Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoelectrocatalytic biosynthesis fuelled by microplastics

Abstract

Biocatalytic artificial photosynthesis integrates photocatalysis and redox biocatalysis to synthesize value-added chemicals using solar energy. However, this nature-inspired approach suffers from sluggish rates of reaction because of challenging water oxidation kinetics. Here we report photoelectrochemical biosynthetic reactions that use non-recyclable real-world poly(ethylene terephthalate) (PET) microplastics as an electron feedstock. A Zr-doped haematite photoanode extracts electrons from hydrolysed PET solutions obtained from post-consumer PET waste, such as drinks bottles, and transfers the electrons to the bioelectrocatalytic site. Carbon-based cathodes receive the electrons to activate redox enzymes (for example, unspecific peroxygenase, L-glutamate dehydrogenase and ene-reductase from the old yellow enzyme family) that drive various organic synthetic reactions. These reactions include oxyfunctionalization of C–H bonds, amination of C=O bonds and asymmetric hydrogenation of C=C bonds. These photoelectrocatalytic–biocatalytic hybrid reactions achieve total turnover numbers of 362,000 (unspecific peroxygenase), 144,000 (L-glutamate dehydrogenase) and 1,300 (old yellow enzyme). This work presents a photoelectrocatalytic approach for integrating environmental remediation and biocatalytic photosynthesis towards sustainable solar-to-chemical synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of solar-powered photoelectrochemical biosynthetic reactions using non-recyclable real-world PET microplastics.
Fig. 2: Bioelectrocatalytic synthesis using CFP-based materials.
Fig. 3: PEC reformation of PET microplastics using Fe2O3-based photoanodes.
Fig. 4: BPEC synthesis using real-world microplastics.
Fig. 5: Substrate scope of BPEC reactions using real-world PET microplastics.
Fig. 6: Synthetic efficiencies of oxidoreductases in state-of-the-art BPEC systems.

Similar content being viewed by others

Data availability

The data supporting the findings of the study are available in the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Ryberg, M. W., Laurent, A. & Hauschild, M. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (United Nations Environment Programme, 2018).

  2. Adyel, T. M. Accumulation of plastic waste during COVID-19. Science 369, 1314–1315 (2020).

    Article  PubMed  Google Scholar 

  3. Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Science 358, 870–872 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. MacArthur, E. Beyond plastic waste. Science 358, 843–843 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Ryan, P. G. in Marine Anthropogenic Litter (eds Bergmann, M. et al.) 1–25 (Springer, 2015).

  6. Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. The New Plastics Economy – Rethinking the Future of Plastics (World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, 2016).

  8. Singh, A. K., Yasri, N., Karan, K. & Roberts, E. P. L. Electrocatalytic activity of functionalized carbon paper electrodes and their correlation to the Fermi level derived from Raman spectra. ACS Appl. Energy Mater. 2, 2324–2336 (2019).

    Article  CAS  Google Scholar 

  9. Molina-Espeja, P., Ma, S., Mate, D. M., Ludwig, R. & Alcalde, M. Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enzyme Microb. Technol. 73–74, 29–33 (2015).

    Article  PubMed  Google Scholar 

  10. Pognon, G., Brousse, T., Demarconnay, L. & Bélanger, D. Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J. Power Sources 196, 4117–4122 (2011).

    Article  CAS  Google Scholar 

  11. Zhang, W. et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat. Catal. 1, 55–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Yoon, J. et al. Piezobiocatalysis: ultrasound-driven enzymatic oxyfunctionalization of C–H bonds. ACS Catal. 10, 5236–5242 (2020).

    Article  CAS  Google Scholar 

  13. Kim, J., Nguyen, T. V. T., Kim, Y. H., Hollmann, F. & Park, C. B. Lignin as a multifunctional photocatalyst for solar-powered biocatalytic oxyfunctionalization of C–H bonds. Nat. Synth. 1, 217–226 (2022).

    Article  Google Scholar 

  14. Kim, J. & Park, C. B. Shedding light on biocatalysis: photoelectrochemical platforms for solar-driven biotransformation. Curr. Opin. Chem. Biol. 49, 122–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Ko, J. W. et al. Self-assembled peptide–carbon nitride hydrogel as a light-responsive scaffold material. Biomacromolecules 18, 3551–3556 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Murugesan, K. et al. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem. Soc. Rev. 49, 6273–6328 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, Y. W. et al. Unbiased biocatalytic solar-to-chemical conversion by FeOOH/BiVO4/perovskite tandem structure. Nat. Commun. 9, 4208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chaudhari, N., Landin, A. M. & Roper, S. D. A metabotropic glutamate receptor variant functions as a taste receptor. Nat. Neurosci. 3, 113–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, C. et al. L-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids. Food Chem. 293, 263–270 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Hou, Y. & Wu, G. L-Glutamate nutrition and metabolism in swine. Amino Acids 50, 1497–1510 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, D. et al. Lignin-fueled photoelectrochemical platform for light-driven redox biotransformation. Green Chem. 22, 5151–5160 (2020).

    Article  CAS  Google Scholar 

  22. Son, E. J., Lee, Y. W., Ko, J. W. & Park, C. B. Amorphous carbon nitride as a robust photocatalyst for biocatalytic solar-to-chemical conversion. ACS Sustain. Chem. Eng. 7, 2545–2552 (2019).

    Article  CAS  Google Scholar 

  23. Kim, J. et al. Nicotinamide adenine dinucleotide as a photocatalyst. Sci. Adv. 5, eaax0501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).

    Article  PubMed  Google Scholar 

  25. Shen, S., Lindley, S. A., Chen, X. & Zhang, J. Z. Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ. Sci. 9, 2744–2775 (2016).

    Article  CAS  Google Scholar 

  26. Kim, J. H. & Lee, J. S. Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31, 1806938 (2019).

    Article  Google Scholar 

  27. Liu, X., Wang, F. & Wang, Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 14, 7894–7911 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Heo, Y., Kim, K., Kim, J., Jang, J. & Park, C. B. Near-infrared-active copper bismuth oxide electrodes for targeted dissociation of Alzheimer’s β-amyloid aggregates. ACS Appl. Mater. Interfaces 12, 23667–23676 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Uekert, T., Kasap, H. & Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 141, 15201–15210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uekert, T., Kuehnel, M. F., Wakerley, D. W. & Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 11, 2853–2857 (2018).

    Article  CAS  Google Scholar 

  31. Iandolo, B., Wickman, B., Zorić, I. & Hellman, A. The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J. Mater. Chem. A 3, 16896–16912 (2015).

    Article  CAS  Google Scholar 

  32. Xiao, M., Luo, B., Wang, Z., Wang, S. & Wang, L. Recent advances of metal-oxide photoanodes: engineering of charge separation and transportation toward efficient solar water splitting. Sol. RRL 4, 1900509 (2020).

    Article  CAS  Google Scholar 

  33. Liao, P., Toroker, M. C. & Carter, E. A. Electron transport in pure and doped hematite. Nano Lett. 11, 1775–1781 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Nam, D. H. et al. Water oxidation-coupled, photoelectrochemical redox biocatalysis toward mimicking natural photosynthesis. Appl. Catal. B 198, 311–317 (2016).

    Article  CAS  Google Scholar 

  35. Son, E. J. et al. Carbon nanotube–graphitic carbon nitride hybrid films for flavoenzyme-catalyzed photoelectrochemical cells. Adv. Funct. Mater. 28, 1705232 (2018).

    Article  Google Scholar 

  36. Choi, D. S., Kim, J., Hollmann, F. & Park, C. B. Solar-assisted eBiorefinery: photoelectrochemical pairing of oxyfunctionalization and hydrogenation reactions. Angew. Chem. Int. Ed. 59, 15886–15890 (2020).

    Article  CAS  Google Scholar 

  37. Choi, D. S. et al. Bias-free in situ H2O2 generation in a photovoltaic–photoelectrochemical tandem cell for biocatalytic oxyfunctionalization. ACS Catal. 9, 10562–10566 (2019).

    Article  CAS  Google Scholar 

  38. Burek, B. O. et al. Photoenzymatic hydroxylation of ethylbenzene catalyzed by unspecific peroxygenase: origin of enzyme inactivation and the impact of light intensity and temperature. ChemCatChem 11, 3093–3100 (2019).

    Article  CAS  Google Scholar 

  39. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article  CAS  Google Scholar 

  40. Kuk, S. K. et al. CO2-reductive, copper oxide-based photobiocathode for Z-scheme semi-artificial leaf structure. ChemSusChem 13, 2940–2944 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, J. et al. Robust FeOOH/BiVO4/Cu(In,Ga)Se2 tandem structure for solar-powered biocatalytic CO2 reduction. J. Mater. Chem. A 8, 8496–8502 (2020).

    Article  CAS  Google Scholar 

  42. Kim, J. et al. Unbiased photoelectrode interfaces for solar coupling of lignin oxidation with biocatalytic C═C bond hydrogenation. ACS Appl. Mater. Interfaces 14, 11465–11473 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  PubMed  Google Scholar 

  44. Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Article  Google Scholar 

  45. Lee, S. H., Choi, D. S., Kuk, S. K. & Park, C. B. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 57, 7958–7985 (2018).

    Article  CAS  Google Scholar 

  46. Le, T.-K. et al. Solar-powered whole-cell P450 catalytic platform for C-hydroxylation reactions. ChemSusChem 14, 3054–3058 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, D., Kim, J. & Park, C. B. Lignin-induced CaCO3 vaterite structure for biocatalytic artificial photosynthesis. ACS Appl. Mater. Interfaces 13, 58522–58531 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Son, G., Kim, J. & Park, C. B. Interference of solvatochromic twist in amyloid nanostructure for light-driven biocatalysis. ACS Appl. Energy Mater. 3, 1215–1221 (2020).

    Article  CAS  Google Scholar 

  49. Kim, J. et al. Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angew. Chem. Int. Ed. 57, 13825–13828 (2018).

    Article  CAS  Google Scholar 

  50. Schmermund, L. et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 9, 4115–4144 (2019).

    Article  CAS  Google Scholar 

  51. Hollmann, F., Arends, I. W. C. E. & Buehler, K. Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. ChemCatChem 2, 762–782 (2010).

    Article  CAS  Google Scholar 

  52. Chen, H. et al. Fundamentals, applications, and future directions of bioelectrocatalysis. Chem. Rev. 120, 12903–12993 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Ruff, A., Conzuelo, F. & Schuhmann, W. Bioelectrocatalysis as the basis for the design of enzyme-based biofuel cells and semi-artificial biophotoelectrodes. Nat. Catal. 3, 214–224 (2020).

    Article  CAS  Google Scholar 

  54. Ren, Y. et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy Environ. Sci. 14, 1176–1193 (2021).

    Article  CAS  Google Scholar 

  55. Lin, C.-Y., Huang, S.-C., Lin, Y.-G., Hsu, L.-C. & Yi, C.-T. Electrosynthesized Ni–P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming. Appl. Catal. B 296, 120351 (2021).

    Article  CAS  Google Scholar 

  56. Perini, N. et al. Photoelectrochemical oxidation of glycerol on hematite: thermal effects, in situ FTIR and long-term HPLC product analysis. J. Solid State Electrochem. 25, 1101–1110 (2021).

    Article  CAS  Google Scholar 

  57. Mesa, C. A. et al. Kinetics of photoelectrochemical oxidation of methanol on hematite photoanodes. J. Am. Chem. Soc. 139, 11537–11543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) via the Creative Research Initiative Center (grant no. NRF-2015R1A3A2066191 (J.K., J.J. and C.B.P.)) and the Global PhD Fellowship Program (grant no. NRF-2019H1A2A1075810 (J.K.)), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

J.K. conceived and designed the research, performed (photo)electrocatalytic/bioelectrocatalytic/photobiocatalytic experiments, analysed the data and wrote the manuscript. C.B.P. supervised the research. J.K., J.J. and C.B.P. discussed the photoelectrocatalysis. T.H. and F.H. provided J.K. and C.B.P. with the OYE and UPO enzymes. J.K., T.H. and F.H. commented on the biocatalysis. All authors contributed to revising the manuscript.

Corresponding author

Correspondence to Chan Beum Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Hao Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–10 and Figs. 1–25.

Source data

Source Data Fig. 2

Raw data on H2O2 production (Fig. 2b), hydroxylation rate (Fig. 2c), NADH formation (Fig. 2f), amination rate (Fig. 2g) and hydrogenation rate (Fig. 2h) and their statistical information (for example, mean, standard deviation and P values).

Source Data Fig. 3

Raw data on the production of formate and acetate by PEC reformation of microplastics and their corresponding statistical data (for example, mean, standard deviation and P values).

Source Data Fig. 4

Raw data on rates of photobiocatalytic reactions fuelled by microplastics and their statistical information (for example, mean, standard deviation and P values).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Jang, J., Hilberath, T. et al. Photoelectrocatalytic biosynthesis fuelled by microplastics. Nat. Synth 1, 776–786 (2022). https://doi.org/10.1038/s44160-022-00153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-022-00153-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing