Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Five major earthquakes since the Late Classic Maya Period on the Motagua Fault in Guatemala
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Five major earthquakes since the Late Classic Maya Period on the Motagua Fault in Guatemala

  • Tina M. Niemi  ORCID: orcid.org/0000-0002-6837-25941 na1,
  • Christoph Grützner2 na1,
  • Omar Flores Beltetón3,
  • Luis Alberto Romero3,
  • Francisco Gomez4,
  • Jeremy Maurer5,
  • Trenton McEnaney5,
  • Robyn Daniels6,
  • Aleigha Dollens1,
  • Hannes Ebell2,
  • Carlos Pérez Arias7,
  • Alison H. Graettinger1 &
  • …
  • Jonathan Obrist-Farner  ORCID: orcid.org/0000-0002-8734-38955 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 495 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Archaeology
  • Natural hazards
  • Seismology
  • Stratigraphy
  • Tectonics

Abstract

In 1976, the Motagua Fault along the North American-Caribbean plate boundary ruptured in a devastating M 7.5 earthquake. Despite its considerable scientific importance and its potential for catastrophic societal impact, very little is known about the seismic history of this major fault. Here, we show direct on-fault paleoseismic evidence for five ground-rupturing earthquakes on the Motagua Fault in the last 1,300 years that led to cultural and architectural adaptations. Radiocarbon ages of fault scarp-derived colluvial wedges, along with damage and repair at Maya and Colonial sites, provide constraints for three earthquakes during the 8th–13th centuries and two during the 18th-20th centuries, separated by a six-century interval of seismic quiescence. The research presented here provides new insight into the seismic character of the Motagua Fault and illustrates that earthquake recurrence on the fault is variable, allowing for improved estimation of current and future seismic risk in Guatemala.

Similar content being viewed by others

Mature fault mechanics revealed by the highly efficient 2025 Mandalay earthquake

Article Open access 08 December 2025

Stress-driven recurrence and precursory moment-rate surge in caldera collapse earthquakes

Article 05 February 2024

High-resolution surface faulting from the 1983 Idaho Lost River Fault Mw 6.9 earthquake and previous events

Article Open access 26 February 2021

Data availability

Digital Elevation Models and orthophotos created from uncrewed aerial surveys of the La Laguna site can be accessed at Zenodo61,62. A georeferenced database of 35 mm slides, field notes, and annotated maps from the George Plafker USGS Archive of the 1976 earthquake rupture used in this study can also be accessed at Zenodo63.

References

  1. Espinosa, A. F. The Guatemalan Earthquake of February 4, 1976: A Preliminary Report. Geological Survey Professional Paper 1002, 103 p. (US Government Printing Office, 1976).

  2. Plafker, G. Tectonic aspects of the Guatemala earthquake of 4 February 1976. Science 193, 1201–1208 (1976).

    Google Scholar 

  3. Kanamori, H. & Stewart, G. S. Seismological aspects of the Guatemala earthquake of February 4, 1976. J. Geophys. Res. Solid Earth 83, 3427–3434 (1978).

    Google Scholar 

  4. Ellis, A. et al. GPS constraints on deformation in northern Central America from 1999 to 2017, part 2: block rotations and fault slip rates, fault locking and distributed deformation. Geophys. J. Int. 218, 729–754 (2019).

    Google Scholar 

  5. Authemayou, C. et al. The Caribbean–North America–Cocos triple junction and the dynamics of the Polochic–Motagua fault systems: pull-up and zipper models. Tectonics 30, TC3010 (2011).

  6. Agate, M. et al. The pattern of brittle deformation in Central America for an assessment of the seismo-tectonic framework. J. Maps 20, 2285479 (2024).

    Google Scholar 

  7. Cisneros de León, A. et al. Refining the eruption chronology of Atitlán caldera through zircon double-dating. Geochem. Geophys. Geosyst. 26, e2024GC011953 (2025).

    Google Scholar 

  8. Innes, H. M. et al. Ice core evidence for the Los Chocoyos supereruption disputes millennial-scale climate impact. Commun. Earth Environ. 6, 137 (2025).

    Google Scholar 

  9. Seligson, K. E., Ortiz Ruiz, S. & Barba Pingarrón, L. Prehispanic Maya burnt lime industries: previous studies and future directions. Anc. Mesoam. 30, 199–219 (2019).

    Google Scholar 

  10. White, R. A. Catalog of Historic Seismicity in the Vicinity of the Chixoy-Polochic and Motagua faults, Guatemala (US Geological Survey USGS-OFR-84-88, 1984).

  11. Feldman, L. H. Mountains of Fire, Lands that Shake: Earthquakes and Volcanic Eruptions in the Historic Past of Central America (1505-1899) (Culver City, California, Labyrinthos Press, 1993).

  12. Peraldo, G. H. & Montero, P. W. Sismologia Historica de America Central. Instituto Panamericano de Geografia e Historia, Publication No. 513, Mexico.

  13. White, R. A., Ligorría, J. P. & Cifuentes, I. L. Seismic History of the Middle America Subduction Zone along El Salvador, Guatemala, and Chiapas, Mexico: 1526–2000 (Geological Society of America Special Paper 375, 2004) 379–396.

  14. Bevan, B. & Sharer, R. J. Quirigua and the earthquake of February 4, 1976. in Quirigua Reports Volume II (eds Sharer, R. J., Schortman, E. M., & Urban, P. A.) (University Museum Monograph 49, The University Museum, Museum of Pennsylvania, Philadelphia, 1983) 110–118.

  15. Morley, S. G. Guide book to the ruins of Quirigua. Carnegie Inst. Wash. 16, 205p (1935). Supplementary Publication.

    Google Scholar 

  16. Sharer, R. J. Quirigua: A Classic Maya Center and Its Sculptures (Carolina Academic Press, Durham N. C., 1990).

  17. Stiros, S. (1996). Identification of earthquakes from archaeological data: methodology, criteria and limitations, in Archaeoseismology (eds Stiros, S. & R. Jones) 129–152 (Fitch Laboratory Occasional Paper 7, Oxford, 1996).

  18. Bankoff, G. Design by disasters: seismic architecture and cultural adaptation to earthquakes. in Cultures and Disasters (Routledge, 2015) 53–71.

  19. Sharer, R. J. & Traxler, L. P. Copan and Quirigua: Shifting destinies in the southeastern Maya lowlands. Contribut. N. World Archaeol. 4, 141–158 (2012).

    Google Scholar 

  20. Ward, C. & Rice, P. M. The Archaeological Field Diaries of Sylvanus Griswold Morley: Excavations at Quirigua, 1912 and 1919. The Morley Diary Project, Volume III. www.mesoweb.com/publications/Morley/Morley_Diaries_Quirigua.pdf. (2022).

  21. Jones, C., Ashmore, W., & Sharer, R. J. The Quirigua project: 1977 season. in Quirigua Reports, Volume II: Papers 6-15 (eds Sharer, R. J., Schortman, E. M., & Urban, P. A.) (University Museum Monograph 49, The University Museum, Museum of Pennsylvania, Philadelphia, 1983), 1–38.

  22. Brocard, G., Anselmetti, F. S. & Teyssier, C. Guatemala paleoseismicity: from Late Classic Maya collapse to recent fault creep. Sci. Rep. 6, 36976 (2016).

    Google Scholar 

  23. Kovach, R. L. Early Earthquakes of the Americas (Cambridge University Press, 2004).

  24. Sharer, R. J. Terminal events in the southeastern lowlands: a view from Quirigua. in The Lowland Maya Postclassic (Chase, A. & Rice, Pl.) 245–253 (Austin, University of Texas Press, 1985).

  25. Paz Cárcamo, G. Chwa Nima Ab’äj. Mixco Viejo (Editorial Cholsamaj, Guatemala, 2004).

  26. González, M. La restauracion arquitectonica de estructuras arqueologicas en areas sismicas: el caso de Mixco Viejo, Guatemala, 1976. In: La proteccion de monumentos historicos en areas sismicas. Documentos y conclusiones (1979).

  27. Lehmann, H. Guide to the Ruins of Mixco Viejo Ceremonial Center and Fortified Town of the Maya Indians—Pokimam Group, Guatemala. English Translation by Andrew McIntyre and Edwin Kuh, Editorial Escolar “Pidera Santa,” 53p (1968).

  28. Fauvet-Berthelot, M. F. Ethnopréhistoire de la Maison Maya (Guatemala 1250-1525). Etudes Mésoaméricaines, Vol. XIII (Centre d’Etudes Mexicaines et Centreaméricaines, Mexico, 1986) 296 p.

  29. Obrist-Farner, J. et al. Paleoseismic evidence of directivity for the 1976 Mw 7.5 Motagua earthquake, Guatemala. Geology 53, 971–976 (2025).

    Google Scholar 

  30. Peruzza, L. et al. MARCA-GEHN, a prototype macroseismic archive of four Central America countries. Boll. di Geofisica Teorica ed. Applicata 62, 1–198 (2021).

    Google Scholar 

  31. Peruzza, L., Esposito, E., Rodríguez García, F., & Giunta, G. A tool for archiving and updating knowledge about past earthquakes in Central America. in Earthquake Ground Motion (IntechOpen, 2023). https://doi.org/10.5772/intechopen.1003080.

  32. Martin, S. S., Cummins, P. R. & Meltzner, A. J. Gempa Nusantara: A database of 7380 macroseismic observations for 1200 historical earthquakes in Indonesia from 1546 to 1950. Bull. Seismol. Soc. Am. 112, 2958–2980 (2022).

    Google Scholar 

  33. Hough, S. E. & Martin, S. S. Which earthquake accounts matter?. Seismol. Soc. Am. 92, 1069–1084 (2021).

    Google Scholar 

  34. Fletcher, J. M. et al. Assembly of a large earthquake from a complex fault system: surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake. Geosphere 10, 797–827 (2014).

    Google Scholar 

  35. Hamling, I. J. et al. Complex multifault rupture during the 2016 M w 7.8 Kaikōura earthquake. N. Z. Sci. 356, eaam7194 (2017).

    Google Scholar 

  36. Symithe, S. & Calais, E. Present-day shortening in Southern Haiti from GPS measurements and implications for seismic hazard. Tectonophysics 679, 117–124 (2016).

    Google Scholar 

  37. Wang, Y. et al. Earthquakes and slip rate of the southern Sagaing fault: insights from an offset ancient fort wall, lower Burma (Myanmar). Geophys. J. Int. 185, 49–64 (2011).

    Google Scholar 

  38. Martin, S. S. & Hough, S. E. The 8 April 1860 Jour de Pâques earthquake sequence in southern Haiti. Bull. Seismol. Soc. Am. 112, 2468–2486 (2022).

    Google Scholar 

  39. Brocard, G. et al. The recording of floods and earthquakes in Lake Chichój, Guatemala during the twentieth century. J. Paleolimnol. 52, 155–169 (2014).

    Google Scholar 

  40. White, R. A. The Guatemala earthquake of 1816 on the Chixoy-Polochic fault. Bull. Seismol. Soc. Am. 75, 455–473 (1985).

    Google Scholar 

  41. Dolan, J. F. et al. One tune, many tempos: faults trade off slip in time and space to accommodate relative plate motions. Earth Planet. Sci. Lett. 625, 118484 (2024).

    Google Scholar 

  42. Harlow, G. E. et al. Serpentinites of the Guatemala suture zone: Varieties, origin, and compositional modifications. Am. J. Sci. 325, 4 (2025).

  43. Bucknam, R. C., Plafker, G. & Sharp, R. V. Fault movement (afterslip) following the Guatemala earthquake of February 4, 1976. Geology 6, 170–173 (1978).

    Google Scholar 

  44. Maurer, J., Eckert, A., Sun, Q., & Obrist-Farner, J. Deformation and earthquake potential on the North America-Caribbean-Cocos triple junction in Guatemala. ESS Open Archive (2025). https://doi.org/10.22541/essoar.175336982.28467707/v1

  45. Schwartz, D. P., Cluff, L. S. & Donnelly, T. W. Quaternary faulting along the Caribbean-North American plate boundary in Central America. Tectonophysics 52, 432–445 (1979).

    Google Scholar 

  46. Williams, R. T., Davis, J. R., & Goodwin, L. B. Do large earthquakes occur at regular intervals through time? A perspective from the geologic record. Geophys. Res. Lett. 46 (2019).

  47. Pinzon, N. et al. Spatiotemporal clustering of large earthquakes along the Central-Eastern sections of the Altyn Tagh Fault, China. J. Geophys. Res.: Solid Earth 129, e2024JB028912 (2024).

    Google Scholar 

  48. Nicol, A. et al. Variability of recurrence interval and single-event slip for surface-rupturing earthquakes in New Zealand. N. Z. J. Geol. Geophys. 59, 97–116 (2016).

    Google Scholar 

  49. Humphrey, J. et al. Spatial and temporal clustering of large earthquakes on upper-plate and subduction thrust faults along the Southern Hikurangi subduction margin Aoteraroa-New Zealand. Bull. Seismol. Soc. Am. 115, 1677–1702 (2025).

    Google Scholar 

  50. Mildon, Z. K. et al. Surface faulting earthquake clustering controlled by fault and shear-zone interactions. Nat. Commun. 13, 7126 (2022).

    Google Scholar 

  51. Roberts, G. P. et al. Spatial migration of temporal earthquake clusters driven by the transfer of differential stress between neighbouring fault/shear-zone structures. J. Struct. Geol. 181, 105096 (2024).

    Google Scholar 

  52. Lyon-Caen, H. et al. Kinematics of the North American-Caribbean-Cocos plates in Central America from new GPS measurements across the Polochic-Motagua fault system. Geophys. Res. Lett. 33, L19309 (2006).

    Google Scholar 

  53. Hermes, M. C. & Gándara Gaborit, J. L. La Vivienda Popular en Guatemala: Antes y Después del Terremoto de 1976 (Editorial Universitaria de Guatemala, Guatemala, 1982).

  54. QGIS. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.org. (2025)

  55. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. & Reynolds, J. M. Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012).

    Google Scholar 

  56. Reitman, N. G., Bennett, S. E., Gold, R. D., Briggs, R. W. & DuRoss, C. B. High-resolution trench photomosaics from image-based modeling: Workflow and error analysis. Bull. Seismol. Soc. Am. 105, 2354–2366 (2015).

    Google Scholar 

  57. Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55kBP). Radiocarbon 62, 725–757 (2020).

  58. Hua, Q. et al. Atmospheric radiocarbon for the period 1950-2019. Radiocarbon 64, 723–745 (2022).

    Google Scholar 

  59. Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Google Scholar 

  60. Lienkaemper, J. J. & Bronk Ramsey, C. OxCal: Versatile tool for developing paleoearrthquake chronologies—A primer. Seismol. Res. Lett. 80, 431–434 (2009).

    Google Scholar 

  61. Maurer, J. UAV test datasets. Zenodo https://doi.org/10.17605/OSF.IO/E3DTX (2026).

  62. Gomez, F. & Grützner, C. LiDAR DEM and orthophoto of the La Laguna paleoseismological trench site on the Motagua Fault, Guatemala [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18149255 (2026).

  63. McEnaney, T. & Clark, G. 1976 Motagua Earthquake Georeferenced Database (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17674716 (2025).

Download references

Acknowledgements

This project was conducted as part of the Guatemala GeoHazards IRES program that is funded by an NSF Grant OISE-2153715 to Niemi and by a DFG project 529303576 “Active tectonics of the Caribbean-North American plate boundary in Guatemala” to Grützner. La Laguna residents, Eva Angelina, Rocael, Ruben, Fidelino, and Fernando Pineda provided their generous help and permission to excavate the paleoseismic trench. We are indebted to Shane Detweiler and George Plafker of the U.S. Geological Survey for sharing field notes, photos, and other archival materials. We thank Stacey S. Martin, John Weber, an anonymous reviewer, and the editor whose constructive comments helped to improve the manuscript.

Author information

Author notes
  1. These authors contributed equally: Tina M. Niemi, Christoph Grützner.

Authors and Affiliations

  1. University of Missouri-Kansas City, Kansas City, MO, USA

    Tina M. Niemi, Aleigha Dollens & Alison H. Graettinger

  2. Friedrich Schiller University Jena, Jena, Germany

    Christoph Grützner & Hannes Ebell

  3. Universidad de San Carlos de Guatemala, Guatemala City, Guatemala

    Omar Flores Beltetón & Luis Alberto Romero

  4. University of Missouri, Columbia, MO, USA

    Francisco Gomez

  5. Missouri University of Science and Technology, Rolla, MO, USA

    Jeremy Maurer, Trenton McEnaney & Jonathan Obrist-Farner

  6. Missouri Geological Survey, Rolla, MO, USA

    Robyn Daniels

  7. Ingeotecnia, Guatemala City, Guatemala

    Carlos Pérez Arias

Authors
  1. Tina M. Niemi
    View author publications

    Search author on:PubMed Google Scholar

  2. Christoph Grützner
    View author publications

    Search author on:PubMed Google Scholar

  3. Omar Flores Beltetón
    View author publications

    Search author on:PubMed Google Scholar

  4. Luis Alberto Romero
    View author publications

    Search author on:PubMed Google Scholar

  5. Francisco Gomez
    View author publications

    Search author on:PubMed Google Scholar

  6. Jeremy Maurer
    View author publications

    Search author on:PubMed Google Scholar

  7. Trenton McEnaney
    View author publications

    Search author on:PubMed Google Scholar

  8. Robyn Daniels
    View author publications

    Search author on:PubMed Google Scholar

  9. Aleigha Dollens
    View author publications

    Search author on:PubMed Google Scholar

  10. Hannes Ebell
    View author publications

    Search author on:PubMed Google Scholar

  11. Carlos Pérez Arias
    View author publications

    Search author on:PubMed Google Scholar

  12. Alison H. Graettinger
    View author publications

    Search author on:PubMed Google Scholar

  13. Jonathan Obrist-Farner
    View author publications

    Search author on:PubMed Google Scholar

Contributions

T.M.N.—Interpretation of field stratigraphy and geomorphology, drawing and editing trench logs, writing the text. C.G.—Interpretation of field stratigraphy and geomorphology, drawing, interpreting, and drafting figures, writing the text. O.F.B.—Permission, field data. L.A.R.—Maya artifact identification. F.G.—LiDAR data acquisition and processing. J.M.—LiDAR data acquisition and processing. T.M.—scanning, digitally referencing, and relocating Plafker USGS Archive including 1:10,000-scale aerial photographs, black-and-white photographs, and 35 mm slides. R.D.—OxCal age model, text editing. A.D.—Trench logging and sample collection. H.E.— Digitally referencing, trench logging and sample collection. C.P.A.—Permission, field data. A.G.—Field logistics, field data. J.O.F.—Field logistics, relocating 1976 sites.

Corresponding authors

Correspondence to Tina M. Niemi or Christoph Grützner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks John Weber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Carlos Vargas, Joe Aslin and Alireza Bahadori. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Materials

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niemi, T.M., Grützner, C., Flores Beltetón, O. et al. Five major earthquakes since the Late Classic Maya Period on the Motagua Fault in Guatemala. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03271-y

Download citation

  • Received: 18 September 2025

  • Accepted: 27 January 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03271-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing