2017).
Baker, H. S., Woollings, T., Forest, C. E. & Allen, M. R. The linear sensitivity of the North Atlantic oscillation and eddy-driven jet to SSTs. J. Clim. 32, 6491–6511 (2019).
Kretschmer, M. et al. Quantifying causal pathways of teleconnections. Bull. Am. Meteorol. Soc. 102, E2247–E2263 (2021).
Shaw, T. A. Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Clim. Change Rep. 5, 345–357 (2019).
Chang, E. K. M., Zheng, C., Lanigan, P., Yau, A. M. W. & Neelin, J. D. Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity. Geophys. Res. Lett. 42, 5983–5991 (2015).
Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).
Afargan, H. & Kaspi, Y. A midwinter minimum in north atlantic storm track intensity in years of a strong jet. Geophys. Res. Lett. 44, 12,511–12,518 (2017).
Drouard, M., Kornhuber, K. & Woollings, T. Disentangling dynamic contributions to summer 2018 anomalous weather over Europe. Geophys. Res. Lett. 46, 12537–12546 (2019).
Brönnimann, S. et al. Past hydroclimate extremes in Europe driven by Atlantic jet stream and recurrent weather patterns. Nat. Geosci. 18, 246–253 (2025).
Seager, R. et al. Causes of the 2011–14 California drought. J. Clim. 28, 6997–7024 (2015).
Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).
Ceppi, P., Zappa, G., Shepherd, T. G. & Gregory, J. M. Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing. J. Clim. 31, 1091–1105 (2018).
Nakamura, H. & Shimpo, A. Seasonal variations in the southern hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Clim. 17, 1828–1844 (2004).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Inatsu, M. & Hoskins, B. J. The zonal asymmetry of the southern hemisphere winter storm track. J. Clim. 17, 4882–4892 (2004).
Simpson, I. R. & Polvani, L. M. Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett. 43, 2896–2903 (2016).
Curtis, P. E., Ceppi, P. & Zappa, G. Role of the mean state for the Southern hemispheric jet stream response to CO2 forcing in CMIP6 models. Environ. Res. Lett. 15, 064011 (2020).
Simpson, I. R. et al. An evaluation of the large-scale atmospheric circulation and its variability in CESM2 and other CMIP models. J. Geophys. Res. Atmos. 125, e2020JD032835 (2020).
Brayshaw, D. J., Hoskins, B. & Blackburn, M. The storm-track response to idealized sst perturbations in an aquaplanet GCM. J. Atmos. Sci. 65, 2842–2860 (2008).
Butler, A. H., Thompson, D. W. J. & Heikes, R. The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Clim. 23, 3474–3496 (2010).
Chen, G., Plumb, R. A. & Lu, J. Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophys. Res. Lett. 37, L12701 (2010).
Rivière, G. A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci. 68, 1253–1272 (2011).
Ceppi, P., Hwang, Y.-T., Frierson, D. M. W. & Hartmann, D. L. Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett. https://doi.org/10.1029/2012GL053115 (2012).
Nakamura, H., Sampe, T., Tanimoto, Y. & Shimpo, A. in Geophysical Monograph Series (eds Wang, C., Xie, S. P. & Carton, J. A.) (American Geophysical Union, 2004); https://doi.org/10.1029/147GM18.
Brayshaw, D. J., Hoskins, B. & Blackburn, M. The basic ingredients of the north atlantic storm track. Part II: sea surface temperatures. J. Atmos. Sci. 68, 1784–1805 (2011).
Foussard, A., Lapeyre, G. & Plougonven, R. Storm track response to oceanic eddies in idealized atmospheric simulations. J. Clim. 32, 445–463 (2019).
Voigt, A. et al. Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change. WIREs Clim. Change 12, e694 (2021).
Deser, C., Magnusdottir, G., Saravanan, R. & Phillips, A. The Effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J. Clim. 17, 877–889 (2004).
Kidston, J., Taschetto, A. S., Thompson, D. W. J. & England, M. H. The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048056 (2011).
Lorenz, D. J. Understanding midlatitude jet variability and change using rossby wave chromatography: poleward-shifted jets in response to external forcing. J. Atmos. Sci. 71, 2370–2389 (2014).
Branstator, G. Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: forced solutions. J. Atmos. Sci. 42, 2225–2241 (1985).
Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).
Kidston, J. et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 8, 433–440 (2015).
Garfinkel, C. I., Waugh, D. W. & Gerber, E. P. The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Clim. 26, 2077–2095 (2013).
Byrne, N. J., Shepherd, T. G., Woollings, T. & Plumb, R. A. Nonstationarity in Southern Hemisphere climate variability associated with the seasonal breakdown of the stratospheric polar vortex. J. Clim. 30, 7125–7139 (2017).
Pithan, F., Shepherd, T. G., Zappa, G. & Sandu, I. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett. 43, 7231–7240 (2016).
White, R. H., Wallace, J. M. & Battisti, D. S. Revisiting the role of mountains in the Northern Hemisphere winter atmospheric circulation. J. Atmos. Sci. 78, 2221–2235 (2021).
Held, I. M., Ting, M. & Wang, H. Northern winter stationary waves: theory and modeling. J. Clim. 15, 2125–2144 (2002).
Shaw, T. A. On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci. 71, 1724–1746 (2014).
Gerber, E. P., Polvani, L. M. & Ancukiewicz, D. Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett. https://doi.org/10.1029/2008GL035712 (2008).
Harvey, B. J., Methven, J. & Ambaum, M. H. P. Rossby wave propagation on potential vorticity fronts with finite width. J. Fluid Mech. 794, 775–797 (2016).
Seager, R. et al. Is the Gulf Stream responsible for Europe’s mild winters? Q. J. R. Meteorol. Soc. 128, 2563–2586 (2002).
Brayshaw, D. J., Hoskins, B. & Blackburn, M. The basic ingredients of the north atlantic storm track. Part I: land–sea contrast and orography. J. Atmos. Sci. 66, 2539–2558 (2009).
Tamarin, T. & Kaspi, Y. Mechanisms controlling the downstream poleward deflection of midlatitude storm tracks. J. Atmos. Sci. 74, 553–572 (2017).
Harnik, N., Galanti, E., Martius, O. & Adam, O. The anomalous merging of the African and North atlantic jet streams during the Northern Hemisphere winter of 2010. J. Clim. 27, 7319–7334 (2014).
Son, S.-W. & Lee, S. The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci. 62, 3741–3757 (2005).
Santos, J. A., Woollings, T. & Pinto, J. G. Are the winters 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic jet stream? Mon. Weather Rev. 141, 3626–3640 (2013).
Scaife, A. A., Woollings, T., Knight, J., Martin, G. & Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 23, 6143–6152 (2010).
Athanasiadis, P. J. et al. Mitigating climate biases in the midlatitude North Atlantic by increasing model resolution: sst gradients and their relation to blocking and the jet. J. Clim. 35, 6985–7006 (2022).
Berckmans, J., Woollings, T., Demory, M.-E., Vidale, P.-L. & Roberts, M. Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing. Atmos. Sci. Lett. 14, 34–40 (2013).
Schemm, S. Toward eliminating the decades-old “too zonal and too equatorward” storm-track bias in climate models. J. Adv. Model. Earth Syst. 15, e2022MS003482 (2023).
De Luca, P., Jiménez-Esteve, B., Degenhardt, L., Schemm, S. & Pfahl, S. Enhanced blocking frequencies in very-high resolution idealized climate model simulations. Geophys. Res. Lett. 51, e2024GL111016 (2024).
Williams, K. D. et al. Addressing the causes of large-scale circulation error in the MET office unified model. Q. J. R. Meteorol. Soc. 146, 2597–2613 (2020).
Hoskins, B. J. & Hodges, K. I. The annual cycle of Northern Hemisphere storm tracks. Part I: seasons. J. Clim. 32, 1743–1760 (2019).
Li, C. & Wettstein, J. J. Thermally driven and eddy-driven jet variability in reanalysis. J. Clim. 25, 1587–1596 (2012).
Franzke, C., Lee, S. & Feldstein, S. B. Is the North Atlantic oscillation a breaking wave? J. Atmos. Sci. 61, 145–160 (2004).
Strong, C. & Magnusdottir, G. Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci. 65, 2861–2876 (2008).
Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q. J. R. Meteorol. Soc. 136, 856–868 (2010).
Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic–European sector. Q. J. R. Meteorol. Soc. 143, 2960–2972 (2017).
Perez, J., Maycock, A. C., Griffiths, S. D., Hardiman, S. C. & McKenna, C. M. A new characterisation of the North Atlantic eddy-driven jet using two-dimensional moment analysis. Weather Clim. Dyn. 5, 1061–1078 (2024).
Franzke, C. & Woollings, T. On the persistence and predictability properties of North Atlantic climate variability. J. Clim. 24, 466–472 (2011).
Scaife, A. A. & Smith, D. A signal-to-noise paradox in climate science. npj Clim. Atmos. Sci. 1, 1–8 (2018).
Hall, R., Erdélyi, R., Hanna, E., Jones, J. & Scaife, A. Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol. https://doi.org/10.1002/joc.4121 (2014).
Schemm, S., Rivière, G., Ciasto, L. M. & Li, C. Extratropical cyclogenesis changes in connection with tropospheric ENSO teleconnections to the North Atlantic: role of stationary and transient waves. J. Atmos. Sci. 75, 3943–3964 (2018).
Drouard, M., Rivière, G. & Arbogast, P. The link between the North PPacific climate variability and the North Atlantic oscillation via downstream propagation of synoptic waves. J. Clim. 28, 3957–3976 (2015).
White, R. H., Hilgenbrink, C. & Sheshadri, A. The importance of greenland in setting the northern preferred position of the North Atlantic eddy-driven jet. Geophys. Res. Lett. 46, 14126–14134 (2019).
Czaja, A. & Frankignoul, C. Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Clim. 15, 606–623 (2002).
Simpson, I. R., Deser, C., McKinnon, K. A. & Barnes, E. A. Modeled and observed multidecadal variability in the North Atlantic jet stream and its connection to sea surface temperatures. J. Clim. 31, 8313–8338 (2018).
Strommen, K., Woollings, T., Davini, P., Ruggieri, P. & Simpson, I. R. Predictable decadal forcing of the North Atlantic jet speed by sub-polar North Atlantic sea surface temperatures. Weather Clim. Dyn. 4, 853–874 (2023).
Czaja, A., Frankignoul, C., Minobe, S. & Vannière, B. Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air–sea interactions? Curr. Clim. Change Rep. 5, 390–406 (2019).
Wills, R. C. J., Herrington, A. R., Simpson, I. R. & Battisti, D. S. Resolving weather fronts increases the large-scale circulation response to Gulf Stream SST anomalies in variable-resolution CESM2 simulations. J. Adv. Model. Earth Syst. 16, e2023MS004123 (2024).
Ruggieri, P. et al. Atlantic multidecadal variability and North Atlantic jet: a multimodel view from the decadal climate prediction project. J. Clim. 34, 347–360 (2021).
Schiemann, R. et al. Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution. Weather Clim. Dyn. 1, 277–292 (2020).
Wernli, H. & Gray, S. L. The importance of diabatic processes for the dynamics of synoptic-scale extratropical weather systems — a review. Weather Clim. Dyn. 5, 1299–1408 (2024).
Bracegirdle, T. J., Lu, H., Eade, R. & Woollings, T. Do CMIP5 models reproduce observed low-frequency North Atlantic jet variability? Geophys. Res. Lett. 45, 7204–7212 (2018).
Harvey, B., Hawkins, E. & Sutton, R. Storylines for future changes of the North Atlantic jet and associated impacts on the UK. Int. J. Climatol. 43, 4424–4441 (2023).
O’Reilly, C. H. Signal-to-noise errors in early winter Euro-Atlantic predictions linked to weak ENSO teleconnections and pervasive jet biases. Q. J. R. Meteorol. Soc. 151, e4952 (2025).
Shi, Z., Liu, X., Liu, Y., Sha, Y. & Xu, T. Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean. Clim. Dyn. 44, 3067–3076 (2015).
White, R. H., Battisti, D. S. & Roe, G. H. Mongolian mountains matter most: impacts of the latitude and height of Asian orography on Pacific wintertime atmospheric circulation. J. Clim. 30, 4065–4082 (2017).
Orlanski, I. Poleward deflection of storm tracks. J. Atmos. Sci. 55, 2577–2602 (1998).
Priestley, M. D. K. et al. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 33, 6315–6343 (2020).
Seager, R., Harnik, N., Kushnir, Y., Robinson, W. & Miller, J. Mechanisms of hemispherically symmetric climate variability. J. Clim. 16, 2960–2978 (2003).
Deser, C., Simpson, I. R., McKinnon, K. A. & Phillips, A. S. The Northern Hemisphere extratropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly? J. Clim. 30, 5059–5082 (2017).
Fasullo, J. T., Phillips, A. S. & Deser, C. Evaluation of leading modes of climate variability in the CMIP archives. J. Clim. 33, 5527–5545 (2020).
Garfinkel, C. I. et al. The winter North Pacific teleconnection in response to ENSO and the MJO in operational subseasonal forecasting models is too weak. J. Clim. 35, 8013–8030 (2022).
Chen, R., Simpson, I. R., Deser, C. & Wang, B. Model biases in the simulation of the springtime North Pacific ENSO teleconnection. J. Clim. 33, 9985–10002 (2020).
Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O. & Frankignoul, C. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28, 1126–1147 (2015).
Codron, F. Relation between annular modes and the mean state: Southern Hemisphere summer. J. Clim. 18, 320–330 (2005).
Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).
Thompson, D. W. J., Baldwin, M. P. & Solomon, S. Stratosphere–troposphere coupling in the Southern Hemisphere. J. Atmos. Sci. 62, 708–715 (2005).
Black, R. X. & McDaniel, B. A. Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J. Atmos. Sci. 64, 2968–2974 (2007).
Lim, E.-P., Hendon, H. H. & Thompson, D. W. J. Seasonal evolution of stratosphere–troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. J. Geophys. Res. Atmos. 123, 12,002–12,016 (2018).
Butchart, N. The stratosphere: a review of the dynamics and variability. Weather Clim. Dyn. 3, 1237–1272 (2022).
Baldwin, M. P. et al. Stratospheric memory and skill of extended-range weather forecasts. Science 301, 636–640 (2003).
Gerber, E. P. et al. Stratosphere–troposphere coupling and annular mode variability in chemistry-climate models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2009JD013770 (2010).
Simpson, I. R., Hitchcock, P., Shepherd, T. G. & Scinocca, J. F. Stratospheric variability and tropospheric annular-mode timescales. Geophys. Res. Lett. https://doi.org/10.1029/2011GL049304 (2011).
Bracegirdle, T. J. et al. Improvements in circumpolar Southern Hemisphere extratropical atmospheric circulation in CMIP6 compared to CMIP5. Earth Space Sci. 7, e2019EA001065 (2020).
Breul, P., Ceppi, P. & Shepherd, T. G. Relationship between Southern hemispheric jet variability and forced response: the role of the stratosphere. Weather Clim. Dyn. 3, 645–658 (2022).
Kim, J. & Reichler, T. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere. Clim. Dyn. 47, 637–649 (2016).
Lim, E.-P. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).
L’Heureux, M. L. & Thompson, D. W. J. Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Clim. 19, 276–287 (2006).
Fogt, R. L., Jones, J. M. & Renwick, J. Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Clim. 25, 6253–6270 (2012).
Lim, E.-P., Hendon, H. H. & Rashid, H. Seasonal predictability of the Southern Annular Mode due to its association with ENSO. J. Clim. 26, 8037–8054 (2013).
Kim, B.-M., Choi, H., Kim, S.-J. & Choi, W. Amplitude-dependent relationship between the Southern Annular Mode and the El Niño Southern Oscillation in austral summer. Asia-Pac. J. Atmos. Sci. 53, 85–100 (2017).
Byrne, N. J., Shepherd, T. G. & Polichtchouk, I. Subseasonal-to-seasonal predictability of the Southern Hemisphere eddy-driven jet during austral spring and early summer. J. Geophys. Res. Atmos. 124, 6841–6855 (2019).
Stone, K. A., Solomon, S., Thompson, D. W. J., Kinnison, D. E. & Fyfe, J. C. On the Southern Hemisphere stratospheric response to ENSO and its impacts on tropospheric circulation. J. Clim. 35, 1963–1981 (2022).
Goyal, R., Sen Gupta, A., Jucker, M. & England, M. H. Historical and projected changes in the Southern Hemisphere surface westerlies. Geophys. Res. Lett. 48, e2020GL090849 (2021).
Priestley, M. D. K., Ackerley, D., Catto, J. L. & Hodges, K. I. Drivers of biases in the CMIP6 extratropical storm tracks. Part II: Southern Hemisphere. J. Clim. 36, 1469–1486 (2023).
Chang, E. K. M. Characteristics of wave packets in the upper troposphere. Part II: seasonal and hemispheric variations. J. Atmos. Sci. 56, 1729–1747 (1999).
Bals-Elsholz, T. M. et al. The wintertime Southern Hemisphere split jet: structure, variability, and evolution. J. Clim. 14, 4191–4215 (2001).
Codron, F. Relations between annular modes and the mean state: Southern Hemisphere winter. J. Atmos. Sci. 64, 3328–3339 (2007).
Inatsu, M. & Hoskins, B. J. The seasonal and wintertime interannual variability of the split jet and the storm-track activity minimum near New Zealand. J. Meteorol. Soc. Jpn Ser. II 84, 433–445 (2006).
Patterson, M., Woollings, T., Bracegirdle, T. J. & Lewis, N. T. Wintertime Southern hemisphere jet streams shaped by interaction of transient eddies with antarctic orography. J. Clim. 33, 10505–10522 (2020).
Williams, L. N., Lee, S. & Son, S.-W. Dynamics of the Southern Hemisphere spiral jet. J. Atmos. Sci. 64, 548–563 (2007).
Ogawa, F., Nakamura, H., Nishii, K., Miyasaka, T. & Kuwano-Yoshida, A. Importance of midlatitude oceanic frontal zones for the annular mode variability: interbasin differences in the Southern Annular Mode signature. J. Clim. 29, 6179–6199 (2016).
Breul, P., Ceppi, P. & Shepherd, T. G. Revisiting the wintertime emergent constraint of the Southern hemispheric midlatitude jet response to global warming. Weather Clim. Dyn. 4, 39–47 (2023).
Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 141, 1479–1501 (2015).
Baker, H. S., Woollings, T. & Mbengue, C. Eddy-driven jet sensitivity to diabatic heating in an idealized GCM. J. Clim. 30, 6413–6431 (2017).
Harvey, B. J., Shaffrey, L. C. & Woollings, T. J. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 43, 1171–1182 (2014).
Ceppi, P., Zelinka, M. D. & Hartmann, D. L. The response of the Southern hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett. 41, 3244–3250 (2014).
Deser, C. & Phillips, A. S. Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Clim. 22, 396–413 (2009).
Grise, K. M. & Polvani, L. M. The response of midlatitude jets to increased CO2: distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett. 41, 6863–6871 (2014).
Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).
Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 32, 3–15 (1975).
Woollings, T., Drouard, M., O’Reilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ. 4, 1–8 (2023).
Peings, Y., Cattiaux, J., Vavrus, S. J. & Magnusdottir, G. Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett. 13, 074016 (2018).
Ceppi, P. & Shepherd, T. G. Contributions of climate feedbacks to changes in atmospheric circulation. J. Clim. 30, 9097–9118 (2017).
Lorenz, D. J. & DeWeaver, E. T. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2006JD008087 (2007).
Ghosh, S., Lachmy, O. & Kaspi, Y. The role of diabatic heating in the midlatitude atmospheric circulation response to climate change. J. Clim. 37, 2987–3009 (2024).
Chemke, R. & Coumou, D. Human influence on the recent weakening of storm tracks in boreal summer. npj Clim. Atmos. Sci. 7, 1–8 (2024).
Allen, R. J. & Ajoku, O. Future aerosol reductions and widening of the northern tropical belt. J. Geophys. Res. Atmos. 121, 6765–6786 (2016).
Polvani, L. M. & Kushner, P. J. Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett. 29, 18-1–18-4 (2002).
Simpson, I. R., Hitchcock, P., Seager, R., Wu, Y. & Callaghan, P. The downward influence of uncertainty in the Northern Hemisphere stratospheric polar vortex response to climate change. J. Clim. 31, 6371–6391 (2018).
Ceppi, P. & Shepherd, T. G. The role of the stratospheric polar vortex for the austral jet response to greenhouse gas forcing. Geophys. Res. Lett. 46, 6972–6979 (2019).
Son, S.-W., Tandon, N. F., Polvani, L. M. & Waugh, D. W. Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett. https://doi.org/10.1029/2009GL038671 (2009).
Polvani, L. M., Previdi, M. & Deser, C. Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett. https://doi.org/10.1029/2011GL046712 (2011).
Sigmond, M., Scinocca, J. F. & Kushner, P. J. Impact of the stratosphere on tropospheric climate change. Geophys. Res. Lett. https://doi.org/10.1029/2008GL033573 (2008).
Karpechko, A. Y. & Manzini, E. Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017036 (2012).
Mindlin, J. et al. Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing. Clim. Dyn. 54, 4399–4421 (2020).
Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).
Ulbrich, U. et al. Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Clim. 21, 1669–1679 (2008).
Schemm, S., Papritz, L. & Rivière, G. Storm track response to uniform global warming downstream of an idealized sea surface temperature front. Weather. Clim. Dyn. 3, 601–623 (2022).
García-Burgos, M., Ayarzagüena, B., Barriopedro, D., Woollings, T. & García-Herrera, R. Intraseasonal shift in the wintertime North Atlantic jet structure projected by CMIP6 models. npj Clim. Atmos. Sci. 7, 1–11 (2024).
Zappa, G., Pithan, F. & Shepherd, T. G. Multimodel evidence for an atmospheric circulation response to Arctic sea ice loss in the CMIP5 future projections. Geophys. Res. Lett. 45, 1011–1019 (2018).
Harvey, B. J., Shaffrey, L. C. & Woollings, T. J. Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Clim. Dyn. 45, 2847–2860 (2015).
Oudar, T. et al. Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation. Clim. Dyn. 49, 3693–3713 (2017).
Hermoso, A., Rivière, G., Harvey, B., Methven, J. & Schemm, S. A dynamical interpretation of the intensification of the winter North Atlantic jet stream in reanalysis. J. Clim. 37, 5853–5881 (2024).
Portal, A. et al. Influence of reduced winter land–sea contrast on the midlatitude atmospheric circulation. J. Clim. 35, 6237–6251 (2022).
Gervais, M., Shaman, J. & Kushnir, Y. Impacts of the North Atlantic warming hole in future climate projections: mean atmospheric circulation and the North Atlantic jet. J. Clim. 32, 2673–2689 (2019).
Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun. 12, 3659 (2021).
Chemke, R., Zanna, L., Orbe, C., Sentman, L. T. & Polvani, L. M. The future intensification of the North Atlantic winter storm track: the key role of dynamic ocean coupling. J. Clim. 35, 2407–2421 (2022).
Delcambre, S. C., Lorenz, D. J., Vimont, D. J. & Martin, J. E. Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections. J. Clim. 26, 4930–4946 (2013).
Ciasto, L. M., Li, C., Wettstein, J. J. & Kvamstø, N. G. North Atlantic storm-track sensitivity to projected sea surface temperature: local versus remote influences. J. Clim. 29, 6973–6991 (2016).
Oudar, T., Cattiaux, J. & Douville, H. Drivers of the northern extratropical eddy-driven jet change in CMIP5 and CMIP6 models. Geophys. Res. Lett. 47, e2019GL086695 (2020).
Chadwick, R., Douville, H. & Skinner, C. B. Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation. Clim. Dyn. 49, 3011–3029 (2017).
Zappa, G. Regional climate impacts of future changes in the mid-latitude atmospheric circulation: a storyline view. Curr. Clim. Change Rep. 5, 358–371 (2019).
Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M. & Brayshaw, D. J. Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci. 5, 313–317 (2012).
Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).
Albern, N., Voigt, A. & Pinto, J. G. Tropical cloud-radiative changes contribute to robust climate change-induced jet exit strengthening over Europe during boreal winter. Environ. Res. Lett. 16, 084041 (2021).
Stendel, M., Francis, J., White, R., Williams, P. D. & Woollings, T. in Climate Change (Elsevier, 2021); https://doi.org/10.1016/B978-0-12-821575-3.00015-3.
Haarsma, R. J., Selten, F. M. & Drijfhout, S. S. Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett. 10, 094007 (2015).
Schemm, S. & Röthlisberger, M. Aquaplanet simulations with winter and summer hemispheres: model setup and circulation response to warming. Weather Clim. Dyn. 5, 43–63 (2024).
Dong, B., Sutton, R. T., Shaffrey, L. & Harvey, B. Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions. Nat. Commun. 13, 1148 (2022).
Allen, R. J. & Luptowitz, R. El Niño-like teleconnection increases California precipitation in response to warming. Nat. Commun. 8, 16055 (2017).
Seager, R. et al. Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: variability of transient eddy propagation in the Pacific–North America sector. Q. J. R. Meteorol. Soc. 136, 277–296 (2010).
Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).
Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).
Rugenstein, M., Zelinka, M., Karnauskas, K., Ceppi, P. & Andrews, T. Patterns of surface warming matter for climate sensitivity. Eos https://doi.org/10.1029/2023EO230411 (2023).
Petrie, R. E., Shaffrey, L. C. & Sutton, R. T. Atmospheric impact of arctic sea ice loss in a coupled ocean–atmosphere simulation. J. Clim. 28, 9606–9622 (2015).
Keel, T., Brierley, C., Edwards, T. & Frame, T. H. A. Exploring uncertainty of trends in the North Pacific jet position. Geophys. Res. Lett. 51, e2024GL109500 (2024).
Kidston, J. & Gerber, E. P. Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett. https://doi.org/10.1029/2010GL042873 (2010).
Deng, K. et al. Changes of Southern Hemisphere westerlies in the future warming climate. Atmos. Res. 270, 106040 (2022).
Sun, L., Chen, G. & Robinson, W. A. The role of stratospheric polar vortex breakdown in Southern Hemisphere climate trends. J. Atmos. Sci. 71, 2335–2353 (2014).
McLandress, C. et al. Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere. J. Clim. 23, 5002–5020 (2010).
Wilcox, L. J. & Charlton-Perez, A. J. Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models: SH final warming in CMIP5. J. Geophys. Res. Atmos. 118, 2535–2546 (2013).
Son, S.-W. et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J. Geophys. Res. 115, D00M07 (2010).
Revell, L. E., Robertson, F., Douglas, H., Morgenstern, O. & Frame, D. Influence of ozone forcing on 21st century Southern Hemisphere surface westerlies in CMIP6 models. Geophys. Res. Lett. 49, e2022GL098252 (2022).
Arblaster, J. M., Meehl, G. A. & Karoly, D. J. Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045384 (2011).
Patterson, M., Woollings, T. & Bracegirdle, T. J. Tropical and subtropical forcing of future Southern Hemisphere stationary wave changes. J. Clim. 34, 7897–7912 (2021).
Ivy, D. J. et al. Observed changes in the Southern hemispheric circulation in May. J. Clim. 30, 527–536 (2017).
Hermoso, A. & Schemm, S. Disentangling forced trends in the North Atlantic jet from natural variability using deep learning. J. Geophys. Res. Atmos. 129, e2023JD040638 (2024).
Barnes, E. A. & Simpson, I. R. Seasonal sensitivity of the Northern Hemisphere jet streams to Arctic temperatures on subseasonal time scales. J. Clim. 30, 10117–10137 (2017).
Held, I. M. Large-scale dynamics and global warming. Bull. Am. Meteorol. Soc. 74, 228–241 (1993).
Screen, J. A., Eade, R., Smith, D. M., Thomson, S. & Yu, H. Net equatorward shift of the jet streams when the contribution from sea-ice loss is constrained by observed eddy feedback. Geophys. Res. Lett. 49, e2022GL100523 (2022).
Williams, R. S. et al. Future antarctic climate: storylines of mid-latitude jet strengthening and shift emergent from CMIP6. J. Clim. https://doi.org/10.1175/JCLI-D-23-0122.1 (2024).
Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).
Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 11, 491–508 (2020).
Manney, G. L. & Hegglin, M. I. Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses. J. Clim. 31, 423–448 (2018).
Simmons, A. J. Trends in the tropospheric general circulation from 1979 to 2022. Weather Clim. Dyn. 3, 777–809 (2022).
Archer, C. L. & Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. https://doi.org/10.1029/2008GL033614 (2008).
Gulev, S. K. et al. in Climate Change 2021—The Physical Science Basis (eds Masson-Delmotte, V. et al.) 287–422 (IPCC, Cambridge Univ. Press, 2021).
Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).
Shaw, T. A. & Miyawaki, O. Fast upper-level jet stream winds get faster under climate change. Nat. Clim. Change 14, 61–67 (2024).
Simpson, I. R., Yeager, S. G., McKinnon, K. A. & Deser, C. Decadal predictability of late winter precipitation in Western Europe through an ocean–jet stream connection. Nat. Geosci. 12, 613–619 (2019).
Lee, S. H., Williams, P. D. & Frame, T. H. A. Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature 572, 639–642 (2019).
Blackport, R. & Fyfe, J. C. Climate models fail to capture strengthening wintertime North Atlantic jet and impacts on Europe. Sci. Adv. 8, eabn3112 (2022).
Woollings, T. et al. Daily to decadal modulation of jet variability. J. Clim. 31, 1297–1314 (2018).
Hallam, S., Josey, S. A., McCarthy, G. D. & Hirschi, J. J.-M. A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Clim. Dyn. 59, 1897–1918 (2022).
Dong, B. & Sutton, R. T. Recent trends in summer atmospheric circulation in the North Atlantic/European region: is there a role for anthropogenic aerosols? J. Clim. 34, 6777–6795 (2021).
Alizadeh, O. & Babaei, M. Changes in the North Pacific jet stream in recent decades. Pure Appl. Geophys. 180, 4371–4380 (2023).
Kang, J. M., Shaw, T. A. & Sun, L. Anthropogenic aerosols have significantly weakened the regional summertime circulation in the Northern Hemisphere during the satellite era. AGU Adv. https://doi.org/10.1029/2024AV001318 (2024).
Patterson, M. & O’Reilly, C. H. Climate models struggle to simulate observed North Pacific jet trends, even accounting for tropical Pacific sea surface temperature trends. Geophys. Res. Lett. 52, e2024GL113561 (2025).
Polvani, L. M., Waugh, D. W., Correa, G. J. P. & Son, S.-W. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795–812 (2011).
McLandress, C. et al. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Clim. 24, 1850–1868 (2011).
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D. & Chang, K.-L. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548 (2020).
Lee, S. & Feldstein, S. B. Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science 339, 563–567 (2013).
Kang, J. M., Shaw, T. A., Kang, S. M., Simpson, I. R. & Yu, Y. Revisiting the reanalysis-model discrepancy in Southern Hemisphere winter storm track trends. npj Clim. Atmos. Sci. 7, 1–10 (2024).
Waugh, D. W., Banerjee, A., Fyfe, J. C. & Polvani, L. M. Contrasting recent trends in Southern Hemisphere westerlies across different ocean basins. Geophys. Res. Lett. 47, e2020GL088890 (2020).
Yang, D., Arblaster, J. M., Meehl, G. A. & England, M. H. The role of coupled feedbacks in the decadal variability of the Southern Hemisphere eddy-driven jet. J. Geophys. Res. Atmos. 126, e2021JD035023 (2021).
Mindlin, J., Shepherd, T. G., Osman, M., Vera, C. S. & Kretschmer, M. Explaining and predicting the Southern Hemisphere eddy-driven jet. Proc. Natl Acad. Sci. USA 122, e2500697122 (2025).
Zappa, G., Hoskins, B. J. & Shepherd, T. G. Improving climate change detection through optimal seasonal averaging: the case of the North Atlantic jet and European precipitation. J. Clim. 28, 6381–6397 (2015).
Koch, P., Wernli, H. & Davies, H. An event-based jet-stream climatology and typology. Int. J. Climatol. 26, 283–301 (2006).
Barriopedro, D., Ayarzagüena, B., García-Burgos, M. & García-Herrera, R. A multi-parametric perspective of the North Atlantic eddy-driven jet. Clim. Dyn. 61, 375–397 (2023).
Spensberger, C., Li, C. & Spengler, T. Linking instantaneous and climatological perspectives on eddy-driven and subtropical jets. J. Clim. 36, 8525–8537 (2023).
Saggioro, E., Shepherd, T. G. & Knight, J. Probabilistic causal network modeling of Southern Hemisphere jet subseasonal to seasonal predictability. J. Clim. 37, 3055–3071 (2024).
Nowack, P. & Watson-Parris, D. Opinion: why all emergent constraints are wrong but some are useful — a machine learning perspective. EGUsphere https://doi.org/10.5194/egusphere-2024-1636 (2024).
Ceppi, P. & Nowack, P. Observational evidence that cloud feedback amplifies global warming. Proc. Natl Acad. Sci. USA 118, e2026290118 (2021).
Weisheimer, A. et al. The signal-to-noise paradox in climate forecasts: revisiting our understanding and identifying future priorities. Bull. Am. Meteorol. Soc. 105, E651–E659 (2024).
Jeevanjee, N., Hassanzadeh, P., Hill, S. & Sheshadri, A. A perspective on climate model hierarchies. J. Adv. Model. Earth Syst. 9, 1760–1771 (2017).
Maher, P. et al. Model hierarchies for understanding atmospheric circulation. Rev. Geophys. 57, 250–280 (2019).
Theil, H. in Henri Theil’s Contributions to Economics and Econometrics (eds Raj, B. & Koerts, J.) Vol. 23 345–381 (Springer, 1992).
Yue, S. & Wang, C. Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resour. Res. 38, 4-1–4–7 (2002).
KENDALL, M. G. A new measure of rank correlation. Biometrika 30, 81–93 (1938).
Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Hussain, M. M. & Mahmud, I. pyMannKendall: a Python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 4, 1556 (2019).
Wilks, D. S. “The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Am. Meteorol. Soc. 97, 2263–2273 (2016).
Acknowledgements
The authors thank two anonymous referees and S. Schemm for their constructive feedback. P.C. acknowledges support from UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding Guarantee, grant EP/Y036123/1, and from UKRI Natural Environmental Research Council (NERC) grants NE/V012045/1 and NE/T006250/1. T.W. acknowledges support from UKRI NERC grant NE/W005875/1. This work used JASMIN, the UK collaborative data analysis facility. The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and thank the climate modelling groups for producing and making available their model output. The authors also thank the Earth System Grid Federation (ESGF) for archiving the model output and providing access, and the multiple funding agencies who support CMIP and ESGF. I.R.S. acknowledges funding from the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Sebastian Schemm and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Breul, P., Ceppi, P., Simpson, I.R. et al. Seasonal and regional jet stream changes and drivers. Nat Rev Earth Environ 6, 824–842 (2025). https://doi.org/10.1038/s43017-025-00749-9
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s43017-025-00749-9
This article is cited by
-
Logarithmic CO2 warming reverses North Atlantic winter atmospheric circulation changes
npj Climate and Atmospheric Science (2026)


