Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Sulfur fluoride exchange

Abstract

Click chemistry is a conceptual strategy to rapidly synthesize and discover functional molecules. Sulfur fluoride exchange (SuFEx) is a click reaction that has revolutionized multiple research fields. In this Primer, we delve into the essential elements of SuFEx operation, catalysis and SuFExable connective hubs. We also explore the cutting-edge applications of SuFEx in drug development, polymer science and biochemistry. Additionally, we examine the potential limitations and promising prospects for this versatile click reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SuFEx.
Fig. 2: Investigation into the sulfur fluoride exchange mechanism.
Fig. 3: Enhancing SuFEx reactivity and practicability.
Fig. 4: SuFEx-based medicinal chemistry.
Fig. 5: Unique applications of SuFEx towards function discovery.
Fig. 6: Advances in SuFEx-based polymerizations.
Fig. 7: Biocompatible SuFEx methods.

Similar content being viewed by others

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001). This is the original click chemistry manifesto presented by K. Barry Sharpless, outlining the synthesis philosophy and requirements for a reaction to achieve ‘click’ status.

    Article  Google Scholar 

  2. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  Google Scholar 

  3. Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  Google Scholar 

  4. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  Google Scholar 

  5. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014). This publication represents the re-emergence of SuFEx as a click reaction and describes in detail many of the unique properties of S–F-containing substrates.

    Article  Google Scholar 

  6. Giel, M., Smedley, C. J. & Moses, J. E. in Science of Synthesis: Click Chemistry Vol. 1 Ch. 5 (ed. Rutjes, F. P. J. T.) 435 (Georg Thieme, 2022). This book chapter provides a comprehensive overview of the SuFEx reaction, including recent advancements in the field and current limitations.

  7. Davies, W. & Dick, J. H. Benzenesulphonyl fluoride derivatives. J. Chem. Soc. https://doi.org/10.1039/JR9320002042 (1932).

    Article  Google Scholar 

  8. Steinkopf, W. Über aromatische sulfofluoride. J. Prakt. Chem. 117, 1–82 (1927).

    Article  Google Scholar 

  9. Mortenson, D. E. et al. ‘Inverse drug discovery’ strategy to identify proteins that are targeted by latent electrophiles as exemplified by aryl fluorosulfates. J. Am. Chem. Soc. 140, 200–210 (2018).

    Article  Google Scholar 

  10. Zheng, Q. et al. ‘Sleeping beauty’ phenomenon: SuFEx-enabled discovery of selective covalent inhibitors of human neutrophil elastase. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.7842020.v1 (2019).

    Article  Google Scholar 

  11. Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).

    Article  Google Scholar 

  12. Chinthakindi, P. K. & Arvidsson, P. I. Sulfonyl fluorides (SFs): more than click reagents? Eur. J. Org. Chem. 2018, 3648–3666 (2018).

    Article  Google Scholar 

  13. Davies, A. T., Curto, J. M., Bagley, S. W. & Willis, M. C. One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl bromides. Chem. Sci. 8, 1233–1237 (2017).

    Article  Google Scholar 

  14. Tribby, A. L., Rodríguez, I., Shariffudin, S. & Ball, N. D. Pd-catalyzed conversion of aryl iodides to sulfonyl fluorides using SO2 surrogate DABSO and Selectfluor. J. Org. Chem. 82, 2294–2299 (2017).

    Article  Google Scholar 

  15. Lee, C., Ball, N. D. & Sammis, G. M. One-pot fluorosulfurylation of Grignard reagents using sulfuryl fluoride. Chem. Commun. 55, 14753–14756 (2019).

    Article  Google Scholar 

  16. Gilbert, E. E. Recent developments in preparative sulfonation and sulfation. Synthesis 1969, 3–10 (1969).

    Article  Google Scholar 

  17. Lou, T. S.-B. & Willis, M. C. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat. Rev. Chem. 6, 146–162 (2022).

    Article  Google Scholar 

  18. Liu, Z. et al. Sufex click chemistry enabled late-stage drug functionalization. J. Am. Chem. Soc. 140, 2919–2925 (2018). This article presents a prime example of how the high-throughput SuFEx derivatization of drug molecules can lead to pronounced increases in potency.

    Article  Google Scholar 

  19. Padma, D. K., Subrahmanya Bhat, V. & Vasudeva Murthy, A. R. Reactions of sulphuryl fluoride, sulphuryl chlorofluoride and sulphuryl chloride with amines. J. Fluor. Chem. 20, 425–437 (1982).

    Article  Google Scholar 

  20. Liang, D.-D. et al. Silicon-free SuFEx reactions of sulfonimidoyl fluorides: scope, enantioselectivity, and mechanism. Angew. Chem. Int. Ed. 59, 7494–7500 (2020). This publication demonstrates the first asymmetric SuFEx reaction and presents a thorough investigation into some key aspects of the underlying SuFEx mechanism.

    Article  Google Scholar 

  21. Liang, D.-D., Pujari, S. P., Subramaniam, M., Besten, M. & Zuilhof, H. Configurationally chiral sufex-based polymers. Angew. Chem. Int. Ed. 61, e202116158 (2022).

    Article  Google Scholar 

  22. Krutak, J. J., Burpitt, R. D., Moore, W. H. & Hyatt, J. A. Chemistry of ethenesulfonyl fluoride. Fluorosulfonylethylation of organic compounds. J. Org. Chem. 44, 3847–3858 (1979).

    Article  Google Scholar 

  23. Chen, Q., Mayer, P. & Mayr, H. Ethenesulfonyl fluoride: the most perfect Michael acceptor ever found? Angew. Chem. Int. Ed. 55, 12664–12667 (2016).

    Article  Google Scholar 

  24. Meng, Y.-P. et al. Ethenesulfonyl fluoride (ESF) and its derivatives in SuFEx click chemistry and more. Synthesis 52, 673–687 (2019).

    Google Scholar 

  25. Leng, J. & Qin, H.-L. 1-Bromoethene-1-sulfonyl fluoride (1-Br-ESF), a new SuFEx clickable reagent, and its application for regioselective construction of 5-sulfonylfluoro isoxazoles. Chem. Commun. 54, 4477–4480 (2018).

    Article  Google Scholar 

  26. Smedley, C. J. et al. Diversity oriented clicking (DOC): divergent synthesis of SuFExable pharmacophores from 2-substituted-alkynyl-1-sulfonyl fluoride (SASF) hubs. Angew. Chem. Int. Ed. 59, 12460–12469 (2020). This article presents the concept of DOC, an innovative drug discovery technique that generates function by rapidly accessing structural diversity through sequential click reactions.

    Article  Google Scholar 

  27. Zhang, X., Fang, W.-Y. & Qin, H.-L. Regio- and stereoselective installation of bromide onto vinyl sulfonyl fluorides: construction of a class of versatile sulfur fluoride exchange hubs. Org. Lett. 24, 4046–4051 (2022).

    Article  Google Scholar 

  28. Nie, X. et al. Introducing a new class of sulfonyl fluoride hubs via radical chloro-fluorosulfonylation of alkynes. Angew. Chem. Int. Ed. 60, 22035–22042 (2021).

    Article  ADS  Google Scholar 

  29. Kaljurand, I. et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units:  unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005).

    Article  Google Scholar 

  30. Hyde, A. M., Calabria, R., Arvary, R., Wang, X. & Klapars, A. Investigating the underappreciated hydrolytic instability of 1,8-diazabicyclo[5.4.0]undec-7-ene and related unsaturated nitrogenous bases. Org. Process. Res. Dev. 23, 1860–1871 (2019).

    Article  Google Scholar 

  31. Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx click chemistry: sequential sulfur(vi) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56, 2903–2908 (2017). This publication reports the first use of SOF4 as a multidimensional SuFEx hub.

    Article  Google Scholar 

  32. Perea-Buceta, J. E. et al. Diverting hydrogenations with Wilkinson’s catalyst towards highly reactive rhodium(I) species. Angew. Chem. Int. Ed. 54, 14321–14325 (2015).

    Article  Google Scholar 

  33. Smedley, C. J. et al. Accelerated SuFEx click chemistry for modular synthesis. Angew. Chem. Int. Ed. 61, e202112375 (2022). The ‘accelerated’ method presented in this paper represents a enhancement of the traditional SuFEx reaction, allowing direct coupling of S–F hubs with unprotected alcohols in minutes.

    Article  Google Scholar 

  34. Liu, C. et al. A general approach to o-sulfation by a sulfur(VI) fluoride exchange reaction. Angew. Chem. Int. Ed. 59, 18435–18441 (2020).

    Article  Google Scholar 

  35. Kotsuki, H. H. in Superbases for Organic Synthesis. Guanidines, Amidines, Phosphazenes and Related Organocatalysts (ed. Ishikawa, T.) 187 (Wiley, 2009).

  36. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-based synthesis of polysulfates. Angew. Chem. Int. Ed. 53, 9466–9470 (2014).

    Article  Google Scholar 

  37. Mukherjee, P. et al. Sulfonamide synthesis via calcium triflimide activation of sulfonyl fluorides. Org. Lett. 20, 3943–3947 (2018).

    Article  Google Scholar 

  38. Han, B. et al. Calcium bistriflimide-mediated sulfur(VI)–fluoride exchange (SuFEx): mechanistic insights toward instigating catalysis. Inorg. Chem. 61, 9746–9755 (2022).

    Article  Google Scholar 

  39. Gao, B. et al. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083–1088 (2017).

    Article  Google Scholar 

  40. Lee, C. et al. The emerging applications of sulfur(VI) fluorides in catalysis. ACS Catal. 11, 6578–6589 (2021).

    Article  Google Scholar 

  41. Gembus, V., Marsais, F. & Levacher, V. An efficient organocatalyzed interconversion of silyl ethers to tosylates using DBU and p-toluenesulfonyl fluoride. Synlett 10, 1463–1466 (2008).

    Article  Google Scholar 

  42. Chao, Y. et al. Sulfur–phenolate exchange: SuFEx-derived dynamic covalent reactions and degradation of sufex polymers. Angew. Chem. Int. Ed. 61, e202207456 (2022).

    Article  Google Scholar 

  43. Zheng, Q. et al. Sulfur [18F]fluoride exchange click chemistry enabled ultrafast late-stage radiosynthesis. J. Am. Chem. Soc. 143, 3753–3763 (2021).

    Article  Google Scholar 

  44. van den Boom, A. F. J., Subramaniam, M. & Zuilhof, H. Sulfur-phenolate exchange as a fluorine-free approach to S(VI) exchange chemistry on sulfonyl moieties. Org. Lett. 24, 8621–8626 (2022).

    Article  Google Scholar 

  45. van den Boom, A. F. J. & Zuilhof, H. Sulfur-phenolate exchange as a mild, fast, and high-yielding method toward the synthesis of sulfonamides. Org. Lett. 25, 788–793 (2023).

    Article  Google Scholar 

  46. Dean, J. A. & Lange, N. A. Lange’s Handbook of Chemistry (McGraw-Hill, 1999).

  47. Mahapatra, S. et al. SuFEx activation with Ca(NTF2)2: a unified strategy to access sulfamides, sulfamates, and sulfonamides from S(VI) fluorides. Org. Lett. 22, 4389–4394 (2020).

    Article  Google Scholar 

  48. Chanda, A. & Fokin, V. V. Organic synthesis ‘on water’. Chem. Rev. 109, 725–748 (2009).

    Article  Google Scholar 

  49. Cortes-Clerget, M. et al. Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. Chem. Sci. 12, 4237–4266 (2021).

    Article  Google Scholar 

  50. Jung, Y. & Marcus, R. A. On the theory of organic catalysis ‘on water’. J. Am. Chem. Soc. 129, 5492–5502 (2007).

    Article  Google Scholar 

  51. Narayan, S. et al. ‘On water’: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005).

    Article  Google Scholar 

  52. Zheng, Q., Dong, J. & Sharpless, K. B. Ethenesulfonyl fluoride (ESF): an on-water procedure for the kilogram-scale preparation. J. Org. Chem. 81, 11360–11362 (2016).

    Article  Google Scholar 

  53. Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).

    Article  ADS  Google Scholar 

  54. Veryser, C., Demaerel, J., Bieliūnas, V., Gilles, P. & De Borggraeve, W. M. Ex situ generation of sulfuryl fluoride for the synthesis of aryl fluorosulfates. Org. Lett. 19, 5244–5247 (2017).

    Article  Google Scholar 

  55. Guo, T. et al. A new portal to SuFEx click chemistry: a stable fluorosulfuryl imidazolium salt emerging as an ‘F−SO2+’ donor of unprecedented reactivity, selectivity, and scope. Angew. Chem. 130, 2635–2640 (2018). This publication presents the development and deployment of a fluorosulfuryl imidazolium salt as a potent, bench-stable surrogate for sulfuryl fluoride gas.

    Article  ADS  Google Scholar 

  56. Zhou, H. et al. Introduction of a crystalline, shelf-stable reagent for the synthesis of sulfur(VI) fluorides. Org. Lett. 20, 812–815 (2018).

    Article  Google Scholar 

  57. Abbasov, M. E. et al. A proteome-wide atlas of lysine-reactive chemistry. Nat. Chem. 13, 1081–1092 (2021).

    Article  Google Scholar 

  58. Zhang, W. et al. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO2F radical reagent. Nat. Commun. 13, 3515 (2022).

    Article  ADS  Google Scholar 

  59. Abdul Fattah, T., Saeed, A. & Albericio, F. Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry. J. Fluor. Chem. 213, 87–112 (2018).

    Article  Google Scholar 

  60. Carneiro, S. N. et al. Sulfur(VI) fluorides as tools in biomolecular and medicinal chemistry. Org. Biomol. Chem. 21, 1356–1372 (2023).

    Article  Google Scholar 

  61. Kolb, H. C. & Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 8, 1128–1137 (2003).

    Article  Google Scholar 

  62. Wilson Lucas, S., Zijian Qin, R., Rakesh, K. P., Sharath Kumar, K. S. & Qin, H.-L. Chemical and biology of sulfur fluoride exchange (SuFEx) click chemistry for drug discovery. Bioinorg. Chem. 130, 106227 (2023).

    Article  Google Scholar 

  63. Glassford, I. et al. Ribosome-templated azide–alkyne cycloadditions: synthesis of potent macrolide antibiotics by in situ click chemistry. J. Am. Chem. Soc. 138, 3136–3144 (2016).

    Article  Google Scholar 

  64. Rodrik-Outmezguine, V. S. et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 534, 272 (2016).

    Article  ADS  Google Scholar 

  65. Scott, S. K. in DNA-Encoded Chemical Libraries: Methods and Protocols (eds Israel, D. & Ding, Y.) 39–43 (Springer, 2022).

  66. Jemielity, J., Chrominski, M., Ziemkiewicz, K. & Kowalska, J. Introducing SuFNucs: sulfamoyl-fluoride-functionalized nucleosides that undergo sulfur fluoride exchange reaction. Org. Lett. 24, 4977–4981 (2022).

    Article  Google Scholar 

  67. You, Y. et al. Sulfur(VI) fluoride exchange as a key reaction for synthesizing biaryl sulfate core derivatives as potent hepatitis C virus NS5A inhibitors and their structure–activity relationship studies. RSC Adv. 8, 31803–31821 (2018).

    Article  ADS  Google Scholar 

  68. Zhao, W. J. et al. Synthesis of novel pesticidal N,N’-disubstituted sulfamide derivatives using sulfur(VI) fluorine exchange click reaction. J. Argric. Food Chem. 69, 5798–5803 (2021).

    Article  Google Scholar 

  69. Liu, F. et al. Biocompatible sufex click chemistry: thionyl tetrafluoride (SOF4)-derived connective hubs for bioconjugation to DNA and proteins. Angew. Chem. Int. Ed. 58, 8029–8033 (2019).

    Article  ADS  Google Scholar 

  70. Kitamura, S. et al. Sulfur(VI) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. J. Am. Chem. Soc. 142, 10899–10904 (2020).

    Article  Google Scholar 

  71. Garnar-Wortzel, L. et al. Chemical inhibition of ENL/AF9 YEATS domains in acute leukemia. ACS Cent. Sci. 7, 815–830 (2021).

    Article  Google Scholar 

  72. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).

    Article  Google Scholar 

  73. De Vita, E. 10 years into the resurgence of covalent drugs. Future Med. Chem. 13, 193–210 (2021).

    Article  Google Scholar 

  74. Gehringer, M. & Laufer, S. A. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J. Med. Chem. 62, 5673–5724 (2019).

    Article  Google Scholar 

  75. Jones, L. H. in Design of Covalent-Based Inhibitors Vol. 56 (eds Ward, R. A. & Grimster, N. P.) 95–134 (Elsevier, 2021).

  76. Myers, D. K. & Kemp, A. Inhibition of esterases by the fluorides of organic acids. Nature 173, 33–34 (1954).

    Article  ADS  Google Scholar 

  77. Fahrney, D. E. & Gold, A. M. Sulfonyl fluorides as inhibitors of esterases. I. Rates of reaction with acetylcholinesterase, α-chymotrypsin, and trypsin. J. Am. Chem. Soc. 85, 997–1000 (1963).

    Article  Google Scholar 

  78. Gold, A. M. & Fahrney, D. Sulfonyl fluorides as inhibitors of esterases. II. Formation and reaction of phenylmethanesulfonyl alpha-chymotrypsin. Biochemistry 3, 783–791 (1964).

    Article  Google Scholar 

  79. Gold, A. M. Sulfonyl fluorides as inhibitors of esterases. III. Identification of serine as the site of sulfonylation in phenylmethanesulfonyl α-chymotrypsin. Biochemistry 4, 897–901 (1965).

    Article  Google Scholar 

  80. Baker, B. R. & Hurlbut, J. A. Irreversible enzyme inhibitors. CXIV. Proteolytic enzymes. 4. Additional active-site-directed irreversible inhibitors of α-chymotrypsin derived from phenoxyacetamides bearing a terminal sulfonyl fluoride. J. Med. Chem. 11, 241–245 (1968).

    Article  Google Scholar 

  81. Baker, B. R. & Hurlbut, J. A. Irreversible enzyme inhibitors. CXIII. Proteolytic enzymes. 3. Active-site-directed irreversible inhibitors of α-chymotrypsin derived from phenoxyacetamides with an N-fluoro-sulfonylphenyl substituent. J. Med. Chem. 11, 233–241 (1968).

    Article  Google Scholar 

  82. Baker, B. R. Specific irreversible enzyme inhibitors. Annu. Rev. Pharmacol. 10, 35–50 (1970).

    Article  Google Scholar 

  83. Laura, R., Robison, D. J. & Bing, D. H. (p-Amidinophenyl)methanesulfonyl fluoride, an irreversible inhibitor of serine proteases. Biochem 19, 4859–4864 (1980).

    Article  Google Scholar 

  84. Lively, M. O. & Powers, J. C. Specificity and reactivity of human granulocyte elastase and cathepsin G, porcine pancreatic elastase, bovine chymotrypsin and trypsin toward inhibition with sulfonyl flourides. Biochim. Biophys. Acta Enzymol. 525, 171–179 (1978).

    Article  Google Scholar 

  85. Yoshimura, T., Barker, L. N. & Powers, J. C. Specificity and reactivity of human-leukocyte elastase, porcine pancreatic elastase, human granulocyte cathepsin-G, and bovine pancreatic chymotrypsin with arylsulfonyl fluorides. Discovery of a new series of potent and specific irreversible elastase inhibitors. J. Biol. Chem. 257, 5077–5084 (1982).

    Article  Google Scholar 

  86. Shannon, D. A. et al. Sulfonyl fluoride analogues as activity-based probes for serine proteases. ChemBioChem 13, 2327–2330 (2012).

    Article  Google Scholar 

  87. Zheng, Q. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).

    Article  ADS  Google Scholar 

  88. Keeley, A., Petri, L., Abranyi-Balogh, P. & Keseru, G. M. Covalent fragment libraries in drug discovery. Drug Discov. Today 25, 983–996 (2020).

    Article  Google Scholar 

  89. Zhang, J. et al. Identification of simple arylfluorosulfates as potent agents against resistant bacteria. Proc. Natl Acad. Sci. USA 118, e2103513118 (2021).

    Article  Google Scholar 

  90. Tolmachova, K. A. et al. (Chlorosulfonyl)benzenesulfonyl fluorides — versatile building blocks for combinatorial chemistry: design, synthesis and evaluation of a covalent inhibitor library. ACS Comb. Sci. 20, 672–680 (2018).

    Article  Google Scholar 

  91. Cheng, Y. et al. Diversity oriented clicking delivers β-substituted alkenyl sulfonyl fluorides as covalent human neutrophil elastase inhibitors. Proc. Natl Acad. Sci. USA 119, e2208540119 (2022).

    Article  Google Scholar 

  92. Bum-Erdene, K. et al. Small-molecule covalent bond formation at tyrosine creates a binding site and inhibits activation of Ral GTPases. Proc. Natl Acad. Sci. USA 117, 7131–7139 (2020).

    Article  ADS  Google Scholar 

  93. Grimster, N. P. et al. Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. J. Am. Chem. Soc. 135, 5656–5668 (2013).

    Article  Google Scholar 

  94. Baranczak, A. et al. A fluorogenic aryl fluorosulfate for intraorganellar transthyretin imaging in living cells and in Caenorhabditis elegans. J. Am. Chem. Soc. 137, 7404–7414 (2015).

    Article  Google Scholar 

  95. Hett, E. C. et al. Rational targeting of active-site tyrosine residues using sulfonyl fluoride probes. ACS Chem. Biol. 10, 1094–1098 (2015).

    Article  Google Scholar 

  96. Fadeyi, O. O. et al. Covalent enzyme inhibition through fluorosulfate modification of a noncatalytic serine residue. ACS Chem. Biol. 12, 2015–2020 (2017).

    Article  ADS  Google Scholar 

  97. Gambini, L. et al. Covalent inhibitors of protein–protein interactions targeting lysine, tyrosine, or histidine residues. J. Med. Chem. 62, 5616–5627 (2019).

    Article  Google Scholar 

  98. Teng, M. X. et al. Rationally designed covalent BCL6 inhibitor that targets a tyrosine residue in the homodimer interface. ACS Med. Chem. Lett. 11, 1269–1273 (2020).

    Article  Google Scholar 

  99. Ippolito, J. A. et al. Covalent inhibition of wild-type HIV-1 reverse transcriptase using a fluorosulfate warhead. ACS Med. Chem. Lett. 12, 249–255 (2021).

    Article  Google Scholar 

  100. Bolding, J. E. et al. Aryl fluorosulfate based inhibitors that covalently target the SIRT5 lysine deacylase. Angew. Chem. Int. Ed. 61, e2022045 (2022).

    Article  Google Scholar 

  101. Baggio, C. et al. Aryl-fluorosulfate-based Lysine covalent pan-inhibitors of apoptosis protein (IAP) antagonists with cellular efficacy. J. Med. Chem. 62, 9188–9200 (2019).

    Article  ADS  Google Scholar 

  102. Udompholkul, P., Baggio, C., Gambini, L., Alboreggia, G. & Pellecchia, M. Lysine covalent antagonists of melanoma inhibitors of apoptosis protein. J. Med. Chem. 64, 16147–16158 (2021).

    Article  Google Scholar 

  103. Beerkens, B. L. H. et al. Development of subtype-selective covalent ligands for the adenosine A(2B) receptor by tuning the reactive group. RSC Med. Chem. 13, 850–856 (2022).

    Article  Google Scholar 

  104. Cruite, J. T. et al. Cereblon covalent modulation through structure-based design of histidine targeting chemical probes. RSC Chem. Biol. 3, 1105–1110 (2022).

    Article  Google Scholar 

  105. Gushwa, N. N., Kang, S., Chen, J. & Taunton, J. Selective targeting of distinct active site nucleophiles by irreversible Src-family kinase inhibitors. J. Am. Chem. Soc. 134, 20214–20217 (2012).

    Article  Google Scholar 

  106. Zhao, Q. et al. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc. 139, 680–685 (2017).

    Article  Google Scholar 

  107. Chen, W. et al. Arylfluorosulfates inactivate intracellular lipid binding protein(s) through chemoselective sufex reaction with a binding site Tyr residue. J. Am. Chem. Soc. 138, 7353–7364 (2016).

    Article  Google Scholar 

  108. Brighty, G. J. et al. Using sulfuramidimidoyl fluorides that undergo sulfur(VI) fluoride exchange for inverse drug discovery. Nat. Chem. 12, 906–913 (2020).

    Article  Google Scholar 

  109. Kline, G. M., Nugroho, K. & Kelly, J. W. Inverse drug discovery identifies weak electrophiles affording protein conjugates. Curr. Opin. Chem. Biol. 67, 102113 (2022).

    Article  Google Scholar 

  110. Dong, J., Krasnova, L. & Sharpless, K. B. Fluorosulfonyl sEH inhibitors. Patent WO2015188060A1 (2015).

  111. Liu, Z., Meng, G., Guo, T., Dong, J. & Wu, P. Novel approaches to access arylfluorosulfates and sulfamoyl fluorides based on sulfur (VI) fluoride exchange. Curr. Protoc. Chem. Biol. 11, e64 (2019).

    Article  Google Scholar 

  112. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002).

    Article  Google Scholar 

  113. Phelps, M. E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl Acad. Sci. USA 97, 9226–9233 (2000).

    Article  ADS  Google Scholar 

  114. Inkster, J. A. et al. Sulfonyl fluoride-based prosthetic compounds as potential 18F labelling agents. Eur. J. Chem. 18, 11079–11087 (2012).

    Article  Google Scholar 

  115. Zhang, B. et al. Synthesis, bioconjugation and stability studies of F-18 ethenesulfonyl fluoride. J. Label. Comp. Radiopharm. 61, 847–856 (2018).

    Article  Google Scholar 

  116. Zhang, W. et al. Synthesis and F-18 labeling of alkenyl sulfonyl fluorides via an unconventional elimination pathway. Org. Lett. 24, 4992–4997 (2022).

    Article  Google Scholar 

  117. Kwon, Y.-D. et al. Synthesis of 18F-labeled aryl fluorosulfates via nucleophilic radiofluorination. Org. Lett. 22, 5511–5516 (2020).

    Article  Google Scholar 

  118. Jeon, M. H. et al. Late-stage F-18/F-19 isotopic exchange for the synthesis of F-18-labeled sulfamoyl fluorides. Org. Lett. 23, 2766–2771 (2021).

    Article  Google Scholar 

  119. Li, H. et al. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 7, 95–111 (2023).

    Article  Google Scholar 

  120. Li, S. et al. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat. Chem. 13, 858–867 (2021). This work prepares unprecedented helical SuFEx-based polymers from SOF4 and showcases the SuFEx-based post-polymerization modifications that are possible.

    Article  Google Scholar 

  121. Liang, D.-D. et al. Silicon-free SuFEx reactions of sulfonimidoyl fluorides: scope, enantioselectivity, and mechanism. Angew. Chem. Int. Ed. 59, 7494–7500 (2020).

    Article  Google Scholar 

  122. Kim, H. et al. Chain-growth sulfur(VI) fluoride exchange polycondensation: molecular weight control and synthesis of degradable polysulfates. ACS Cent. Sci. 7, 1919–1928 (2021).

    Article  Google Scholar 

  123. Subramaniam, M., Ruggeri, F. S. & Zuilhof, H. Degradable click-reaction-based polymers as highly functional materials. Matter 5, 2490–2492 (2022).

    Article  Google Scholar 

  124. Choi, E. J., Jung, D., Kim, J.-S., Lee, Y. & Kim, B. M. Chemoselective tyrosine bioconjugation through sulfate click reaction. Chem. Eur. J. 24, 10948–10952 (2018).

    Article  Google Scholar 

  125. Chen, W. T. et al. Synthesis of sulfotyrosine-containing peptides by incorporating fluorosulfated tyrosine using an Fmoc-based solid-phase strategy. Angew. Chem. Int. Ed. 55, 1835–1838 (2016).

    Article  Google Scholar 

  126. McCann, H. M. et al. Covalent immune proximity-induction strategy using SuFEx engineered bifunctional viral peptides. ACS Chem. Biol. 17, 1269–1281 (2022).

    Article  Google Scholar 

  127. Faucher, F. F. et al. Solid phase synthesis of fluorosulfate containing macrocycles for chemoproteomic workflows. Isr. J. Chem. 63, e202300020 (2023).

    Article  Google Scholar 

  128. Hoppmann, C. & Wang, L. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53-Mdm4. Chem. Commun. 52, 5140–5143 (2016).

    Article  Google Scholar 

  129. Tabuchi, Y., Watanabe, T., Katsuki, R., Ito, Y. & Taki, M. Direct screening of a target-specific covalent binder: stringent regulation of warhead reactivity in a matchmaking environment. Chem. Commun. 57, 5378–5381 (2021).

    Article  Google Scholar 

  130. Tabuchi, Y., Yang, J. & Taki, M. Inhibition of thrombin activity by a covalent-binding aptamer and reversal by the complementary strand antidote. Chem. Commun. 57, 2483–2486 (2021).

    Article  Google Scholar 

  131. Tabuchi, Y., Yang, J. & Taki, M. Relative nuclease resistance of a DNA aptamer covalently conjugated to a target protein. Int. J. Mol. Sci. 23, 7778 (2022).

    Article  Google Scholar 

  132. Wang, N. et al. Genetically encoding fluorosulfate-l-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140, 4995–4999 (2018).

    Article  Google Scholar 

  133. Liu, J. et al. A genetically encoded fluorosulfonyloxybenzoyl-l-lysine for expansive covalent bonding of proteins via SuFEx chemistry. J. Am. Chem. Soc. 143, 10341–10351 (2021).

    Article  Google Scholar 

  134. Yu, B. et al. Accelerating PERx reaction enables covalent nanobodies for potent neutralization of SARS-CoV-2 and variants. Chem 8, 2766–2783 (2022).

    Article  Google Scholar 

  135. Han, Y. et al. Covalently engineered protein minibinders with enhanced neutralization efficacy against escaping SARS-CoV-2 variants. J. Am. Chem. Soc. 144, 5702–5707 (2022).

    Article  Google Scholar 

  136. Li, Q. et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 182, 85–97.e16 (2020).

    Article  Google Scholar 

  137. Sun, W. et al. Genetically encoded chemical crosslinking of RNA in vivo. Nat. Chem. 15, 21–32 (2023).

    Article  Google Scholar 

  138. Li, S., Wang, N., Yu, B., Sun, W. & Wang, L. Genetically encoded chemical crosslinking of carbohydrate. Nat. Chem. 15, 33–42 (2023).

    Article  Google Scholar 

  139. Yang, B. et al. Genetically introducing biochemically reactive amino acids dehydroalanine and dehydrobutyrine in proteins. J. Am. Chem. Soc. 141, 7698–7703 (2019).

    Article  Google Scholar 

  140. Narayanan, A. & Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 6, 2650–2659 (2015).

    Article  Google Scholar 

  141. Mukherjee, H. et al. A study of the reactivity of S(VI)–F containing warheads with nucleophilic amino-acid side chains under physiological conditions. Org. Biomol. Chem. 15, 9685–9695 (2017).

    Article  Google Scholar 

  142. Fadeyi, O. et al. Chemoselective preparation of clickable aryl sulfonyl fluoride monomers: a toolbox of highly functionalized intermediates for chemical biology probe synthesis. ChemBioChem 17, 1925–1930 (2016).

    Article  Google Scholar 

  143. Mallia, C. J. & Baxendale, I. R. The use of gases in flow synthesis. Org. Process Res. Dev. 20, 327–360 (2016).

    Article  Google Scholar 

  144. Zhang, Z.-X. & Willis, M. C. Sulfondiimidamides as new functional groups for synthetic and medicinal chemistry. Chem 8, 1137–1146 (2022).

    Article  Google Scholar 

  145. Greed, S. et al. Synthesis of highly enantioenriched sulfonimidoyl fluorides and sulfonimidamides by stereospecific sulfur–fluorine exchange (SuFEx) reaction. Eur. J. Chem. 26, 12533–12538 (2020).

    Article  Google Scholar 

  146. Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).

    Article  Google Scholar 

  147. Sun, S. et al. Phosphorus fluoride exchange: multidimensional catalytic click chemistry from phosphorus connective hubs. Chem 9, 1–16 (2023).

    Google Scholar 

  148. Baum, Z. J. et al. Artificial intelligence in chemistry: current trends and future directions. J. Chem. Inf. Model. 61, 3197–3212 (2021).

    Article  Google Scholar 

  149. No authors listed. New horizons in chemical space. Nat. Rev. Drug Discov. 3, 375–375 (2004).

    Article  Google Scholar 

  150. Moorhouse, A. D., Homer, J. A. & Moses, J. E. The certainty of a few good reactions. Chem 9, 1–15 (2023).

    Google Scholar 

Download references

Acknowledgements

J.E.M. is financially supported by the NCI Cancer Center Support Grant 5P30CA045508, The F. M. Kirby Foundation, Sunshine Foundation, S. J. Edwards, The Starr Foundation and The Wasily Family Foundation. J.D. is thankful for the financial support from Ministry of Science and Technology of China, Major State Basic Research Development Program of China (2021YFF0701704) and Shanghai Pilot Program for Basic Research, Shanghai Jiao Tong University. H.Z. is supported by the National Science Foundation of China (Grants 21871208 and 22011530163, both to H.Z.), Tianjin University and Wageningen University (both H.Z. and N.K.). K.B.S. is supported by the National Institutes of Health (R01GM117145). Q.Z. is the Connie and Bob Lurie Fellow of the Damon Runyon Cancer Research Foundation (DRG-2434-21). B.M.K. was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) and funded by the Ministry of Science and ICT (No. NRF-2017M3A9F6029755).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.A.H. and J.E.M.); Experimentation (J.A.H., L.X., N.K., H.Z., J.D. and J.E.M.), Applications (J.A.H., N.K., Q.Z., E.J.C., B.M.K., K.B.S., H.Z. and J.E.M.); Reproducibility and data deposition (J.A.H. and J.E.M.); Limitations and optimizations (J.A.H. and J.E.M.); Outlook (J.A.H. and J.E.M.); Overview of the Primer (J.A.H. and J.E.M.). J.A.H. and J.E.M. coordinated the compilation of the manuscript.

Corresponding author

Correspondence to John E. Moses.

Ethics declarations

Competing interests

Details of patents covering material related to the content of this Primer can be found in the Supplementary information. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Nicholas Ball, Tae Kyo Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Dispersity

A measure of the heterogeneity of a polymer sample.

Organosuperbase

Strong organic base with a basicity greater than that of proton sponge (pKBH+ 18.6 in MeCN).

Orthogonality

The selective reactivity of functional groups only when exposed to specific reaction conditions, while remaining untouched in all other instances.

SuFExability

The propensity of an S–F-containing functional group to undergo catalyst-mediated exchange.

SuFExable

Functional groups containing sulfur-fluoride bonds that are compatible electrophiles in the sulfur fluoride exchange (SuFEx) reaction (such as sulfonyl fluorides, fluorosulfates and iminosulfur oxydifluorides).

SuFExed

The incorporation of a sulfur fluoride exchangeable (SuFExable) group to the native structure of a molecule (such as ligand and drug).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homer, J.A., Xu, L., Kayambu, N. et al. Sulfur fluoride exchange. Nat Rev Methods Primers 3, 58 (2023). https://doi.org/10.1038/s43586-023-00241-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00241-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research