Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Profiling antigen-binding affinity of B cell repertoires in tumors by deep learning predicts immune-checkpoint inhibitor treatment outcomes

Abstract

The capability to profile the landscape of antigen-binding affinities of a vast number of antibodies (B cell receptors, BCRs) will provide a powerful tool to reveal biological insights. However, experimental approaches for detecting antibody–antigen interactions are costly and time-consuming and can only achieve low-to-mid throughput. In this work, we developed Cmai (contrastive modeling for antigen–antibody interactions) to address the prediction of binding between antibodies and antigens that can be scaled to high-throughput sequencing data. We devised a biomarker based on the output from Cmai to map the antigen-binding affinities of BCR repertoires. We found that the abundance of tumor antigen-targeting antibodies is predictive of immune-checkpoint inhibitor (ICI) treatment response. We also found that, during immune-related adverse events (irAEs) caused by ICI, humoral immunity is preferentially responsive to intracellular antigens from the organs affected by the irAEs. We used Cmai to construct a BCR-based irAE risk score, which predicted the timing of the occurrence of irAEs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cmai: deep learning the binding of antigens and antibodies from massive sequencing data.
Fig. 2: Validation of Cmai on public data.
Fig. 3: Cmai recognizes key residues in antigen–antibody binding interfaces.
Fig. 4: Cmai detects targeting of tumor antigens by tumor-infiltrating B cells in participants with cancer.
Fig. 5: Cmai interprets autoantibody dynamics during toxicity response to ICI treatment.

Similar content being viewed by others

Data availability

The UTSW irAE participant cohort BCR sequence data can be accessed on the Database for Actionable Immunology website (https://dbai.biohpc.swmed.edu/)4,63,64 and clinical characteristics are available in Supplementary Table 4. The raw RNA-seq data from which we derived the BCR sequences are available from the Gene Expression Omnibus (GSE296826). The structure data were downloaded from the PDB under accession numbers 6VKM, 8F76 and 3N43. The training and validation data of the BCR V and CDR encoders are shown in Supplementary Table 1. Source data are provided with this paper.

Code availability

The source codes, training/validation data and trained model parameters for Cmai are available from GitHub (https://github.com/ice4prince/Cmai).

References

  1. Berzofsky, J. A. An Ia-restricted epitope-specific circuit regulating T cell–B cell interaction and antibody specificity. Surv. Immunol. Res. 2, 223–229 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Sabhnani, L. et al. Developing subunit immunogens using B and T cell epitopes and their constructs derived from the F1 antigen of Yersinia pestis using novel delivery vehicles. FEMS Immunol. Med. Microbiol. 38, 215–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J. et al. Modulation of nonneutralizing HIV-1 gp41 responses by an MHC-restricted TH epitope overlapping those of membrane proximal external region broadly neutralizing antibodies. J. Immunol. 192, 1693–1706 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, J. et al. BepiTBR: T–B reciprocity enhances B cell epitope prediction. iScience 25, 103764 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, Z. et al. Interpreting the B-cell receptor repertoire with single-cell gene expression using Benisse. Nat. Mach. Intell. 4, 596–604 (2022).

    Article  Google Scholar 

  6. Wang, S.-S. et al. Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell. Mol. Immunol. 16, 6–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Garaud, S. et al. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight 5, e129641 (2019).

    Article  PubMed  Google Scholar 

  8. Lechner, A. et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. Oncoimmunology 8, 1535293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carmi, Y. et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature 521, 99–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burger, J. A. & Wiestner, A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat. Rev. Cancer 18, 148–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Setliff, I. et al. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179, 1636–1646(2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiakolas, A. R. et al. Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nat. Biotechnol. 40, 1270–1275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asrat, S. et al. TRAPnSeq allows high-throughput profiling of antigen-specific antibody-secreting cells. Cell Rep. Methods 3, 100522 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohan, D. et al. PhIP-seq characterization of serum antibodies using oligonucleotide-encoded peptidomes. Nat. Protoc. 13, 1958–1978 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng. 5, 600–612 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, G. et al. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics 36, 2126–2133 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Nimrod, G. et al. Computational design of epitope-specific functional antibodies. Cell Rep. 25, 2121–2131 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Shan, S. et al. Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization. Proc. Natl Acad. Sci. USA 119, e2122954119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saka, K. et al. Antibody design using LSTM based deep generative model from phage display library for affinity maturation. Sci Rep. 11, 5852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hie, B. L. et al. Efficient evolution of human antibodies from general protein language models. Nat. Biotechnol. 42, 275–283 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Akbar, R. et al. In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs 14, 2031482 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, J. L. & Davis, M. M. Diversity in the CDR3 region of VH is sufficient for most antibody specificities. Immunity 13, 37–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Schroeder, H. W. & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125, S41–S52 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bever, C. S. et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal. Bioanal. Chem. 408, 5985–6002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaffe, D. B. et al. Functional antibodies exhibit light chain coherence. Nature 611, 352–357 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Atchley, W. R., Zhao, J., Fernandes, A. D. & Drüke, T. Solving the protein sequence metric problem. Proc. Natl Acad. Sci. USA 102, 6395–6400 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu, T. et al. Tumor neoantigenicity assessment with CSiN score incorporates clonality and immunogenicity to predict immunotherapy outcomes. Sci. Immunol. 5, eaaz3199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, T. et al. Netie: inferring the evolution of neoantigen–T cell interactions in tumors. Nat. Methods 19, 1480–1489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, F. et al. GTE: a graph learning framework for prediction of T-cell receptors and epitopes binding specificity. Brief. Bioinformatics 25, bbae343 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, Y., Zhang, Z. & Zhou, Y. AbAgIntPre: a deep learning method for predicting antibody–antigen interactions based on sequence information. Front. Immunol. 13, 1053617 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan, Y., Chen, Q., Mao, J., Li, G. & Pan, X. DG-Affinity: predicting antigen–antibody affinity with language models from sequences. BMC Bioinformatics 24, 430 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chappert, P. et al. Human anti-smallpox long-lived memory B cells are defined by dynamic interactions in the splenic niche and long-lasting germinal center imprinting. Immunity 55, 1872–1890 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raybould, M. I. J. et al. Thera-SAbDab: the therapeutic structural antibody database. Nucleic Acids Res. 48, D383–D388 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Martin, A. L. et al. Olfactory receptor OR2H1 is an effective target for CAR T cells in human epithelial tumors. Mol. Cancer Ther. 21, 1184–1194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. UniProt Consortium UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

    Article  Google Scholar 

  41. Zhang, E. et al. Roles and mechanisms of tumour-infiltrating B cells in human cancer: a new force in immunotherapy. Biomark. Res. 11, 28 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu, Y., Mao, Y., Lv, Y., Tang, W. & Xu, J. B cells in tumor metastasis: friend or foe? Int. J. Biol. Sci. 19, 2382–2393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qin, Y. et al. Tumor-infiltrating B cells as a favorable prognostic biomarker in breast cancer: a systematic review and meta-analysis. Cancer Cell Int. 21, 310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ni, Z. et al. Tumor-infiltrating B cell is associated with the control of progression of gastric cancer. Immunol. Res. 69, 43–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Z. et al. Yin–yang effect of tumor infiltrating B cells in breast cancer: from mechanism to immunotherapy. Cancer Lett. 393, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Shen, M., Wang, J. & Ren, X. New insights into tumor-infiltrating B lymphocytes in breast cancer: clinical impacts and regulatory mechanisms. Front. Immunol. 9, 470 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sjöberg, E. et al. A minority-group of renal cell cancer patients with high infiltration of CD20+ B-cells is associated with poor prognosis. Br. J. Cancer 119, 840–846 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Minici, C., Testoni, S. & Della-Torre, E. B-lymphocytes in the pathophysiology of pancreatic adenocarcinoma. Front. Immunol. 13, 867902 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, X. et al. PD-1-expressing B cells suppress CD4+ and CD8+ T cells via PD-1/PD-L1-dependent pathway. Mol. Immunol. 109, 20–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Thibult, M.-L. et al. PD-1 is a novel regulator of human B-cell activation. Int. Immunol. 25, 129–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, J. et al. Mapping cellular interactions from spatially resolved transcriptomics data. Nat. Methods 21, 1830–1842 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949(2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv. Biobank. 13, 307–308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  55. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Saravanan, V. & Gautham, N. Harnessing computational biology for exact linear B-cell epitope prediction: a novel amino acid composition-based feature descriptor. OMICS 19, 648–658 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 45, W24–W29 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Biswas, S. et al. Targeting intracellular oncoproteins with dimeric IgA promotes expulsion from the cytoplasm and immune-mediated control of epithelial cancers. Immunity 56, 2570–2583 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Springer, I., Tickotsky, N. & Louzoun, Y. Contribution of T cell receptor alpha and beta CDR3, MHC typing, V and J genes to peptide binding prediction. Front. Immunol. 12, 664514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cai, M., Bang, S., Zhang, P. & Lee, H. ATM-TCR: TCR–epitope binding affinity prediction using a multi-head self-attention model. Front. Immunol. 13, 893247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moris, P. et al. Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification. Brief. Bioinformatics 22, bbaa318 (2021).

    Article  PubMed  Google Scholar 

  63. Lu, T. et al. Deep learning-based prediction of the T cell receptor–antigen binding specificity. Nat. Mach. Intell. 3, 864–875 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Z., Xiong, D., Wang, X., Liu, H. & Wang, T. Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics. Nat. Methods 18, 92–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peng, X. et al. Characterizing the interaction conformation between T-cell receptors and epitopes with deep learning. Nat. Mach. Intell. 5, 395–407 (2023).

    Article  Google Scholar 

  66. Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Soto, C. et al. PyIR: a scalable wrapper for processing billions of immunoglobulin and T cell receptor sequences using IgBLAST. BMC Bioinformatics 21, 314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Saul, L. et al. IgG subclass switching and clonal expansion in cutaneous melanoma and normal skin. Sci. Rep. 6, 29736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, X. et al. Comparative analysis of immune repertoires between Bactrian camel’s conventional and heavy-chain antibodies. PLoS ONE 11, e0161801 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lupo, C., Spisak, N., Walczak, A. M. & Mora, T. Learning the statistics and landscape of somatic mutation-induced insertions and deletions in antibodies. PLoS Comput. Biol. 18, e1010167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bowers, P. M. et al. Nucleotide insertions and deletions complement point mutations to massively expand the diversity created by somatic hypermutation of antibodies. J. Biol. Chem. 289, 33557–33567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martin, A. et al. Olfactory receptor OR5V1 is an effective target for CAR T cells in ovarian cancer (207). Gynecol. Oncol. 166, S116 (2022).

    Article  Google Scholar 

  73. Binder, J. X. et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database (Oxford) 2014, bau012 (2014).

    Article  PubMed  Google Scholar 

  74. Zhang, R. et al. Nuclear localization of STING1 competes with canonical signaling to activate AHR for commensal and intestinal homeostasis. Immunity 56, 2736–2754(2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. This study was funded by the National Institutes of Health (5R01CA258584, to T.W.; 1R01AI190103, to T.W., J.W. and J. Huang, 1U01AI156189, to D.G.; R38HL150214, to M.G.), the Cancer Prevention Research Institute of Texas (RP190208, to T.W.; RP230363, to T.W. and J. Huang), the American Cancer Society–Melanoma Research Alliance Team (MRAT-18-114-01-LIB, to D.G.), the V Foundation Robin Roberts Cancer Survivorship Award (DT2019-007, to D.G.) and the Welch foundation (I-1944, to X.B.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, T.W. Data collection and curation, F.J.F., M.S.V., D.M.Y., J.L., Y.X., C.L., I.R., C.Z., J.E.D., J. Homsi, S.R., S.Y., M.E.G., D.H., Y.G., Y.X., D.E.G., B.S., K.W., A.M., D.H., Y.G., C.L., P.R., J.C., Y.X. and T.W. Formal analysis, B.S., K.W., S.N., J.Y., Y.G. and X.B. Funding acquisition, T.W., D.E.G., J. Huang, J.W. and Tu.W. Investigation, B.S., K.W., S.N., J.Y. and Y.G. Methodology, B.S., S.N., J. Huang and T.W. Visualization, B.S., K.W., S.N. and T.W. Project administration, T.W. Software, B.S., K.W., S.N. and J.Y. Supervision, T.W. Writing—original draft, all authors. Writing—review and editing, all authors.

Corresponding authors

Correspondence to Junzhou Huang, David E. Gerber or Tao Wang.

Ethics declarations

Competing interests

T.W. reports personal fees from Merck. D.G. has received research funding from Astra-Zeneca, BerGenBio, Karyopharm and Novocure, has stock ownership in Gilead, Medtronic and Walgreens, holds consulting or advisory board positions in Astra-Zeneca, Catalyst Pharmaceuticals, Daiichi-Sankyo, Elevation Oncology, Janssen Scientific Affairs, Jazz Pharmaceuticals, Regeneron Pharmaceuticals and Sanofi and is the cofounder and chief scientific officer of OncoSeer Diagnostics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The design of the Cmai model.

(a) Detailed model structure of Cmai. (b) The input and reconstructed Atchley factor matrices of example BCR Vh sequences. The Vh amino acids were first converted to Atchley factors, then encoded numerically by the Vh VAE, and finally reconstructed by the Vh de-coder.

Source data

Extended Data Fig. 2 Diversity of the model training data.

(a) Numbers of binding BCRs for antigens that fall into each interval. We counted the numbers of binding BCRs for each unique antigen in our training set. We calculated several quantiles based on these numbers for all the antigens (shown in figure). We calculated and plotted the median numbers of binding BCRs for antigens that fall into the intervals formed by these quantiles. For example, 99-100% means the top 1% of antigens with the most numbers of binding BCRs. 0-90% means the bottom 90% of antigens with the fewest binding BCRs. (b) VDJ gene usage of the background human BCR sequences.

Source data

Extended Data Fig. 3 Association between tumor antigen expression and Cmai BCR binding scores.

(a) The average BCR binding scores are higher for extracellular tumor antigens that are more highly expressed than for extracellular tumor antigens that are lowly expressed, in each TCGA cohort. N = 822 unique antigens. Sample size (number of patients) in each cohort is: ALL = 64, STES = 30, STAD = 25, BRCA = 26, LUSC = 31, SKCM = 25, LUAD = 24, OV = 21, HNSC = 36, ESCA = 34, KIRC = 19, THCA = 20, TGCT = 22, BLCA = 25, CESC = 29, COAD = 24, PAAD = 38, SARC = 19, KIRP = 19, DLBC = 19, MESO = 21, THYM = 24, PRAD = 21, UVM = 16, CHOL = 31, UCS = 16, LAML = 20, PCPG = 21, KICH = 18, LGG = 19, ACC = 24, GBM = 22. For the boxplot, box boundaries represent interquartile ranges, whiskers extend to the most extreme data point, which is no more than 1.5 times the interquartile range, and the line in the middle of the box represents the median. (b) The correlation between BCR binding scores and tumor antigen expression is higher for extracellular antigens than for intracellular antigens. The “all” group in (a) refers to all 32 TCGA cohorts. Numbers of putative extracellular antigens (N) are: STES = 30, STAD = 25, BRCA = 26, LUSC = 31, SKCM = 25, LUAD = 24, OV = 21, HNSC = 36, ESCA = 34, KIRC = 19, THCA = 20, TGCT = 22, BLCA = 25, CESC = 29, COAD = 24, PAAD = 38, SARC = 19, KIRP = 19, DLBC = 19, MESO = 21, THYM = 24, PRAD = 21, UVM = 16, CHOL = 31, UCS = 16, LAML = 20, PCPG = 21, KICH = 18, LGG = 19, ACC = 24, and GBM = 22. Numbers of putative intracellular antigens (N) are: STES = 30, STAD = 29, BRCA = 22, LUSC = 37, SKCM = 40, LUAD = 24, OV = 22, HNSC = 42, ESCA = 36, KIRC = 19, THCA = 19, TGCT = 64, BLCA = 31, CESC = 33, COAD = 23, PAAD = 25, SARC = 20, KIRP = 20, DLBC = 19, MESO = 19, THYM = 25, PRAD = 21, UVM = 25, CHOL = 25, UCS = 39, LAML = 34, PCPG = 43, KICH = 20, LGG = 32, ACC = 26, and GBM = 33. For (a) and (b), the individual cancer types are ranked as in Fig. 4c.

Source data

Extended Data Fig. 4 The predictive values of the Cmai binding scores.

(a–d) Patients were dichotomized based on median Cmai BCR binding scores in each cohort. (a) All TCGA patients (N = 2,625 patients); (b) TCGA KIRC patients (N = 62 patients); (c) TCGA MESO patients (N = 18 patients); and (d) TCGA PAAD patients (N = 40 patients). The Kaplan-Meier survival curves were constructed based on splitting the patient cohorts by the median Cmai binding scores and compared using the Log-Rank Test. Hazard ratios (HR) and 95% confidence intervals (CI) were obtained from Cox proportional hazards regression, with statistical significance evaluated using the likelihood ratio test.

Source data

Extended Data Fig. 5 Binding strength comparisons of BCRs with edit distances of 3 in the “continuous” training cohort.

For each cohort, we investigated pairs of BCRs with edit distance of 3 in the heavy chains and their comparative binding strengths.

Source data

Extended Data Fig. 6 Sensitivity in the choices of threshold values for calculating the BCR binding scores.

(a) The numbers of BCRs obtained from all TCGA tumor samples. (b) Scatterplots and correlations between the BCR binding scores calculated with slightly different threshold values, on the irAE cohort. “***” indicates the Pearson Correlation Test P value < 0.001. N = 4,375 BCR binding scores.

Source data

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Wang, K., Na, S. et al. Profiling antigen-binding affinity of B cell repertoires in tumors by deep learning predicts immune-checkpoint inhibitor treatment outcomes. Nat Cancer 6, 1570–1584 (2025). https://doi.org/10.1038/s43018-025-01001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43018-025-01001-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer