Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Spatial multiplexing and omics

An Author Correction to this article was published on 02 September 2024

This article has been updated

Abstract

Much like solving a game of Clue, understanding physiological mysteries involves answering who, what, when and where. Multiomics approaches delve into cellular and molecular identities (the who and what), whereas longitudinal data collection addresses the when. Spatial dimensions address the where. This Primer discusses current technologies enabling quantification across biological scales, emphasizing the importance of retaining the spatial dimension of that data. We outline experimental design considerations, including targeted versus untargeted approaches, sample types, biological scale and four main classes of molecule detection. Spatial analytics are explored, covering questioning approaches, analytical platforms, image segmentation and sampling. Example applications, reproducibility considerations, limitations and our outlook for the future are provided. Our goal is to unite spatial platforms and biological scales that not commonly brought together to encourage collaboration and innovation between diverse biological fields, offering a conceptional framework and an apples-to-apples comparison for understanding major technologies to foster cross-disciplinary dialogue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological questioning through a spatial lens.
Fig. 2: Biological scale of common spatial technologies.
Fig. 3: Experimentation tools diagram.
Fig. 4: Acquisition area and marker throughput by commercial platforms and biological scale.
Fig. 5: Technological integration roadmap.

Similar content being viewed by others

Change history

References

  1. Walsh, L. & Quail, D. Decoding the tumor microenvironment with spatial technologies. Nat. Immunol. 24, 1982–1993 (2023).

    Article  Google Scholar 

  2. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).

    Article  Google Scholar 

  3. Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

    Article  Google Scholar 

  4. van Dam, S., Baars, M. J. D. & Vercoulen, Y. Multiplex tissue imaging: spatial revelations in the tumor microenvironment. Cancers 14, 3170 (2022).

    Article  Google Scholar 

  5. Hayes, M. & Lim, A. Increase cell painting assay throughput using an automated workstation. Molecular Devices https://www.moleculardevices.com/en/assets/app-note/dd/img/increase-cell-painting-assay-throughput-using-an-automated-workstation (2022).

  6. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    Article  Google Scholar 

  7. Väyrynen, J. P. et al. Spatial organization and prognostic significance of NK and NKT-like cells via multimarker analysis of the colorectal cancer microenvironment. Cancer Immunol. Res. 10, 215–227 (2022).

    Article  Google Scholar 

  8. Magaki, S., Hojat, S. A., Wei, B., So, A. & Yong, W. H. An introduction to the performance of immunohistochemistry. Methods Mol. Biol. 1897, 289–298 (2019).

    Article  Google Scholar 

  9. Kim, S.-W., Roh, J. & Park, C.-S. Immunohistochemistry for pathologists: protocols, pitfalls, and tips. J. Pathol. Transl. Med. 50, 411–418 (2016).

    Article  Google Scholar 

  10. Meyerholz, D. K. & Beck, A. P. Principles and approaches for reproducible scoring of tissue stains in research. Lab. Invest. 98, 844–855 (2018).

    Article  Google Scholar 

  11. Peters, S. The art of frozen tissue sectioning. Leica Biosystems https://www.leicabiosystems.com/us/knowledge-pathway/the-art-of-embedding-tissue-for-frozen-section/ (2024).

  12. O’Rourke, M. B., Raymond, B. B. A., Djordjevic, S. P. & Padula, M. P. A versatile cost-effective method for the analysis of fresh frozen tissue sections via matrix-assisted laser desorption/ionisation imaging mass spectrometry. Rapid Commun. Mass Spectrom. 29, 637–644 (2015).

    Article  ADS  Google Scholar 

  13. Shimma, S. & Sugiura, Y. Effective sample preparations in imaging mass spectrometry. Mass Spectrom. 3, S0029 (2014).

    Article  Google Scholar 

  14. Coulter, H. D. & Terracio, L. Preparation of biological tissues for electron microscopy by freeze-drying. Anat. Rec. 187, 477–494 (1977).

    Article  Google Scholar 

  15. Shao, F. et al. Frozen tissue preparation for high-resolution multiplex histological analyses of human brain specimens. J. Neurooncol. 135, 21–28 (2017).

    Article  Google Scholar 

  16. Warram, J. M. et al. Antibody based imaging strategies of cancer. Cancer Metastasis Rev. 33, 809–822 (2014).

    Article  Google Scholar 

  17. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  ADS  Google Scholar 

  18. Weber, K., Bartsch, U., Stocking, C. & Fehse, B. A multicolor panel of novel lentiviral ‘gene ontology’ (LeGO) vectors for functional gene analysis. Mol. Ther. 16, 698–706 (2008).

    Article  Google Scholar 

  19. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  Google Scholar 

  20. Refaat, A. et al. In vivo fluorescence imaging: success in preclinical imaging paves the way for clinical applications. J. Nanobiotechnol. 20, 450 (2022).

    Article  Google Scholar 

  21. Molotkov, A. et al. 3D optical/CT as a preclinical companion imaging platform for glioblastoma drug development. Drug Deliv. 27, 1686–1694 (2020).

    Article  Google Scholar 

  22. Olsen, C. & Ha, H. Evaluate cell migration with FluoroBlok Inserts on the SpectraMax MiniMax Cytometer. Molecular Devices https://www.moleculardevices.com/en/assets/app-note/br/evaluate-cell-migration-with-fluoroblok-inserts-on-the-spectramax-minimax-cytometer (2017).

  23. Prigozhin, M. B. et al. Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nat. Nanotechnol. 14, 420–425 (2019).

    Article  ADS  Google Scholar 

  24. Shahidi, R. et al. A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes. eLife 4, e11147 (2015).

    Article  Google Scholar 

  25. Lin, J.-R. et al. High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers. Nat. Cancer 4, 1036–1052 (2023).

    Article  Google Scholar 

  26. Carstens, J. L. et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 8, 15095 (2017). This article presents the utility of spatial point processing of T cell infiltration as a prognostic factor in pancreatic cancers.

    Article  ADS  Google Scholar 

  27. Ragan, T. et al. Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging. Nat. Methods 9, 255–258 (2012).

    Article  Google Scholar 

  28. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).

    Article  Google Scholar 

  29. Guo, C. et al. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature 623, 1053–1061 (2023).

    Article  ADS  Google Scholar 

  30. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).

    Article  ADS  Google Scholar 

  31. Jhaveri, N. et al. Mapping the spatial proteome of head and neck tumors: key immune mediators and metabolic determinants in the tumor microenvironment. GEN Biotechnol. 2, 418–434 (2023).

    Article  Google Scholar 

  32. Kinkhabwala, A. et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci. Rep. 12, 1911 (2022).

    Article  ADS  Google Scholar 

  33. Neil, E. et al. Spatial protein and RNA analysis on the same tissue section using MICS technology. Preprint at bioRxiv https://doi.org/10.1101/2023.10.27.564191 (2023).

  34. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

    Article  Google Scholar 

  35. Jarosch, S. et al. Multimodal immune cell phenotyping in GI biopsies reveals microbiome-related T cell modulations in human GvHD. Cell Rep. Med. 4, 101125 (2023).

    Article  Google Scholar 

  36. Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, 46 (2018).

    Article  ADS  Google Scholar 

  37. Claes, B. S. R. et al. MALDI-IHC-guided in-depth spatial proteomics: targeted and untargeted MSI combined. Anal. Chem. 95, 2329–2338 (2023).

    Article  Google Scholar 

  38. Lim, M. J. et al. MALDI HiPLEX-IHC: multiomic and multimodal imaging of targeted intact proteins in tissues. Front. Chem. 11, 1182404 (2023).

    Article  ADS  Google Scholar 

  39. Yagnik, G., Liu, Z., Rothschild, K. J. & Lim, M. J. Highly multiplexed immunohistochemical MALDI-MS imaging of biomarkers in tissues. J. Am. Soc. Mass Spectrom. 32, 977–988 (2021).

    Article  Google Scholar 

  40. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

    Article  Google Scholar 

  41. Hernandez, S. et al. Challenges and opportunities for immunoprofiling using a spatial high-plex technology: the Nanostring GeoMx® Digital Spatial Profiler. Front. Oncol. 12, 890410 (2022).

    Article  Google Scholar 

  42. Llorens-Bobadilla, E. et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat. Biotechnol. 41, 1085–1088 (2023).

    Article  Google Scholar 

  43. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  Google Scholar 

  44. Nagendran, M. et al. 1457 Visium HD enables spatially resolved, single-cell scale resolution mapping of FFPE human breast cancer tissue. J. Immunother. Cancer https://doi.org/10.1136/jitc-2023-SITC2023.1457 (2023).

  45. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  ADS  Google Scholar 

  46. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  Google Scholar 

  47. Wirth, J. et al. Spatial transcriptomics using multiplexed deterministic barcoding in tissue. Nat. Commun. 14, 1523 (2023).

    Article  ADS  Google Scholar 

  48. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    Article  Google Scholar 

  49. Fu, X. et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 185, 4621–4633.e17 (2022).

    Article  Google Scholar 

  50. Cho, C.-S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572.e22 (2021).

    Article  Google Scholar 

  51. Wei, X. et al. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377, eabp9444 (2022).

    Article  Google Scholar 

  52. Borm, L. E. et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat. Biotechnol. 41, 222–231 (2023).

    Google Scholar 

  53. Manesse, M., Patel, K. K., Bobrow, M. & Downing, S. R. The InSituPlex® staining method for multiplexed immunofluorescence cell phenotyping and spatial profiling of tumor FFPE samples. Methods Mol. Biol. 2055, 585–592 (2020).

    Article  Google Scholar 

  54. Chen, J. et al. Molecular and spatial signatures of mouse embryonic endothelial cells at single-cell resolution. Circ. Res. 134, 529–546 (2024).

    Article  Google Scholar 

  55. Wang, C. Y. et al. Molecular self-avoidance in synaptic neurexin complexes. Sci. Adv. 7, eabk1924 (2021).

    Article  ADS  Google Scholar 

  56. Eser, P. Ö. et al. Oncogenic switch and single-agent MET inhibitor sensitivity in a subset of EGFR-mutant lung cancer. Sci. Transl. Med. 13, eabb3738 (2021).

    Article  Google Scholar 

  57. Janesick, A. et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 14, 8353 (2023).

    Article  ADS  Google Scholar 

  58. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  Google Scholar 

  59. Wang, H. et al. Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. Preprint at bioRxiv https://doi.org/10.1101/2023.12.07.570603 (2023). The authors compare similar spatial transcriptomics platforms for performance, consistency and capability to capture transcripts.

  60. Manshouri, T. et al. GLI1 activates pro-fibrotic pathways in myelofibrosis fibrocytes. Cell Death Dis. 13, 481 (2022).

    Article  Google Scholar 

  61. Nagarajan, M. B., Tentori, A. M., Zhang, W. C., Slack, F. J. & Doyle, P. S. Spatially resolved and multiplexed microRNA quantification from tissue using nanoliter well arrays. Microsyst. Nanoeng. 6, 1–9 (2020).

    Article  ADS  Google Scholar 

  62. Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    Article  ADS  Google Scholar 

  63. Li, Z. et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat. Commun. 12, 2869 (2021).

    Article  ADS  Google Scholar 

  64. Maciel, L. Í. L. et al. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal. Bioanal. Chem. 415, 4125–4145 (2023).

    Article  Google Scholar 

  65. Moore, J. L. & Charkoftaki, G. A guide to MALDI imaging mass spectrometry for tissues. J. Proteome Res. 22, 3401–3417 (2023). An introduction to matrix-assisted laser desorption ionization mass spectrometry imaging highlighting what types of analyses are possible with fresh frozen versus formalin-fixed paraffin-embedded tissue.

    Article  Google Scholar 

  66. Gessel, M. M., Norris, J. L. & Caprioli, R. M. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J. Proteom. 107, 71–82 (2014).

    Article  Google Scholar 

  67. Jia, F., Zhao, X. & Zhao, Y. Advancements in ToF-SIMS imaging for life sciences. Front. Chem. 11, 1237408 (2023).

    Article  ADS  Google Scholar 

  68. Vickerman, C. J. Molecular imaging and depth profiling by mass spectrometry — SIMS, MALDI or DESI? Analyst 136, 2199–2217 (2011).

    Article  ADS  Google Scholar 

  69. He, M. J. et al. Comparing DESI-MSI and MALDI-MSI mediated spatial metabolomics and their applications in cancer studies. Front. Oncol. 12, 891018 (2022).

    Article  Google Scholar 

  70. Claude, E., Towers, M. & Ballantyne, J. Full spectrum molecular imaging on the SYNAPT XS: combined imaging techniques yield comprehensive results. Waters Corporation https://www.waters.com/content/dam/waters/en/app-notes/2020/720006851/720006851-en.pdf (2020).

  71. Waters Corporation. MS Imaging – the SELECT SERIES™ MALDI and MRT. www.waters.com/webassets/cms/library/docs/720007652en.pdf (2022).

  72. Oetjen, J. et al. Novel MALDI Imaging solution empowered by a timsTOF flex and dedicated bioinformatics pipeline for identification of lipids from tissue. https://www.bruker.com/en/applications/academia-life-science/imaging/maldi-imaging/SpatialOMx/_jcr_content/root/sections/section_1751684075/sectionpar/search.download-asset.pdf/10b76c66-2228-4ab5-bbbe-1f5937c336ee/1869079-lcms-156-maldi-imaging-by-timstof-flex-ebook-rev-01.pdf (2019).

  73. Müller, L. et al. A high-throughput MALDI-TOF MS biochemical screen for small molecule inhibitors of the antigen aminopeptidase ERAP1. SLAS Discov. 28, 3–11 (2023).

    Article  Google Scholar 

  74. Takahashi, Y. et al. Pharmacokinetic analysis by mass spectrometric imaging and highly sensitive quantification of metabolites by micro LC/MS. in 70th ASMS Conference on Mass Spectrometry and Allied Topics (ASMS, 2022).

  75. Spengler, B. et al. High Resolution in Mass and Space: AP-MALDI Imaging Using Orbitrap-based Instrumentation (ASMS, 2012).

  76. Satoh, T., Kubo, A., Shimma, S. & Toyoda, M. Mass spectrometry imaging and structural analysis of lipids directly on tissue specimens by using a spiral orbit type tandem time-of-flight mass spectrometer, spiralTOF-TOF. Mass Spectrom. 1, A0013 (2012).

    Article  Google Scholar 

  77. Aichler, M. & Walch, A. MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab. Invest. 95, 422–431 (2015).

    Article  Google Scholar 

  78. Zavalin, A., Yang, J., Hayden, K., Vestal, M. & Caprioli, R. M. Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. Anal. Bioanal. Chem. 407, 2337–2342 (2015).

    Article  Google Scholar 

  79. Munjoma, N. et al. Improved detection and identification of lipids using the Xevo G3 QToF mass spectrometer (ASMS, 2023).

  80. Shrestha, B., Towers, M., Olivos, H., Midley, A. & Claude, E. Spatial distribution of isobaric lipids using high-resolution ion mobility with the DESI XS (ICMS, 2021).

  81. Waters Corporation. MS Imaging — DESI XS and SELECT SERIES MRT (Waters Corporation, 2021).

  82. Waters Corporation. Targeted MS imaging solution with DESI XS and Xevo TQ absolute brochure. Waters Corporation https://www.waters.com/webassets/cms/library/docs/720007975en.pdf (2023).

  83. Eberlin, L. S. et al. DESI then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections. Anal. Chem. 83, 8366–8371 (2011).

    Article  Google Scholar 

  84. Sans, M. et al. Integrated spatial transcriptomics and lipidomics of precursor lesions of pancreatic cancer identifies enrichment of long chain sulfatide biosynthesis as an early metabolic alteration. Preprint at. bioRxiv https://doi.org/10.1101/2023.08.14.553002 (2023).

  85. Wilkinson, D. J. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. Mass Spectrom. Rev. 37, 57–80 (2018).

    Article  ADS  Google Scholar 

  86. Chen, Y.-D. et al. Microscopy-guided subcellular proteomic discovery by high-speed ultra-content photo-biotinylation. Preprint at bioRxiv https://doi.org/10.1101/2023.12.27.573388 (2023).

  87. Bortolomeazzi, M. et al. A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution. Nat. Commun. 13, 781 (2022).

    Article  ADS  Google Scholar 

  88. Pemberton, J., Kala, S., Dikshit, A. & Hupple, C. 1490 High-plex co-detection of RNA and protein to explore tumor-immune interactions utilizing RNAscope with imaging mass cytometry. J. Immunother. Cancer 11, 1654 (2023).

    Google Scholar 

  89. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  Google Scholar 

  90. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

    Article  ADS  Google Scholar 

  91. Iyer, A., Hamers, A. A. J. & Pillai, A. B. CyTOF® for the masses. Front. Immunol. 13, 815828 (2022).

    Article  Google Scholar 

  92. Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2022).

    Article  Google Scholar 

  93. Ma, T. et al. Single-cell glycomics analysis by CyTOF-Lec reveals glycan features defining cells differentially susceptible to HIV. eLife 11, e78870 (2022).

    Article  Google Scholar 

  94. Vaquero, J. J. & Kinahan, P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu. Rev. Biomed. Eng. 17, 385–414 (2015).

    Article  Google Scholar 

  95. Amirrashedi, M., Zaidi, H. & Ay, M. R. Towards quantitative small-animal imaging on hybrid PET/CT and PET/MRI systems. Clin. Transl. Imaging 8, 243–263 (2020).

    Article  Google Scholar 

  96. Goorden, M. C. et al. VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J. Nucl. Med. 54, 306–312 (2013).

    Article  Google Scholar 

  97. SOFIE. SOFIE-GNEXT PET/CT. SOFIE https://sofie.com/wp-content/uploads/2022/09/SOFIE-GNEXT-Brochure-Digital.pdf (2024).

  98. Szanda, I. et al. National Electrical Manufacturers Association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J. Nucl. Med. 52, 1741–1747 (2011).

    Article  Google Scholar 

  99. Molinos, C. et al. Low-dose imaging in a new preclinical total-body PET/CT scanner. Front. Med. 6, 88 (2019).

    Article  ADS  Google Scholar 

  100. MR Solutions. MR solutions’ preclinical PET/CT product range molecular imaging. MR Solutions https://www.mrsolutions.com/molecular-imaging/molecular-imaging/pet-ct-molecular-imaging/ (2021).

  101. Prieto, E. et al. Performance evaluation of a preclinical SPECT/CT system for multi-animal and multi-isotope quantitative experiments. Sci. Rep. 12, 18161 (2022).

    Article  ADS  Google Scholar 

  102. Lukas, M., Kluge, A., Beindorff, N. & Brenner, W. Multi-isotope capabilities of a small-animal multi-pinhole SPECT system. J. Nucl. Med. 61, 152–161 (2020).

    Article  Google Scholar 

  103. MR Solutions. MRS*SPECT/CT/MR — MR solutions. MR Solutions https://www.mrsolutions.com/molecular-imaging/molecular-imaging/spect-ct-mr/ (2021).

  104. Sánchez, F. et al. ALBIRA: a small animal PET/SPECT/CT imaging system. Med. Phys. 40, 051906 (2013).

    Article  Google Scholar 

  105. Krishnamoorthy, S. et al. Performance evaluation of the MOLECUBES β-CUBE — a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys. Med. Biol. 63, 155013 (2018).

    Article  Google Scholar 

  106. Braeckman, K., Neyt, S., Deprez, K., Vandeghinste, B. & Mollet, P. In vivo use of a compact high sensitivity mouse collimator. J. Nucl. Med. 63, 3326 (2022).

    Google Scholar 

  107. Cai, Z. et al. Early detection of increased marrow adiposity with age in rats using Z-spectral MRI at ultra-high field (7 T). NMR Biomed. 35, e4633 (2022).

    Article  Google Scholar 

  108. Klohs, J. & Herrmann, S. Preclinical MRI of Neurological DiseasesFrom Morphological Imaging to the Mapping of Tissue Properties. White Paper https://ok.bruker.com/social-doc/Twitter/BBIO-Imaging/Bruker/uct,mri,nmi,bbio,bbioimaging,Imaging/ui/FZpNEq/ (2023).

  109. MR Solutions. Preclinical MRI 3 T–4.7 T–7 T–9.4 T — Variable field — Cryogen-free. MR Solutions https://www.mrsolutions.com/mr-imaging/mr-imaging/mr-dry-magnet-cryogen-free/ (2021).

  110. Nagy, K. et al. Performance evaluation of the small-animal nanoScan PET/MRI system. J. Nucl. Med. 54, 1825–1832 (2013).

    Article  Google Scholar 

  111. Gsell, W. et al. Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing. Phys. Med. Biol. 65, 245016 (2020).

    Article  Google Scholar 

  112. Yang, M. et al. Multiplexed PET probes for imaging breast cancer early response to VEGF121/rGel treatment. Mol. Pharm. 8, 621–628 (2011).

    Article  Google Scholar 

  113. Parot, V. et al. A new approach for multiplexed PET imaging. IEEE Nucl. Sci. Symposium Med. Imaging Conf. (IEEE, 2014).

  114. Yang, J. J. et al. Rational design of protein-based MRI contrast agents. J. Am. Chem. Soc. 130, 9260–9267 (2008).

    Article  Google Scholar 

  115. Kupče, Ē., Mote, K. R., Webb, A., Madhu, P. K. & Claridge, T. D. W. Multiplexing experiments in NMR and multi-nuclear MRI. Prog. Nucl. Magnet. Reson. Spectrosc. 124–125, 1–56 (2021).

    Google Scholar 

  116. Adams, S. R. et al. Multicolor electron microscopy for simultaneous visualization of multiple molecular species. Cell Chem. Biol. 23, 1417–1427 (2016).

    Article  Google Scholar 

  117. Scotuzzi, M. et al. Multi-color electron microscopy by element-guided identification of cells, organelles and molecules. Sci. Rep. 7, 45970 (2017).

    Article  ADS  Google Scholar 

  118. Sibai, M. et al. The spatial landscape of cancer hallmarks reveals patterns of tumor ecology. Preprint at bioRxiv https://doi.org/10.1101/2022.06.18.496114 (2023).

  119. Dries, R. et al. Advances in spatial transcriptomic data analysis. Genome Res. 31, 1706–1718 (2021).

    Article  Google Scholar 

  120. Liao, J. et al. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat. Commun. 13, 6498 (2022).

    Article  ADS  Google Scholar 

  121. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  Google Scholar 

  122. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  Google Scholar 

  123. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  Google Scholar 

  124. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e21 (2019).

    Article  Google Scholar 

  125. Ben-Chetrit, N. et al. Integration of whole transcriptome spatial profiling with protein markers. Nat. Biotechnol. 41, 788–793 (2023).

    Article  Google Scholar 

  126. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  Google Scholar 

  127. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  Google Scholar 

  128. Chidester, B., Zhou, T., Alam, S. & Ma, J. SPICEMIX enables integrative single-cell spatial modeling of cell identity. Nat. Genet. 55, 78–88 (2023).

    Article  Google Scholar 

  129. Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat. Methods 19, 1490–1499 (2022).

    Article  Google Scholar 

  130. Feng, H., Lin, L. & Chen, J. scDIOR: single cell RNA-seq data IO software. BMC Bioinformatics 23, 16 (2022).

    Article  Google Scholar 

  131. Bosisio, F. M. et al. Next-generation pathology using multiplexed immunohistochemistry: mapping tissue architecture at single-cell level. Front. Oncol. 12, 918900 (2022).

    Article  Google Scholar 

  132. Baars, M. J. D. et al. MATISSE: a method for improved single cell segmentation in imaging mass cytometry. BMC Biol. 19, 99 (2021).

    Article  Google Scholar 

  133. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article  Google Scholar 

  134. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).

    Article  Google Scholar 

  135. Palhares Viana, M. & Rafelski, S. A new open source toolkit for segmenting 3D intracellular structures in microscopy images. Biophys. J. 116, 290a (2019).

    Article  Google Scholar 

  136. Bannon, D. et al. DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes. Nat. Methods 18, 43–45 (2021).

    Article  Google Scholar 

  137. DigitalSlideArchive/HistomicsTK. Digital Slide Archive (2024).

  138. Lee, M. Y. et al. CellSeg: a robust, pre-trained nucleus segmentation and pixel quantification software for highly multiplexed fluorescence images. BMC Bioinformatics 23, 46 (2022).

    Article  Google Scholar 

  139. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    Article  Google Scholar 

  140. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  ADS  Google Scholar 

  141. Navikas, V. et al. Semi-automated approaches for interrogating spatial heterogeneity of tissue samples. Sci. Rep. 14, 5025 (2024).

    Article  ADS  Google Scholar 

  142. Escobar Díaz Guerrero, R., Carvalho, L., Bocklitz, T., Popp, J. & Oliveira, J. L. Software tools and platforms in digital pathology: a review for clinicians and computer scientists. J. Pathol. Inf. 13, 100103 (2022). A high-level view of the current state of computational pathology introducing readers to both legacy and novel user-friendly pathology image analysis software comparing and contrasting their features for users to determine what is appropriate for their particular use case.

    Article  Google Scholar 

  143. Durkee, M. S., Abraham, R., Clark, M. R. & Giger, M. L. Artificial intelligence and cellular segmentation in tissue microscopy images. Am. J. Pathol. 191, 1693–1701 (2021).

    Article  Google Scholar 

  144. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    Article  Google Scholar 

  145. Yuan, Y. Spatial heterogeneity in the tumor microenvironment. Cold Spring Harb. Perspect. Med. 6, a026583 (2016).

    Article  Google Scholar 

  146. Barua, S. et al. Spatial interaction of tumor cells and regulatory T cells correlates with survival in non-small cell lung cancer. Lung Cancer 117, 73–79 (2018).

    Article  Google Scholar 

  147. Maley, C. C., Koelble, K., Natrajan, R., Aktipis, A. & Yuan, Y. An ecological measure of immune-cancer colocalization as a prognostic factor for breast cancer. Breast Cancer Res. 17, 131 (2015).

    Article  Google Scholar 

  148. Feng, Z. et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J. Immunother. Cancer 3, 1–11 (2015).

    Article  Google Scholar 

  149. Natrajan, R. et al. Microenvironmental heterogeneity parallels breast cancer progression: a histology–genomic integration analysis. PLoS Med. 13, e1001961 (2016).

    Article  Google Scholar 

  150. Parra, E. R. Methods to determine and analyze the cellular spatial distribution extracted from multiplex immunofluorescence data to understand the tumor microenvironment. Front. Mol. Biosci. 8, 668340 (2021). A highly detailed review to a novice attempting to incorporate spatial analytical workflows in their assessment (such as the quantification of cellcell infiltration and clustering at the tissue level), specifically on pathology-imaging-based data sets.

    Article  Google Scholar 

  151. Haase, P. Spatial pattern analysis in ecology based on Ripley’s K-function: introduction and methods of edge correction. J. Vegetation Sci. 6, 575–582 (1995).

    Article  Google Scholar 

  152. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).

    Article  Google Scholar 

  153. Summers, H. D., Wills, J. W. & Rees, P. Spatial statistics is a comprehensive tool for quantifying cell neighbor relationships and biological processes via tissue image analysis. Cell Rep. Methods 2, 100348 (2022).

    Article  Google Scholar 

  154. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article  Google Scholar 

  155. Zhu, J. & Sabatti, C. Integrative spatial single-cell analysis with graph-based feature learning. Preprint at bioRxiv https://doi.org/10.1101/2020.08.12.248971 (2020).

  156. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).

    Article  Google Scholar 

  157. Baranwal, M., Krishnan, S., Oneka, M., Frankel, T. & Rao, A. CGAT: cell graph attention network for grading of pancreatic disease histology images. Front. Immunol. 12, 727610 (2021).

    Article  Google Scholar 

  158. Maseda, F., Cang, Z. & Nie, Q. DEEPsc: a deep learning-based map connecting single-cell transcriptomics and spatial imaging data. Front. Genet. 12, 636743 (2021).

    Article  Google Scholar 

  159. Dezem, F. S. et al. A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics. BMC Genomics 24, 717 (2023).

    Article  Google Scholar 

  160. Burguet, J. & Andrey, P. Edge correction for intensity estimation of 3D heterogeneous point processes from replicated data. Spat. Stat. 36, 100421 (2020).

    Article  MathSciNet  Google Scholar 

  161. Stoyan, D. Spatial point patterns: methodology and applications with R. Biometric. J. 59, 219–220 (2017).

    Article  Google Scholar 

  162. Lara, O. D. et al. Tumor core biopsies adequately represent immune microenvironment of high-grade serous carcinoma. Sci. Rep. 9, 17589 (2019).

    Article  ADS  Google Scholar 

  163. Izawa, T. et al. Clonality and field cancerization in intraductal papillary-mucinous tumors of the pancreas. Cancer 92, 1807–1817 (2001).

    Article  Google Scholar 

  164. Trujillo, K. A., Jones, A. C., Griffith, J. K. & Bisoffi, M. Markers of field cancerization: proposed clinical applications in prostate biopsies. Prostate Cancer 2012, 302894 (2012).

    Article  Google Scholar 

  165. Zhang, X., Cui, X. & Zhu, F. The effects of sample size on omics study: from the perspective of robustness and diagnostic accuracy. IOP Conf. Ser. Earth Environ. Sci. 252, 022127 (2019).

    Article  Google Scholar 

  166. Lee, J., Yoo, M. & Choi, J. Recent advances in spatially resolved transcriptomics: challenges and opportunities. BMB Rep. 55, 113–124 (2022).

    Article  Google Scholar 

  167. Neary-Zajiczek, L. et al. Minimum resolution requirements of digital pathology images for accurate classification. Med. Image Anal. 89, 102891 (2023).

    Article  Google Scholar 

  168. Dakshinamoorthy, G. et al. Abstract 490: highly multiplexed single-cell spatial analysis of tissue specimens using CODEX. Cancer Res. 79, 490 (2019).

    Article  Google Scholar 

  169. Athieniti, E. & Spyrou, G. M. A guide to multi-omics data collection and integration for translational medicine. Comput. Struct. Biotechnol. J. 21, 134–149 (2023).

    Article  Google Scholar 

  170. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  Google Scholar 

  171. Cheng, M. et al. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. J. Genet. Genomics 50, 625–640 (2023).

    Article  Google Scholar 

  172. Deng, Y., Bai, Z. & Fan, R. Microtechnologies for single-cell and spatial multi-omics. Nat. Rev. Bioeng. 1, 769–784 (2023).

    Article  Google Scholar 

  173. Fortmann, S. D. et al. Fixation before dissociation using a deep eutectic solvent preserves in vivo states and phospho-signaling in single-cell sequencing. Preprint at bioRxiv https://doi.org/10.1101/2023.02.13.528370 (2023).

  174. Pontén, F., Jirström, K. & Uhlen, M. The Human Protein Atlas — a tool for pathology. J. Pathol. 216, 387–393 (2008).

    Article  Google Scholar 

  175. Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 1–9 (2022).

    Article  Google Scholar 

  176. Ferri-Borgogno, S. et al. Molecular, metabolic, and subcellular mapping of the tumor immune microenvironment via 3D targeted and non-targeted multiplex multi-omics analyses. Cancers 16, 846 (2024). This article provides a proof of concept to analytically combine multimodal spatial analyses.

    Article  Google Scholar 

  177. Dilmetz, B. A. et al. Novel technical developments in mass spectrometry imaging in 2020: a mini review. Anal. Sci. Adv. 2, 225–237 (2021).

    Article  Google Scholar 

  178. Ferri-Borgogno, S. et al. Spatial transcriptomics depict ligand–receptor crosstalk heterogeneity at the tumor–stroma interface in long-term ovarian cancer survivors. Cancer Res. 83, 1503–1516 (2023). This article uses spatial analyses to quantify secreted cytokine expression.

    Article  Google Scholar 

  179. Kidd, S. et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS ONE 7, e30563 (2012).

    Article  ADS  Google Scholar 

  180. Kang, Y. et al. 3D imaging analysis on an organoid-based platform guides personalized treatment in pancreatic ductal adenocarcinoma. J. Clin. Invest. 132, e151604 (2022).

    Article  Google Scholar 

  181. Sekera, E. R., Akkaya-Colak, K. B., Lopez, A., Mihaylova, M. M. & Hummon, A. B. Mass spectrometry imaging and histology for the analysis of budding intestinal organoids. Anal. Chem. 96, 4251–4258 (2024).

    Article  Google Scholar 

  182. Wang, Y. & Hummon, A. B. MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. J. Biol. Chem. 297, 101139 (2021).

    Article  Google Scholar 

  183. Zanotelli, V. R. et al. A quantitative analysis of the interplay of environment, neighborhood, and cell state in 3D spheroids. Mol. Syst. Biol. 16, e9798 (2020).

    Article  Google Scholar 

  184. Berg, H. F. et al. Patient-derived organoids reflect the genetic profile of endometrial tumors and predict patient prognosis. Commun. Med. 1, 1–14 (2021).

    ADS  Google Scholar 

  185. Warchol, S. et al. Visinity: visual spatial neighborhood analysis for multiplexed tissue imaging data. IEEE Trans. Visual. Comput. Graph. 29, 1–11 (2022).

    Article  Google Scholar 

  186. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    Article  Google Scholar 

  187. Krishnan, S. N., Mohammed, S., Frankel, T. L. & Rao, A. GaWRDenMap: a quantitative framework to study the local variation in cell–cell interactions in pancreatic disease subtypes. Sci. Rep. 12, 3708 (2022).

    Article  ADS  Google Scholar 

  188. Ahmed, J. & Yasin, A. S. Graph neural operators for classification of spatial transcriptomics data. Preprint at http://arxiv.org/abs/2302.00658 (2023).

  189. Yuan, Y. & Bar-Joseph, Z. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol. 21, 300 (2020).

    Article  Google Scholar 

  190. Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021).

    Article  Google Scholar 

  191. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739 (2022).

    Article  ADS  Google Scholar 

  192. Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 14, 1155 (2023).

    Article  ADS  Google Scholar 

  193. Abdelaal, T., Mourragui, S., Mahfouz, A. & Reinders, M. J. T. SpaGE: spatial gene enhancement using scRNA-seq. Nucleic Acids Res. 48, e107 (2020).

    Article  Google Scholar 

  194. Pang, M., Su, K. & Li, M. Leveraging information in spatial transcriptomics to predict super-resolution gene expression from histology images in tumors. Preprint at bioRxiv https://doi.org/10.1101/2021.11.28.470212 (2021).

Download references

Acknowledgements

J.L.C. was supported by the University of Alabama at Birmingham start-up funds. A.R. and S.N.K. were supported by CCSG Bioinformatics Shared Resource 5 P30 CA046592, a gift from Agilent technologies and a Precision Health Investigator award from U-M Precision Health to A.R. along with L. Rozek and M. Sartor. S.N.K. and A.R. were partially supported by the NCI Grant R37-CA214955. S.N.K. and A.R. were also partially supported by the University of Michigan (U-M) start-up institutional research funds. S.N.K., S.F.-B. and A.R. were also supported by a Research Scholar Grant from the American Cancer Society (RSG-16-005-01). E.H.S. was supported by a Cancer Prevention and Research Institute of Texas (CPRIT) award RP190617. A.G.S. was supported by NIH funding R01CA279143, R01CA276540, R01CA240589 and the Preclinical Imaging Facility (5P30CA013148).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.L.C., S.F.-B. and J.K.B.); Experimentation (J.L.C., S.N.K., A.R., A.G.S., E.H.S., S.F.-B. and J.K.B.); Results (J.L.C., S.N.K., A.R., S.F.-B. and J.K.B.); Applications (J.L.C. and J.K.B.); Reproducibility and data deposition (J.L.C., A.G.S., E.H.S. and J.K.B.); Limitations and optimizations (J.L.C., A.G.S. and J.K.B.); Outlook (J.L.C., E.H.S., S.F.-B. and J.K.B.); overview of the Primer (J.L.C.).

Corresponding authors

Correspondence to Julienne L. Carstens or Jared K. Burks.

Ethics declarations

Competing interests

A.R. serves as a member for Voxel Analytics, LLC and consults for Genophyll, LLC. J.K.B. consults for Standard BioTools, Fortis Labs and Biogenex. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Yvonne Vercoulen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

2023 NIH Data Management and Sharing policy: https://oir.nih.gov/sourcebook/intramural-program-oversight/intramural-data-sharing/2023-nih-data-management-sharing-policy

Aylward.org: https://www.aylward.org/notes/open-access-medical-image-repositories

Giotto: https://giottosuite.readthedocs.io/en/latest

Image Data Resource: https://idr.openmicroscopy.org/

METASPACE: https://metaspace2020.eu/

NIH Scientific Data Sharing: https://sharing.nih.gov/data-management-and-sharing-policy/sharing-scientific-data/repositories-for-sharing-scientific-data

Open Science policy: https://research-and-innovation.ec.europa.eu/strategy/strategy-2020-2024/our-digital-future/open-science_en

PRIDE: https://www.ebi.ac.uk/pride/

Registry of Research Data Repositories: https://re3data.org

Seurat: https://satijalab.org/seurat

Squidpy: https://squidpy.readthedocs.io/en/stable

The Cancer Imaging Archive: https://www.cancerimagingarchive.net/

Supplementary information

Glossary

Antigen retrieval

Process of reversing crosslinking resultant from fixation to make antigens accessible to antibodies. Common methods include heat-mediated retrieval using neutral pH or high pH buffers or enzymatic/proteolytic digestion.

Autofluorescence

The light emitted by biological substances, specifically within 330–500 nm bands, which are often subtracted from optical-based detection methods by default.

Drop-out

A phenomenon in which cells should express a certain marker but do not because the sample was too small to detect it. This is common in single-cell sequencing, but can be applied to any method functioning at the edges of detection.

Image registration

The process in which cyclic or multimodal images have the pixels aligned to match the regions of the same tissue imaged at different times/across serial sections of the same tissue.

Image segmentation

Partitioning of the image into objects or segments (organelle, cell, tissue or organ) that are biologically relevant or significant based on individual image pixel information.

Multiplexing

Analysis of two or more molecules at the same time.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carstens, J.L., Krishnan, S.N., Rao, A. et al. Spatial multiplexing and omics. Nat Rev Methods Primers 4, 54 (2024). https://doi.org/10.1038/s43586-024-00330-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00330-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer