Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Replacement as an aging intervention

Abstract

Substantial progress in aging research continues to deepen our understanding of the fundamental mechanisms of aging, yet there is a lack of interventions conclusively shown to attenuate the processes of aging in humans. By contrast, replacement interventions such as joint replacements, pacemaker devices and transplant therapies have a long history of restoring function in injury or disease contexts. Here, we consider biological and synthetic replacement-based strategies as aging interventions. We discuss innovations in tissue engineering, such as the use of scaffolds or bioprinting to generate functional tissues, methods for enhancing donor–recipient compatibility through genetic engineering and recent progress in both cell therapies and xenotransplantation strategies. We explore synthetic approaches including prostheses, external devices and brain–machine interfaces. Additionally, we evaluate the evidence from heterochronic parabiosis experiments in mice and donor–recipient age-mismatched transplants to consider whether systemic benefits could result from personalized replacement approaches. Finally, we outline key challenges and future directions required to advance replacement therapies as viable, scalable and ethical interventions for aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of approaches for replacement interventions in aging.
Fig. 2: Timeline of milestones in replacement interventions for aging.
Fig. 3: Overview of anatomical systems and potential replacement methods.
Fig. 4: Overview of mechanisms and generation techniques within each category of biological replacement.
Fig. 5: Overview of machines and mechanisms of synthetic replacement from prostheses and external medical devices.
Fig. 6: Overview of devices and interventions in brain–machine interface technology.

Similar content being viewed by others

References

  1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  2. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelley, A. et al. National Institute on Aging’s 50th anniversary: advancing aging research and the health and well-being of older adults. J. Am. Geriatr. Soc. 72, 1574–1582 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gladyshev, V. N. et al. Molecular damage in aging. Nat. Aging 1, 1096–1106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thurston, A. J. Paré and prosthetics: the early history of artificial limbs. ANZ J. Surg. 77, 1114–1119 (2007).

    Article  PubMed  Google Scholar 

  6. Pollington, S. & van Noort, R. An update of ceramics in dentistry. Int. J. Clin. Dent. 2, 283 (2009).

  7. Atchison, D. A. & Thibos, L. N. Optical models of the human eye. Clin. Exp. Optom. 99, 99–106 (2016).

    Article  PubMed  Google Scholar 

  8. Valentinuzzi, M. E. Hearing aid history: from ear trumpets to digital technology. IEEE Pulse 11, 33–36 (2020).

    Article  PubMed  Google Scholar 

  9. Fastag, E., Varon, J. & Sternbach, G. Richard Lower: the origins of blood transfusion. J. Emerg. Med. 44, 1146–1150 (2013).

    Article  PubMed  Google Scholar 

  10. Moffatt, S. L., Cartwright, V. A. & Stumpf, T. H. Centennial review of corneal transplantation. Clin. Exp. Ophthalmol. 33, 642–657 (2005).

    Article  PubMed  Google Scholar 

  11. Lugli, T. Artificial shoulder joint by Péan (1893): the facts of an exceptional intervention and the prosthetic method. Clin. Orthop. Relat. Res. 215–218 (1978).

  12. Cingolani, E., Goldhaber, J. I. & Marbán, E. Next-generation pacemakers: from small devices to biological pacemakers. Nat. Rev. Cardiol. 15, 139–150 (2018).

    Article  PubMed  Google Scholar 

  13. Gottschalk, C. W. & Fellner, S. K. History of the science of dialysis. Am. J. Nephrol. 17, 289–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Simpson, E. & Dazzi, F. Bone marrow transplantation 1957–2019. Front. Immunol. 10, 1246 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy, S. V. & Atala, A. Organ engineering — combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays 35, 163–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Spardy, J. et al. National analysis of recent trends in organ donation and transplantation in the United States: toward optimizing care delivery and patient outcomes. Am. Surg. 89, 5201–5209 (2023).

    Google Scholar 

  17. Tullius, S. G. et al. The combination of donor and recipient age is critical in determining host immunoresponsiveness and renal transplant outcome. Ann. Surg. 252, 662–674 (2010).

    Article  PubMed  Google Scholar 

  18. Grazi, G. L. et al. A revised consideration on the use of very aged donors for liver transplantation. Am. J. Transpl. 1, 61–68 (2001).

    Article  CAS  Google Scholar 

  19. López-Vilella, R., Donoso Trenado, V., Sánchez-Lázaro, I., Martínez-Dolz, L. & Almenar-Bonet, L. Analysis of heart transplant survival according to difference in age between donor and recipient. Transplant. Proc. 54, 2503–2505 (2022).

    Article  PubMed  Google Scholar 

  20. Snyder, A. et al. Evaluating the outcomes of donor–recipient age differences in young adults undergoing liver transplantation. Liver Transplant. 29, 793–803 (2023).

    Google Scholar 

  21. Pippias, M. et al. Young deceased donor kidneys show a survival benefit over older donor kidneys in transplant recipients aged 20–50 years: a study by the ERA–EDTA Registry. Nephrol. Dial. Transplant. 35, 534–543 (2020).

    Google Scholar 

  22. Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Conboy, I. M. & Rando, T. A. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 11, 2260–2267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlson, B. M. & Faulkner, J. A. Muscle transplantation between young and old rats: age of host determines recovery. Am. J. Physiol. 256, C1262–C1266 (1989).

  26. Zhang, B. et al. Multi-omic rejuvenation and lifespan extension on exposure to youthful circulation. Nat. Aging 3, 948–964 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    CAS  Google Scholar 

  30. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Middeldorp, J. et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol. 73, 1325–1333 (2016).

    Article  PubMed  Google Scholar 

  32. Liu, Z. et al. Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell 19, e13229 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. US FDA. Statement from FDA Commissioner Scott Gottlieb, M.D., and Director of FDA’s Center for Biologics Evaluation and Research Peter Marks, M.D., Ph.D., cautioning consumers against receiving young donor plasma infusions that are promoted as unproven treatment for varying conditions. FDA www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-director-fdas-center-biologics-evaluation-and-0 (2020).

  34. Fuentealba, M. et al. Multi-omics analysis reveals biomarkers that contribute to biological age rejuvenation in response to therapeutic plasma exchange. Preprint at medRxiv https://doi.org/10.1101/2024.08.02.24310303 (2024).

  35. Katabathina, V., Menias, C. O., Pickhardt, P., Lubner, M. & Prasad, S. R. Complications of immunosuppressive therapy in solid organ transplantation. Radiol. Clin. North Am. 54, 303–319 (2016).

    Article  PubMed  Google Scholar 

  36. Shlomchik, W. D. Graft-versus-host disease. Nat. Rev. Immunol. 7, 340–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Dörje, C. et al. Early versus late acute antibody-mediated rejection in renal transplant recipients. Transplantation 96, 79–84 (2013).

    Article  PubMed  Google Scholar 

  38. Hostetter, T. H. Chronic transplant rejection. Kidney Int. 46, 266–279 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Lodhi, S. A., Lamb, K. E. & Meier-Kriesche, H. U. Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success. Am. J. Transplant. 11, 1226–1235 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Italia, J. L., Bhardwaj, V. & Kumar, M. N. V. R. Disease, destination, dose and delivery aspects of ciclosporin: the state of the art. Drug Discov. Today 11, 846–854 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Montgomery, R. A., Tatapudi, V. S., Leffell, M. S. & Zachary, A. A. HLA in transplantation. Nat. Rev. Nephrol. 14, 558–570 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oh, H. S.-H. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Gac, S. L. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39, 788–810 (2021).

    Article  PubMed  Google Scholar 

  46. Girousse, A. et al. Endogenous mobilization of mesenchymal stromal cells: a pathway for interorgan communication? Front. Cell Dev. Biol. 8, 598520 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goeminne, L. J. E. et al. Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems. Cell Metab. 37, 205–222 (2025).

    Article  CAS  PubMed  Google Scholar 

  48. Correia Carreira, S., Begum, R. & Perriman, A. W. 3D bioprinting: the emergence of programmable biodesign. Adv. Healthc. Mater. 9, e1900554 (2020).

    Article  PubMed  Google Scholar 

  49. Saad, A. et al. Hematopoietic cell transplantation, version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Canc. Netw. 18, 599–634 (2020).

    Article  CAS  Google Scholar 

  50. Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Tan, X., Qiu, L.-L. & Sun, J. Research progress on the role of inflammatory mechanisms in the development of postoperative cognitive dysfunction. BioMed. Res. Int. 2021, 3883204 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ward, M. et al. Successful aging after elective surgery II: study cohort description. J. Am. Geriatr. Soc. 72, 209–218 (2024).

    Google Scholar 

  53. Rickels, M. R. & Robertson, R. P. Pancreatic islet transplantation in humans: recent progress and future directions. Endocr. Rev. 40, 631–668 (2019).

    Article  PubMed  Google Scholar 

  54. Iansante, V., Mitry, R. R., Filippi, C., Fitzpatrick, E. & Dhawan, A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr. Res. 83, 232–240 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Buedo, P., Bianchini, A., Klas, K. & Waligora, M. Bioethics of somatic gene therapy: what do we know so far? Curr. Med. Res. Opin. 39, 1355–1365 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rohde, M. et al. Practical and statistical considerations for the long term follow-up of gene therapy trial participants. Clin. Pharmacol. Ther. 115, 139–146 (2024).

    Article  PubMed  Google Scholar 

  58. Arnold, S. D., Bhatia, M., Horan, J. & Krishnamurti, L. Haematopoietic stem cell transplantation for sickle cell disease — current practice and new approaches. Br. J. Haematol. 174, 515–525 (2016).

    Article  PubMed  Google Scholar 

  59. Swart, J. F. et al. Haematopoietic stem cell transplantation for autoimmune diseases. Nat. Rev. Rheumatol. 13, 244–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Ferrari, G., Thrasher, A. J. & Aiuti, A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 22, 216–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. George, B. M. et al. Antibody conditioning enables MHC-mismatched hematopoietic stem cell transplants and organ graft tolerance. Cell Stem Cell 25, 185–192 (2019).

    CAS  Google Scholar 

  62. Brunet, A., Goodell, M. A. & Rando, T. A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 24, 45–62 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, H. et al. Advances in retinal pigment epithelial cell transplantation for retinal degenerative diseases. Stem Cell Res. Ther. 15, 390 (2024).

    Google Scholar 

  64. Copp, G., Robb, K. P. & Viswanathan, S. Culture-expanded mesenchymal stromal cell therapy: does it work in knee osteoarthritis? A pathway to clinical success. Cell. Mol. Immunol. 20, 626–650 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin, Y.-H., Lehle, J. D. & McCarrey, J. R. Source cell-type epigenetic memory persists in induced pluripotent cells but is lost in subsequently derived germline cells. Front. Cell Dev. Biol. 12, 1306530 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tarazi, S. et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell 185, 3290–3306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Oldak, B. et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 622, 562–573 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Godlewski, G., Gaubert-Cristol, R., Rouy, S. & Prudhomme, M. Liver development in the rat and in man during the embryonic period (Carnegie stages 11–23). Microsc. Res. Tech. 39, 314–327 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Julien, E., El Omar, R. & Tavian, M. Origin of the hematopoietic system in the human embryo. FEBS Lett. 590, 3987–4001 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Rengaraj, D. & Han, J. Y. Female germ cell development in chickens and humans: the chicken oocyte enriched genes convergent and divergent with the human oocyte. Int. J. Mol. Sci. 23, 11412 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Piper, K. et al. Beta cell differentiation during early human pancreas development. J. Endocrinol. 181, 11–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Parums, D. V. Editorial: first regulatory approval for allogeneic pancreatic islet beta cell infusion for adult patients with type 1 diabetes mellitus. Med. Sci. Monit. 29, e941918 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Abken, H. Building on synthetic immunology and T cell engineering: a brief journey through the history of chimeric antigen receptors. Hum. Gene Ther. 32, 1011–1028 (2021).

    CAS  Google Scholar 

  74. Schett, G. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 20, 531–544 (2024).

    Article  PubMed  Google Scholar 

  75. Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A. & Laurencin, C. T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. & Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246 (2006).

    Article  PubMed  Google Scholar 

  77. Oberpenning, F., Meng, J., Yoo, J. J. & Atala, A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17, 149–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Raya-Rivera, A. et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377, 1175–1182 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Raya-Rivera, A. M. et al. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet 384, 329–336 (2014).

    Article  PubMed  Google Scholar 

  80. Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature 445, 874–880 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Poghosyan, T. et al. Esophageal tissue engineering: current status and perspectives. J. Visc. Surg. 153, 21–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Bertassoni, L. E. Bioprinting of complex multicellular organs with advanced functionality—recent progress and challenges ahead. Adv. Mater. 34, e2101321 (2022).

    Article  PubMed  Google Scholar 

  84. Wolf, K. J., Weiss, J. D., Uzel, S. G. M., Skylar-Scott, M. A. & Lewis, J. A. Biomanufacturing human tissues via organ building blocks. Cell Stem Cell 29, 667–677 (2022).

    CAS  Google Scholar 

  85. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bejleri, D. et al. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv. Healthc. Mater. 7, 1800672 (2018).

    Article  Google Scholar 

  87. Sarkar, N., Bhumiratana, S., Geris, L., Papantoniou, I. & Grayson, W. L. Bioreactors for engineering patient-specific tissue grafts. Nat. Rev. Bioeng. 1, 361–377 (2023).

    Article  CAS  Google Scholar 

  88. Dorling, A., Riesbeck, K., Warrens, A. & Lechler, R. Clinical xenotransplantation of solid organs. Lancet 349, 867–871 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Anand, R. P. et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature 622, 393–401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Montgomery, R. A. et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 386, 1889–1898 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Yamamoto, T. et al. Life-supporting kidney xenotransplantation from genetically engineered pigs in baboons: a comparison of two immunosuppressive regimens. Transplantation 103, 2090–2104 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Eisenson, D. et al. Consistent survival in consecutive cases of life-supporting porcine kidney xenotransplantation using 10GE source pigs. Nat. Commun. 15, 3361 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kozlov, M. Pig-organ transplants: what three human recipients have taught scientists. Nature 629, 980–981 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Längin, M. et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564, 430–433 (2018).

    Article  PubMed  Google Scholar 

  95. Moazami, N. et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients. Nat. Med. 29, 1989–1997 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Nishimura, T. et al. Generation of functional organs using a cell-competitive niche in intra- and inter-species rodent chimeras. Cell Stem Cell 28, 141–149 (2021).

    CAS  Google Scholar 

  97. Huang, J. et al. Generation of rat forebrain tissues in mice. Cell 187, 2129–2142 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shawlot, W. & Behringer, R. R. Requirement for Lim1 in head-organizer function. Nature 374, 425–430 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Smith, K. et al. Hierarchical complexity of the adult human structural connectome. Neuroimage 191, 205–215 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  101. Hebert, J. Replacing Aging (Science Unbound, 2020).

  102. Hébert, J. M. Could an old brain be made young again? Surg. Neurol. Int. 13, 595 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hébert, J. M. & Vijg, J. Cell replacement to reverse brain aging: challenges, pitfalls, and opportunities. Trends Neurosci. 41, 267–279 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Harary, P. M. et al. Cell replacement therapy for brain repair: recent progress and remaining challenges for treating Parkinson’s disease and cortical injury. Brain Sci. 13, 1654 (2023).

    CAS  Google Scholar 

  105. Babu, H. et al. First-in-human trial of NRTX-1001 GABAergic interneuron cell therapy for treatment of focal epilepsy — emerging clinical trial results (S19.002). Neurology 102, 5721 (2024).

    Article  Google Scholar 

  106. McGinley, L. M. et al. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s disease. Sci. Rep. 8, 14776 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. McCaughey-Chapman, A. et al. Reprogrammed human lateral ganglionic eminence precursors generate striatal neurons and restore motor function in a rat model of Huntington’s disease. Stem Cell Res. Ther. 15, 448 (2024).

    CAS  Google Scholar 

  108. Sykova, E., Cizkova, D. & Kubinova, S. Mesenchymal stem cells in treatment of spinal cord injury and amyotrophic lateral sclerosis. Front. Cell Dev. Biol. 9, 695900 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Falkner, S. et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 539, 248–253 (2016).

    Article  PubMed  Google Scholar 

  110. Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Quezada, A. et al. An in vivo platform for rebuilding functional neocortical tissue. Bioengineering 10, 263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rosenzweig, S. & Carmichael, S. T. The axon–glia unit in white matter stroke: mechanisms of damage and recovery. Brain Res. 1623, 123–134 (2015).

    CAS  Google Scholar 

  113. Ashrafian, H., Darzi, A. & Athanasiou, T. Autobionics: a new paradigm in regenerative medicine and surgery. Regen. Med. 5, 279–288 (2010).

    Article  PubMed  Google Scholar 

  114. Willsey, M. S. et al. Real-time brain–machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder. Nat. Commun. 13, 6899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ruetz, A. et al. A microprocessor stance and swing control orthosis improves balance, risk of falling, mobility, function, and quality of life of individuals dependent on a knee–ankle–foot orthosis for ambulation. Disabil. Rehabil. 46, 4019–4032 (2024).

    Article  PubMed  Google Scholar 

  116. Capsi-Morales, P. et al. Comparison between rigid and soft poly-articulated prosthetic hands in non-expert myo-electric users shows advantages of soft robotics. Sci. Rep. 11, 23952 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tran, M., Gabert, L., Hood, S. & Lenzi, T. A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint. Sci. Robot. 7, eabo3996 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Apple, D. J. & Sims, J. Harold Ridley and the invention of the intraocular lens. Surv. Ophthalmol. 40, 279–292 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Twomey-Kozak, J., Hurley, E., Levin, J., Anakwenze, O. & Klifto, C. Technological innovations in shoulder replacement: current concepts and the future of robotics in total shoulder arthroplasty. J. Shoulder Elbow Surg. 32, 2161–2171 (2023).

    Article  PubMed  Google Scholar 

  120. de Caxias, F. P., dos Santos, D. M., Bannwart, L. C., de Moraes Melo Neto, C. L. & Goiato, M. C. Classification, history, and future prospects of maxillofacial prosthesis. Int. J. Dent. 2019, 8657619 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gallagher, P., Buckmaster, A., O’Carroll, S., Kiernan, G. & Geraghty, J. External breast prostheses in post-mastectomy care: women’s qualitative accounts. Eur. J. Cancer Care 19, 61–71 (2010).

    Article  CAS  Google Scholar 

  122. Singh, S. K. et al. Polymeric prosthetic heart valves: a review of current technologies and future directions. Front. Cardiovasc. Med. 10, 1137827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Roche, E. T. et al. Soft robotic sleeve supports heart function. Sci. Transl. Med. 9, eaaf3925 (2017).

    Article  PubMed  Google Scholar 

  124. Chonan, S. et al. Development of an artificial urethral valve using SMA actuators. Smart Mater. Struct. 6, 410–414 (1997).

    Google Scholar 

  125. Griffin, D. R. et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Cook, J. A. et al. The total artificial heart. J. Thorac. Dis. 7, 2172–2180 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Tang, D. G., Oyer, P. E. & Mallidi, H. R. Ventricular assist devices: history, patient selection, and timing of therapy. J. Cardiovasc. Transl. Res. 2, 159–167 (2009).

    Article  PubMed  Google Scholar 

  128. Marasco, S. F., Lukas, G., McDonald, M., McMillan, J. & Ihle, B. Review of ECMO (extra corporeal membrane oxygenation) support in critically ill adult patients. Heart Lung Circ. 17, S41–S47 (2008).

    Google Scholar 

  129. Meyer, J. A. A practical mechanical respirator 1929: the “iron lung”. Ann. Thoracic Surgery 50, 490–493 (1990).

    Article  CAS  Google Scholar 

  130. Chatburn, R. L. Understanding mechanical ventilators. Expert Rev. Respir. Med. 4, 809–819 (2010).

    Article  Google Scholar 

  131. Forlenza, G. P., Buckingham, B. & Maahs, D. M. Progress in diabetes technology: developments in insulin pumps, continuous glucose monitors, and progress towards the artificial pancreas. J. Pediatr. 169, 13–20 (2016).

    Google Scholar 

  132. Salani, M., Roy, S. & Fissell, W. H. Innovations in wearable and implantable artificial kidneys. Am. J. Kidney Dis. 72, 745–751 (2018).

    Article  PubMed  Google Scholar 

  133. Krisper, P. & Stauber, R. E. Technology insight: artificial extracorporeal liver support—how does Prometheus® compare with MARS®? Nat. Clin. Pract. Nephrol. 3, 267–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Hessel, E. A. History of cardiopulmonary bypass (CPB). Best Pract. Res. Clin. Anaesthesiol. 29, 99–111 (2015).

    Article  PubMed  Google Scholar 

  135. Bensmaia, S. J. & Miller, L. E. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 15, 313–325 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Fetz, E. E. Operant conditioning of cortical unit activity. Science 163, 955–958 (1969).

    Article  CAS  PubMed  Google Scholar 

  137. Chandrasekaran, S. et al. Historical perspectives, challenges, and future directions of implantable brain–computer interfaces for sensorimotor applications. Bioelectron. Med. 7, 14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Mudry, A. & Mills, M. The early history of the cochlear implant: a retrospective. JAMA Otolaryngol. Head Neck Surg. 139, 446–453 (2013).

    Article  Google Scholar 

  140. Greenemeier, L. FDA approves first retinal implant. Nature https://doi.org/10.1038/nature.2013.12439 (2013).

    Article  Google Scholar 

  141. Gardner, J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc. Stud. Sci. 43, 707–728 (2013).

    Article  PubMed Central  Google Scholar 

  142. Griggs, W. S. et al. Decoding motor plans using a closed-loop ultrasonic brain–machine interface. Nat. Neurosci. 27, 196–207 (2024).

    Article  CAS  PubMed  Google Scholar 

  143. Jannati, A., Oberman, L. M., Rotenberg, A. & Pascual-Leone, A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 48, 191–208 (2023).

    Article  PubMed  Google Scholar 

  144. Violante, I. R. et al. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat. Neurosci. 26, 1994–2004 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lorach, H. et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 618, 126–133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T. & Horch, K. W. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J. Hand Surgery 29, 605–615 (2004).

    Article  Google Scholar 

  147. Mueller, T. F. & Nagral, S. Organ trafficking — a continuing challenge. Nat. Rev. Nephrol. 20, 267–268 (2024).

    Article  PubMed  Google Scholar 

  148. Matthews, K. R. & Moralí, D. National human embryo and embryoid research policies: a survey of 22 top research-intensive countries. Regen. Med. 15, 1905–1917 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Lopes, R. & Prasad, M. K. Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Front. Bioeng. Biotechnol. 11, 1339189 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Schlimgen, R. et al. Risks associated with lentiviral vector exposures and prevention strategies. J. Occup. Environ. Med. 58, 1159–1166 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Han, Z. et al. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat. Commun. 14, 3407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Grunhaus, L., Dannon, P. N. & Gershon, A. A. Transcranial magnetic stimulation: a new tool in the fight against depression. Dialogues Clin. Neurosci. 4, 93–103 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figures 36 were created with or modified from BioRender.com. S.L. thanks R. Goodbar, S. Lore, M. van Kooten and A. Colville for their support throughout the preparation of this Perspective. Supported by grants from the National Institute on Aging, the US Department of Health & Human Services (NIH/NIAID grant 1U01AI180158-01) and Hevolution.

Author information

Authors and Affiliations

Authors

Contributions

S.L. conceptualized, wrote and revised the Perspective. E.V. and M.S.-K. oversaw the writing and revision of this Perspective. J.R.P., A.A., G.C. and V.N.G. contributed to revising the manuscript and provided critical feedback.

Corresponding author

Correspondence to Eric Verdin.

Ethics declarations

Competing interests

G.C. declares potential conflicts of interest related to companies involved in transplantation and aging, including eGenesis, Qihan, GC Therapeutics, Cellino, Rejuvenate Bio and Thymmune (further interests, outside of the scope of the current work, can be found in the Supplementary Note). A.A. declares a potential conflict of interest with Precise Bio, related to the bioprinting of human corneas. S.L., J.R.P., V.N.G., M.S.‑K. and E.V. have no competing interests.

Peer review

Peer review information

Nature Aging thanks Marius Wernig, Paolo De Simone, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lore, S., Poganik, J.R., Atala, A. et al. Replacement as an aging intervention. Nat Aging 5, 750–764 (2025). https://doi.org/10.1038/s43587-025-00858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-025-00858-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing