Abstract
Land clearing in the Brazilian Amazon is strongly influenced by the economics of farming at the forest frontier. Here we examine how rising profits from second-season corn, grown after soybeans, may increase pressure on forests in the state of Mato Grosso. We assemble detailed annual data on crop prices, yields, production costs, land values, and forest loss, and construct measures of both per-hectare and regional-level profits from soybean and safrinha corn farming. Using statistical models designed to separate the effects of expected returns from the effects of profit-driven expansion, we show that increases in farm profits raise land prices and are followed by higher levels of forest clearing. These effects persist for several years after a shift in profits. Our results suggest that expanding corn production in frontier regions, by making farming more profitable, fuels land speculation and encourages the clearing of new land.
Similar content being viewed by others
Data availability
We used six primary datasets in this analysis. These data cover: commodity prices57 (S&P Global), production costs58,59 (CONAB), crop yields and area11,60 (CONAB), deforestation61 (INPE-PRODES), land values by use type62 (S&P Agribusiness/ANUALPEC), and corn ethanol production statistics63 (CONAB). All data were harmonized to the annual level, with prices and costs deflated to constant Q2 2024 values using Brazil’s GDP deflator64 (NGDPDSAIXBRQ). Detailed descriptions of each dataset, deflation procedures, and variable construction are provided in the Supplementary Information. Additional information on data sources and construction is included in supplemental information (SI). All data are publicly available.
References
Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 107, 16732–16737 (2010).
Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).
Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 108, 3465–3472 (2011).
Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang Biol. 17, 798–818 (2011).
Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).
Lapola, D. M. et al. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 107, 3388–3393 (2010).
Zilberman, D. Indirect land use change: much ado about (almost) nothing. Gcb Bioenergy 9, 485–488 (2017).
Miranda, J., Börner, J., Kalkuhl, M. & Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 14, 045006 (2019).
Bowman, M. S. et al. Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29, 558–568 (2012).
Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: The indirect effect of Brazil’s agricultural sector on land use in Amazonia. Global Environ. Change 29, 1–9 (2014).
CONAB. Séries Históricas Das Safras- Milho. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/safras/series-historicas/graos/milho (2024).
Lark, T. J. et al. Environmental outcomes of the US renewable fuel standard. Proc. Natl. Acad. Sci. USA 119, e2101084119 (2022).
Carter, C. A., Rausser, G. C. & Smith, A. Commodity storage and the market effects of biofuel policies. Am. J. Agric Econ. 99, 1027–1055 (2017).
Laurance, W. F., Albernaz, A. K. M., Fearnside, P. M., Vasconcelos, H. L. & Ferreira, L. V. Deforestation in Amazonia. Science 304, 1109–1111 (2004).
Nepstad, D. et al. The end of deforestation in the Brazilian Amazon. Science 326, 1350–1351 (2009).
Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. 103, 14637–14641 (2006).
Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).
Arima, E. Y., Richards, P. & Walker, R. T. Biofuel expansion and the spatial economy: implications for the Amazon Basin in the 21st century. Bioenergy Land Use Change 53, 62 (2017).
Richards, P. & Arima, E. Capital surpluses in the farming sector and agricultural expansion in Brazil. Environ. Res. Lett. 13, 075011 (2018).
Zhao, X., Taheripour, F., Malina, R., Staples, M. D. & Tyner, W. E. Estimating induced land use change emissions for sustainable aviation biofuel pathways. Sci. Total Environ. 779, 146238 (2021).
Arima, E., Barreto, P., Taheripour, F. & Aguiar, A. Dynamic Amazonia: the EU–mercosur trade agreement and deforestation. Land 10, 1243 (2021).
Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).
Reydon, B. P., Fernandes, V. B. & Telles, T. S. Land governance as a precondition for decreasing deforestation in the Brazilian Amazon. Land Use Policy 94, 104313 (2020).
Hecht, S. B. The logic of livestock and deforestation in Amazonia. Bioscience 43, 687–695 (1993).
Campbell, J. M. Speculative accumulation: property-making in the Brazilian Amazon. J. Lat. Am. Caribb. Anthropol. 19, 237–259 (2014).
Liu, J., Herzberger, A., Kapsar, K., Carlson, A. K. & Connor, T. What is telecoupling? Telecoupling: Exploring land-use change in a Globalised. World 19, 48 (2019).
Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Chang 8, 109–116 (2018).
Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global-local-global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).
Barretto, A. G. O. P., Berndes, G., Sparovek, G. & Wirsenius, S. Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob. Chang Biol. 19, 1804–1815 (2013).
Goulart, F. F., Chappell, M. J., Mertens, F. & Soares-Filho, B. Sparing or expanding? The effects of agricultural yields on farm expansion and deforestation in the tropics. Biodivers. Conserv 32, 1089–1104 (2023).
Barr, K. J., Babcock, B. A., Carriquiry, M. A., Nassar, A. M. & Harfuch, L. Agricultural land elasticities in the United States and Brazil. Appl Econ. Perspect. Policy 33, 449–462 (2011).
Hausman, C. Biofuels and land use change: sugarcane and soybean acreage response in Brazil. Environ. Resour. Econ. 51, 163–187 (2012).
Kaimowitz, D. & Angelsen, A. Will livestock intensification help save Latin America’s tropical forests? J. Sustain. For. 27, 6–24 (2008).
Kuschnig, N., Cuaresma, J. C., Krisztin, T. & Giljum, S. Spatial spillover effects from agriculture drive deforestation in Mato Grosso, Brazil. Sci. Rep. 11, 21804 (2021).
Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).
Saraly Andrade, D. E. S. Á, Palmer, C. & Di Falco, S. Dynamics of indirect land-use change: empirical evidence from Brazil. J. Environ. Econ. Manag. 65, 377–393 (2013).
Li, Y., Miao, R. & Khanna, M. Effects of ethanol plant proximity and crop prices on land-use change in the United States. Am. J. Agric Econ. 101, 467–491 (2019).
Brown, J. C. et al. Ethanol plant location and intensification vs. extensification of corn cropping in Kansas. Appl. Geogr. 53, 141–148 (2014).
Wright, C. K., Larson, B., Lark, T. J. & Gibbs, H. K. Recent grassland losses are concentrated around US ethanol refineries. Environ. Res. Lett. 12, 044001 (2017).
Gurgel, A. C. et al. Contribution of double-cropped maize ethanol in Brazil to sustainable development. Nat. Sustain. https://doi.org/10.1038/s41893-024-01424-5 (2024).
Colussi, J., Paulson, N., Schnitkey, G. & Baltz, J. Brazil emerges as corn-ethanol producer with expansion of second crop corn. Farmdoc Daily 13, 120 (2023).
Moreira, M. M. R. et al. Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil. Nat. Sustain 3, 209–216 (2020).
Cohn, A. S. et al. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl. Acad. Sci. U.S.A. 111, 7236–7241 (2014).
Garrett, R. D. et al. Intensification in agriculture-forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).
Merry, F. & Soares-Filho, B. Will intensification of beef production deliver conservation outcomes in the Brazilian Amazon? Elem. Sci. Anth 5, 24 (2017).
Commar, L. F. S., Louzada, L., Costa, M. H., Brumatti, L. M. & Abrahão, G. M. Mato Grosso’s rainy season: past, present, and future trends justify immediate action. Environ. Res. Lett. 19, 114065 (2024).
Spera, S. A., Winter, J. M. & Partridge, T. F. Brazilian maize yields negatively affected by climate after land clearing. Nat. Sustain 3, 845–852 (2020).
Pires, G. F. et al. Increased climate risk in Brazilian double cropping agriculture systems: implications for land use in Northern Brazil. Agric. For. Meteorol. 228–229, 286–298 (2016).
IEA. Renewables 2022 (IEA, 2022).
Fujita, M. & Thisse, J. The von Thünen model and land rent formation. In Economics of Agglomeration: Cities, Industrial Location, and Globalization 59–98 (Cambridge University Press, 2013).
Dunn, E. S. The location of agricultural production. (1954).
Alonso, W. Location and Land Use: Toward a general theory of land rent. Harv. Univ. Press Google Sch. 2, 16–22 (1964).
Walker, R. The impact of Brazilian biofuel production on Amazônia. in The New Geographies of Energy 228–237 (Routledge, 2013).
Walker, R. et al. Ranching and the new global range: Amazônia in the 21st century. Geoforum 40, 732–745 (2009).
Lovell, M. C. Seasonal adjustment of economic time series and multiple regression analysis. J. Am. Stat. Assoc. 58, 993–1010 (1963).
Frisch, R. & Waugh, F. V. Partial time regressions as compared with individual trends. Econometrica 387, 401 (1933).
S & P. Soybean and Corn Cash Prices- Brazil. Accessed via https://connect.ihsmarkit.com/data-browser (2024).
CONAB. Série Histórica - Custos - Soja - 1997 a 2024. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/custos-de-producao/arquivos-custo-de-producao/agricolas/serie-historica-custos-soja−1997-a−2024-1/view (2024).
CONAB. Série Histórica - Custos - Milho − 1997 a 2024. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/custos-de-producao/arquivos-custo-de-producao/agricolas/milho/milho_2_safra_serie_historica_2005-2024.xls/view (2024).
CONAB. Séries Históricas das Safras- Soja. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/safras/series-historicas/graos/soja (2024).
PRODES. Monitoramento do Desmatamento da Amazônia Brasileira por Satélite. Instituto Nacional de Pesquisas Espaciais Accessed at https://dados.gov.br/dados/conjuntos-dados/prodes (2024).
S&P. Cropland Prices in Brazil. https://www.spglobal.com/commodityinsights/en/ci/products/agribusiness-brazil.html, https://www.spglobal.com/commodityinsights/en/ci/products/agribusiness-brazil.html (2024).
CONAB. Séries Históricas das Safras- Cana-de-Açúcar. https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/safras/series-historicas/cana-de-acucar/industria (2024).
IMF. Gross Domestic Product Deflator for Brazil. Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/NGDPDSAIXBRQ (2024).
Author information
Authors and Affiliations
Contributions
P.R. conceptualized, designed and wrote much of this manuscript; EA contributed significantly to research design and provided expert guidance on approach. The findings and conclusions in this article are those of the authors and do not represent any official U.S. Department of Agriculture or U.S. government determination or policy.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth & Environment thanks Bastiaan Philip Reydon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Jinfeng Chang and Martina Grecequet. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Peter, R., Arima, E. High profits from soybean-corn agriculture are associated with increased land prices and deforestation rates in Mato Grosso’s Amazon forests. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-025-03172-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-025-03172-6


