Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On-water surface synthesis of charged two-dimensional polymer single crystals via the irreversible Katritzky reaction

An Author Correction to this article was published on 23 February 2023

This article has been updated

Abstract

Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks (2D COFs) are classes of structurally defined crystalline polymeric materials with exotic physical and chemical properties. Yet, synthesizing 2DP and 2D COF single crystals via irreversible reactions remains challenging. Here we report the synthesis of charged 2DP (C2DP) single crystals through an irreversible Katritzky reaction, under pH control, on a water surface. The periodically ordered 2DPs comprise aromatic pyridinium cations and counter BF4 anions. The C2DP crystals, which are composed of linked porphyrin and pyrylium monomers (C2DP-Por), have a tunable thickness of 2–30 nm and a lateral domain size up to 120 μm2. Single crystals with a square lattice (a = b = 30.5 Å) are resolved by imaging and diffraction methods with near-atomic precision. Furthermore, the integration of C2DP-Por crystals in an osmotic power generator device shows an excellent chloride ion selectivity with a coefficient value reaching ~0.9 and an output power density of 4 W m−2, superior to those of graphene and boron nitride.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The irreversible ring-transmutation reaction on the water surface.
Fig. 2: MS studies and theoretical modelling of the Model-I reaction.
Fig. 3: Synthesis protocol of C2DPs.
Fig. 4: Morphological and structural characterizations of the C2DP-Por film.
Fig. 5: C2DP-Por-based osmotic power generation under a salinity gradient.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. The X-ray crystallographic coordinates for the structure reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under CCDC deposition no. 2000610. These data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/data_request/cif. Experimental procedures and characterization of the new compounds are available in the Supplementary Information. Source data are provided with this paper.

Change history

References

  1. Feng, X. & Schlüter, A. D. Towards macroscopic crystalline 2D polymers. Angew. Chem. Int. Ed. 57, 13748–13763 (2018).

    Article  CAS  Google Scholar 

  2. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  PubMed  Google Scholar 

  3. Wang, H. et al. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48, 488–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Martínez-Abadía, M. et al. A wavy two-dimensional covalent organic framework from core-twisted polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 141, 14403–14410 (2019).

    Article  PubMed  Google Scholar 

  6. Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Seo, J.-M., Noh, H.-J., Jeong, H. Y. & Baek, J.-B. Converting unstable imine-linked network into stable aromatic benzoxazole-linked one via post-oxidative cyclization. J. Am. Chem. Soc. 141, 11786–11790 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10, 14–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Ma, T. et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Zhuang, X. et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 7, 4176–4181 (2016).

    Article  CAS  Google Scholar 

  14. Lyu, H., Diercks, C. S., Zhu, C. & Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 141, 6848–6852 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Jadhav, T. et al. 2D poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine. Angew. Chem. Int. Ed. 58, 13753–13757 (2019).

    Article  CAS  Google Scholar 

  16. Pastoetter, D. L. et al. Synthesis of vinylene-linked two-dimensional conjugated polymers via the Horner–Wadsworth–Emmons reaction. Angew. Chem. Int. Ed. 59, 23620 (2020).

    Article  CAS  Google Scholar 

  17. Liu, W. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem. 9, 563–570 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, X. et al. A charge-density-tunable three/two-dimensional polymer/graphene oxide heterogeneous nanoporous membrane for ion transport. ACS Nano 11, 10816–10824 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, C. et al. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4, 247–261 (2020).

    Article  CAS  Google Scholar 

  24. Harris, F. W., Chuang, K. C., Huang, S. A. X., Janimak, J. J. & Cheng, S. Z. D. Aromatic poly(pyridinium salt)s: synthesis and structure of organo-soluble, rigid-rod poly(pyridinium tetrafluoroborate)s. Polymer 35, 4940–4948 (1994).

    Article  CAS  Google Scholar 

  25. Katritzky, A. R., Manzo, R. H., Lloyd, J. M. & Patel, R. C. Mechanism of the pyrylium/pyridinium ring interconversion. mild preparative conditions for conversion of amines into pyridinium ions. Angew. Chem. Int. Ed. 19, 306–306 (1980).

    Article  Google Scholar 

  26. Katritzky, A. R. & Leahy, D. E. Kinetics and mechanism of the pyrylium to pyridinium cation transformation in dichloromethane. J. Chem. Soc. Perkin Trans. 2 1985, 171–174 (1985).

    Article  Google Scholar 

  27. Yan, X., Augusti, R., Li, X. & Cooks, R. G. Chemical reactivity assessment using reactive paper spray ionization mass spectrometry: the Katritzky reaction. ChemPlusChem 78, 1142–1148 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Siria, A., Bocquet, M.-L. & Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1, 0091 (2017).

    Article  CAS  Google Scholar 

  31. Zhang, Z., Wen, L. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622–639 (2021).

    Article  CAS  Google Scholar 

  32. Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Ji, J. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017).

    Article  Google Scholar 

  35. Zhang, Z. et al. Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proc. Natl Acad. Sci. USA 117, 13959–13966 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  PubMed  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, D. G. A., Burns, L. A., Patkowski, K. & Sherrill, C. D. Revised damping parameters for the D3 dispersion correction to density functional theory. J. Phys. Chem. Lett. 7, 2197–2203 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  40. CrysAlis PRO (Agilent Technologies Ltd, 2014).

  41. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  42. Sheldrick, G. A short history of SHELX. Acta Cryst. 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  43. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the EU Graphene Flagship (GrapheneCore3, no. 881603), an ERC starting grant (FC2DMOF, grant no. 852909), an ERC Consolidator Grant (T2DCP), a DFG project (2D polyanilines, no. 426572620), Coordination Networks: Building Blocks for Functional Systems (SPP 1928, COORNET), H2020-MSCA-ITN (ULTIMATE, no. 813036), H2020-FETOPEN (PROGENY, 899205), CRC 1415 (Chemistry of Synthetic Two-Dimensional Materials, no. 417590517), SPP 2244 (2DMP), CALIPSOplus under grant agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020, as well as the German Science Council and Center of Advancing Electronics Dresden. Z.W. gratefully acknowledges funding from the China Scholarship Council. The authors acknowledge the Center of Advancing Electronics Dresden, the Dresden Center for Nanoanalysis at TUD and P. Formanek and A. Fery for the use of the TEM facility at IPF, as well as M. Hambsch and S.C.B. Mannsfeld for GIWAXS measurements. We acknowledge Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities, and we thank L. Barba and A. Johannes for assistance in using beamline XRD1 and beamline ID13, respectively.

Author information

Authors and Affiliations

Authors

Contributions

X.F. and R.D. conceived and designed the project. Z.W., M.W., L.W., K.X. and R.D. contributed to the synthesis of the 2D polymers and model compounds. Z.Z. and Z.W. contributed to the osmotic power generation measurements. H.Q., Z.W., R.D. and U.K. performed AC-HRTEM imaging and SAED, and the corresponding analysis. Z.W. and S.P. contributed to the GIWAXS measurement. Z.W., H.Q. and R.D. analysed the diffraction data and proposed the crystal structures. Z.W. performed the optical microscopy, AFM, TEM, ATR-FTIR and ultraviolet–visible measurements. A.O.-G., A.D., A.C. and G.C. contributed to the theory calculations and analysis. F.H. and J.J.W. performed the single-crystalline X-ray measurements and analysis. H.K. performed the NMR measurements on model compounds. Z.W., R.D. and X.F. co-wrote the manuscript, with contributions from all the authors.

Corresponding authors

Correspondence to Renhao Dong or Xinliang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Synthesis thanks Nazario Martin, Arnold Rheingold and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Alison Stoddart was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Discussion and Tables 1–3.

Supplementary Data 1

Cif file of compound 13.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, Z., Qi, H. et al. On-water surface synthesis of charged two-dimensional polymer single crystals via the irreversible Katritzky reaction. Nat Synth 1, 69–76 (2022). https://doi.org/10.1038/s44160-021-00001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-021-00001-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing