Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
High profits from soybean-corn agriculture are associated with increased land prices and deforestation rates in Mato Grosso’s Amazon forests
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

High profits from soybean-corn agriculture are associated with increased land prices and deforestation rates in Mato Grosso’s Amazon forests

  • Richards Peter1 &
  • Eugenio Arima  ORCID: orcid.org/0000-0003-3366-42872 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 817 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate-change policy
  • Socioeconomic scenarios
  • Sustainability

Abstract

Land clearing in the Brazilian Amazon is strongly influenced by the economics of farming at the forest frontier. Here we examine how rising profits from second-season corn, grown after soybeans, may increase pressure on forests in the state of Mato Grosso. We assemble detailed annual data on crop prices, yields, production costs, land values, and forest loss, and construct measures of both per-hectare and regional-level profits from soybean and safrinha corn farming. Using statistical models designed to separate the effects of expected returns from the effects of profit-driven expansion, we show that increases in farm profits raise land prices and are followed by higher levels of forest clearing. These effects persist for several years after a shift in profits. Our results suggest that expanding corn production in frontier regions, by making farming more profitable, fuels land speculation and encourages the clearing of new land.

Similar content being viewed by others

Spatial spillover effects from agriculture drive deforestation in Mato Grosso, Brazil

Article Open access 08 November 2021

Protecting the Amazon forest and reducing global warming via agricultural intensification

Article 10 October 2022

Massive soybean expansion in South America since 2000 and implications for conservation

Article 07 June 2021

Data availability

We used six primary datasets in this analysis. These data cover: commodity prices57 (S&P Global), production costs58,59 (CONAB), crop yields and area11,60 (CONAB), deforestation61 (INPE-PRODES), land values by use type62 (S&P Agribusiness/ANUALPEC), and corn ethanol production statistics63 (CONAB). All data were harmonized to the annual level, with prices and costs deflated to constant Q2 2024 values using Brazil’s GDP deflator64 (NGDPDSAIXBRQ). Detailed descriptions of each dataset, deflation procedures, and variable construction are provided in the Supplementary Information. Additional information on data sources and construction is included in supplemental information (SI). All data are publicly available.

References

  1. Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 107, 16732–16737 (2010).

    Google Scholar 

  2. Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    Google Scholar 

  3. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 108, 3465–3472 (2011).

    Google Scholar 

  4. Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang Biol. 17, 798–818 (2011).

    Google Scholar 

  5. Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Google Scholar 

  6. Lapola, D. M. et al. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 107, 3388–3393 (2010).

    Google Scholar 

  7. Zilberman, D. Indirect land use change: much ado about (almost) nothing. Gcb Bioenergy 9, 485–488 (2017).

    Google Scholar 

  8. Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).

    Google Scholar 

  9. Bowman, M. S. et al. Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29, 558–568 (2012).

    Google Scholar 

  10. Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: The indirect effect of Brazil’s agricultural sector on land use in Amazonia. Global Environ. Change 29, 1–9 (2014).

  11. CONAB. Séries Históricas Das Safras- Milho. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/safras/series-historicas/graos/milho (2024).

  12. Lark, T. J. et al. Environmental outcomes of the US renewable fuel standard. Proc. Natl. Acad. Sci. USA 119, e2101084119 (2022).

    Google Scholar 

  13. Carter, C. A., Rausser, G. C. & Smith, A. Commodity storage and the market effects of biofuel policies. Am. J. Agric Econ. 99, 1027–1055 (2017).

    Google Scholar 

  14. Laurance, W. F., Albernaz, A. K. M., Fearnside, P. M., Vasconcelos, H. L. & Ferreira, L. V. Deforestation in Amazonia. Science 304, 1109–1111 (2004).

    Google Scholar 

  15. Nepstad, D. et al. The end of deforestation in the Brazilian Amazon. Science 326, 1350–1351 (2009).

    Google Scholar 

  16. Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. 103, 14637–14641 (2006).

    Google Scholar 

  17. Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).

    Google Scholar 

  18. Arima, E. Y., Richards, P. & Walker, R. T. Biofuel expansion and the spatial economy: implications for the Amazon Basin in the 21st century. Bioenergy Land Use Change 53, 62 (2017).

    Google Scholar 

  19. Richards, P. & Arima, E. Capital surpluses in the farming sector and agricultural expansion in Brazil. Environ. Res. Lett. 13, 075011 (2018).

    Google Scholar 

  20. Zhao, X., Taheripour, F., Malina, R., Staples, M. D. & Tyner, W. E. Estimating induced land use change emissions for sustainable aviation biofuel pathways. Sci. Total Environ. 779, 146238 (2021).

    Google Scholar 

  21. Arima, E., Barreto, P., Taheripour, F. & Aguiar, A. Dynamic Amazonia: the EU–mercosur trade agreement and deforestation. Land 10, 1243 (2021).

    Google Scholar 

  22. Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).

    Google Scholar 

  23. Reydon, B. P., Fernandes, V. B. & Telles, T. S. Land governance as a precondition for decreasing deforestation in the Brazilian Amazon. Land Use Policy 94, 104313 (2020).

    Google Scholar 

  24. Hecht, S. B. The logic of livestock and deforestation in Amazonia. Bioscience 43, 687–695 (1993).

    Google Scholar 

  25. Campbell, J. M. Speculative accumulation: property-making in the Brazilian Amazon. J. Lat. Am. Caribb. Anthropol. 19, 237–259 (2014).

    Google Scholar 

  26. Liu, J., Herzberger, A., Kapsar, K., Carlson, A. K. & Connor, T. What is telecoupling? Telecoupling: Exploring land-use change in a Globalised. World 19, 48 (2019).

    Google Scholar 

  27. Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Chang 8, 109–116 (2018).

    Google Scholar 

  28. Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global-local-global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).

    Google Scholar 

  29. Barretto, A. G. O. P., Berndes, G., Sparovek, G. & Wirsenius, S. Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob. Chang Biol. 19, 1804–1815 (2013).

    Google Scholar 

  30. Goulart, F. F., Chappell, M. J., Mertens, F. & Soares-Filho, B. Sparing or expanding? The effects of agricultural yields on farm expansion and deforestation in the tropics. Biodivers. Conserv 32, 1089–1104 (2023).

    Google Scholar 

  31. Barr, K. J., Babcock, B. A., Carriquiry, M. A., Nassar, A. M. & Harfuch, L. Agricultural land elasticities in the United States and Brazil. Appl Econ. Perspect. Policy 33, 449–462 (2011).

    Google Scholar 

  32. Hausman, C. Biofuels and land use change: sugarcane and soybean acreage response in Brazil. Environ. Resour. Econ. 51, 163–187 (2012).

    Google Scholar 

  33. Kaimowitz, D. & Angelsen, A. Will livestock intensification help save Latin America’s tropical forests? J. Sustain. For. 27, 6–24 (2008).

    Google Scholar 

  34. Kuschnig, N., Cuaresma, J. C., Krisztin, T. & Giljum, S. Spatial spillover effects from agriculture drive deforestation in Mato Grosso, Brazil. Sci. Rep. 11, 21804 (2021).

    Google Scholar 

  35. Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).

    Google Scholar 

  36. Saraly Andrade, D. E. S. Á, Palmer, C. & Di Falco, S. Dynamics of indirect land-use change: empirical evidence from Brazil. J. Environ. Econ. Manag. 65, 377–393 (2013).

    Google Scholar 

  37. Li, Y., Miao, R. & Khanna, M. Effects of ethanol plant proximity and crop prices on land-use change in the United States. Am. J. Agric Econ. 101, 467–491 (2019).

    Google Scholar 

  38. Brown, J. C. et al. Ethanol plant location and intensification vs. extensification of corn cropping in Kansas. Appl. Geogr. 53, 141–148 (2014).

    Google Scholar 

  39. Wright, C. K., Larson, B., Lark, T. J. & Gibbs, H. K. Recent grassland losses are concentrated around US ethanol refineries. Environ. Res. Lett. 12, 044001 (2017).

    Google Scholar 

  40. Gurgel, A. C. et al. Contribution of double-cropped maize ethanol in Brazil to sustainable development. Nat. Sustain. https://doi.org/10.1038/s41893-024-01424-5 (2024).

  41. Colussi, J., Paulson, N., Schnitkey, G. & Baltz, J. Brazil emerges as corn-ethanol producer with expansion of second crop corn. Farmdoc Daily 13, 120 (2023).

  42. Moreira, M. M. R. et al. Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil. Nat. Sustain 3, 209–216 (2020).

    Google Scholar 

  43. Cohn, A. S. et al. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl. Acad. Sci. U.S.A. 111, 7236–7241 (2014).

  44. Garrett, R. D. et al. Intensification in agriculture-forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).

    Google Scholar 

  45. Merry, F. & Soares-Filho, B. Will intensification of beef production deliver conservation outcomes in the Brazilian Amazon? Elem. Sci. Anth 5, 24 (2017).

    Google Scholar 

  46. Commar, L. F. S., Louzada, L., Costa, M. H., Brumatti, L. M. & Abrahão, G. M. Mato Grosso’s rainy season: past, present, and future trends justify immediate action. Environ. Res. Lett. 19, 114065 (2024).

    Google Scholar 

  47. Spera, S. A., Winter, J. M. & Partridge, T. F. Brazilian maize yields negatively affected by climate after land clearing. Nat. Sustain 3, 845–852 (2020).

    Google Scholar 

  48. Pires, G. F. et al. Increased climate risk in Brazilian double cropping agriculture systems: implications for land use in Northern Brazil. Agric. For. Meteorol. 228–229, 286–298 (2016).

  49. IEA. Renewables 2022 (IEA, 2022).

  50. Fujita, M. & Thisse, J. The von Thünen model and land rent formation. In Economics of Agglomeration: Cities, Industrial Location, and Globalization 59–98 (Cambridge University Press, 2013).

  51. Dunn, E. S. The location of agricultural production. (1954).

  52. Alonso, W. Location and Land Use: Toward a general theory of land rent. Harv. Univ. Press Google Sch. 2, 16–22 (1964).

    Google Scholar 

  53. Walker, R. The impact of Brazilian biofuel production on Amazônia. in The New Geographies of Energy 228–237 (Routledge, 2013).

  54. Walker, R. et al. Ranching and the new global range: Amazônia in the 21st century. Geoforum 40, 732–745 (2009).

    Google Scholar 

  55. Lovell, M. C. Seasonal adjustment of economic time series and multiple regression analysis. J. Am. Stat. Assoc. 58, 993–1010 (1963).

    Google Scholar 

  56. Frisch, R. & Waugh, F. V. Partial time regressions as compared with individual trends. Econometrica 387, 401 (1933).

    Google Scholar 

  57. S & P. Soybean and Corn Cash Prices- Brazil. Accessed via https://connect.ihsmarkit.com/data-browser (2024).

  58. CONAB. Série Histórica - Custos - Soja - 1997 a 2024. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/custos-de-producao/arquivos-custo-de-producao/agricolas/serie-historica-custos-soja−1997-a−2024-1/view (2024).

  59. CONAB. Série Histórica - Custos - Milho − 1997 a 2024. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/custos-de-producao/arquivos-custo-de-producao/agricolas/milho/milho_2_safra_serie_historica_2005-2024.xls/view (2024).

  60. CONAB. Séries Históricas das Safras- Soja. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/safras/series-historicas/graos/soja (2024).

  61. PRODES. Monitoramento do Desmatamento da Amazônia Brasileira por Satélite. Instituto Nacional de Pesquisas Espaciais Accessed at https://dados.gov.br/dados/conjuntos-dados/prodes (2024).

  62. S&P. Cropland Prices in Brazil. https://www.spglobal.com/commodityinsights/en/ci/products/agribusiness-brazil.html, https://www.spglobal.com/commodityinsights/en/ci/products/agribusiness-brazil.html (2024).

  63. CONAB. Séries Históricas das Safras- Cana-de-Açúcar. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/safras/series-historicas/cana-de-acucar/industria (2024).

  64. IMF. Gross Domestic Product Deflator for Brazil. Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/NGDPDSAIXBRQ (2024).

Download references

Author information

Authors and Affiliations

  1. Office of the Chief Economist, United States Department of Agriculture, Washington, DC, USA

    Richards Peter

  2. Department of Geography and the Environment, University of Texas, Austin, TX, USA

    Eugenio Arima

Authors
  1. Richards Peter
    View author publications

    Search author on:PubMed Google Scholar

  2. Eugenio Arima
    View author publications

    Search author on:PubMed Google Scholar

Contributions

P.R. conceptualized, designed and wrote much of this manuscript; EA contributed significantly to research design and provided expert guidance on approach.  The findings and conclusions in this article are those of the authors and do not represent any official U.S. Department of Agriculture or U.S. government determination or policy.

Corresponding author

Correspondence to Richards Peter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth & Environment thanks Bastiaan Philip Reydon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Jinfeng Chang and Martina Grecequet. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplemental Material

Reporting summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, R., Arima, E. High profits from soybean-corn agriculture are associated with increased land prices and deforestation rates in Mato Grosso’s Amazon forests. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-025-03172-6

Download citation

  • Received: 28 April 2025

  • Accepted: 19 December 2025

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s43247-025-03172-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing