Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic kinetic asymmetric allylation, propargylation and crotylation of ketones using copper catalysis

Abstract

Chiral tertiary alcohols are privileged structures found in numerous bioactive molecules and pharmaceutical agents. However, general and efficient synthetic methods for forming α,β-stereogenic tertiary alcohols bearing two or more contiguous stereocentres are rare. Here we report the development of an enantioconvergent method for the synthesis of α,β-stereogenic tertiary alcohols in a single step by allylation, propargylation or crotylation of racemic α-amino, α-(hetero)aryl and α,α-dialkyl ketones using readily available boronic ester reagents. The identification of the chiral ligand/copper catalytic system enables rapid interconversion and chiral recognition between two enantiomers of racemic ketones, allowing the dynamic kinetic resolution process to occur. The reaction features high levels of diastereoselectivity and enantioselectivity, a wide scope of heterocycle substrates and high functional group compatibility, and provides a general and efficient synthesis of a variety of complex chiral tertiary alcohols otherwise difficult to access, thereby offering a tool for the rapid modification and synthesis of drug molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioactive α,β-stereogenic tertiary alcohols and their synthesis.
Fig. 2: Scope of enantioconvergent allylation of α-amino ketones.
Fig. 3: Scope of enantioconvergent allylation of α-(hetero)aryl and α,α-dialkyl ketones.
Fig. 4: Scope of enantioconvergent propargylation and crotylation.
Fig. 5: Gramme-scale reactions and diverse transformations.
Fig. 6: Synthetic application.
Fig. 7: Mechanistic experiments and proposed catalytic cycle.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2266504 (4k), 2266505 (10c), 2266506 (11c) and 2266507 (7n). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Corey, E. J. & Kürti, L. Enantioselective Chemical Synthesis: Methods, Logic and Practice (Direct Book, 2010).

  2. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis Vols I–III (Springer, 1999).

  3. Shibasaki, M. & Kanai, M. Asymmetric synthesis of tertiary alcohols and α-tertiary amines via Cu-catalyzed C–C bond formation to ketones and ketimines. Chem. Rev. 108, 2853–2873 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Stymiest, J. L., Bagutski, V., French, R. M. & Aggarwal, V. K. Enantiodivergent conversion of chiral secondary alcohols into tertiary alcohols. Nature 456, 778–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, H. et al. Organocatalytic stereoselective cyanosilylation of small ketones. Nature 605, 84–89 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peyton, L. R., Gallagher, S. & Hashemzadeh, M. Triazole antifungals: a review. Drugs Today (Barc.) 51, 705–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, R. Y. & Buchwald, S. L. CuH-catalyzed olefin functionalization: from hydroamination to carbonyl addition. Acc. Chem. Res. 53, 1229–1243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, Y., Perry, I. B., Lu, G., Liu, P. & Buchwald, S. L. Copper-catalyzed asymmetric addition of olefin-derived nucleophiles to ketones. Science 353, 144–150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartolo, N. D., Read, J. A., Valentín, E. M. & Woerpel, K. A. Reactions of allylmagnesium reagents with carbonyl compounds and compounds with C–N double bonds: their diastereoselectivities generally cannot be analyzed using the Felkin−Anh and chelation-control models. Chem. Rev. 120, 1513–1619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Evans, D. A. Stereoselective organic reactions: catalysts for carbonyl addition processes. Science 240, 420–426 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Yus, M., González-Gómez, J. C. & Foubelo, F. Diastereoselective allylation of carbonyl compounds and imines: application to the synthesis of natural products. Chem. Rev. 113, 5595–5698 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Caddick, S. & Jenkins, K. Dynamic resolutions in asymmetric synthesis. Chem. Soc. Rev. 25, 447–456 (1996).

    Article  CAS  Google Scholar 

  13. Huerta, F. F., Minidis, A. B. E. & Bäckvall, J. E. Racemization in asymmetric synthesis. dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 30, 321–331 (2001).

    Article  CAS  Google Scholar 

  14. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. You, H., Rideau, E., Sidera, M. & Fletcher, S. P. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation. Nature 517, 351–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Dehovitz, J. S. et al. Static to inducibly dynamic stereocontrol: the convergent use of racemic ketones. Science 369, 1113–1118 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Noyori, R. et al. Stereoselective hydrogenation via dynamic kinetic resolution. J. Am. Chem. Soc. 111, 9134–9135 (1989).

    Article  CAS  Google Scholar 

  20. Xie, J.-H. & Zhou, Q.-L. Catalytic asymmetric hydrogenation of α-substituted ketones and aldehydes via dynamic kinetic resolution: efficient approach to chiral alcohols. Aldrichimica Acta. 48, 33–40 (2015).

    CAS  Google Scholar 

  21. Steward, K. M., Gentry, E. C. & Johnson, J. S. Dynamic kinetic resolution of α-keto esters via asymmetric transfer hydrogenation. J. Am. Chem. Soc. 134, 7329–7332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, F. et al. Asymmetric transfer hydrogenation of α‑substituted-β-keto carbonitriles via dynamic kinetic resolution. J. Am. Chem. Soc. 143, 2477–2483 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, J., Krajangsri, S., Yang, J., Li, J. & Andersson, P. G. Iridium-catalysed asymmetric hydrogenation of allylic alcohols via dynamic kinetic resolution. Nat. Catal. 1, 438–443 (2018).

    Article  CAS  Google Scholar 

  24. Bartlett, S. L. & Johnson, J. S. Synthesis of complex glycolates by enantioconvergent addition reactions. Acc. Chem. Res. 50, 2284–2296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartlett, S. L., Keiter, K. M. & Johnson, J. S. Synthesis of complex tertiary glycolates by enantioconvergent arylation of stereochemically labile α-keto esters. J. Am. Chem. Soc. 139, 3911–3916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zavesky, B. P. & Johnson, J. S. Direct zinc(II)-catalyzed enantioconvergent additions of terminal alkynes to α-keto esters. Angew. Chem. Int. Ed. 56, 8805–8808 (2018).

    Article  Google Scholar 

  27. Liu, W., Cao, W., Hu, H., Lin, L. & Feng, X. Dynamic kinetic asymmetric transformations of β-halo-α-keto esters by N,N′-dioxide/Ni(II)-catalyzed carbonyl-ene reaction. Chem. Commun. 54, 8901–8904 (2018).

    Article  CAS  Google Scholar 

  28. Ruan, L.-X., Sun, B., Liu, J. & Shi, S.-L. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 379, 662–670 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Carreira, M. E. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley-VCH, 2009).

  30. Yus, M., González-Gómez, J. C. & Foubelo, F. Catalytic enantioselective allylation of carbonyl compounds and imines. Chem. Rev. 111, 7774–7854 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Ding, C. & Hou, X. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Zanghi, J. M. & Meek, S. J. Cu-catalyzed diastereo- and enantioselective reactions of γ,γ-disubstituted allyldiboron compounds with ketones. Angew. Chem. Int. Ed. 59, 8451–8455 (2020).

    Article  CAS  Google Scholar 

  33. Karasawa, T., Oriez, R., Kumagai, N. & Shibasaki, M. anti-Selective catalytic asymmetric nitroaldol reaction of α‑keto esters: intriguing solvent effect, flow reaction, and synthesis of active pharmaceutical ingredients. J. Am. Chem. Soc. 140, 12290–12295 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Li, K., Shao, X., Tseng, L. & Malcolmson, S. J. 2-Azadienes as reagents for preparing chiral amines: synthesis of 1,2-amino tertiary alcohols by Cu-catalyzed enantioselective reductive couplings with ketones. J. Am. Chem. Soc. 140, 598–601 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai, Y. et al. Copper-catalyzed enantioselective Markovnikov protoboration of α-olefins enabled by a buttressed N-heterocyclic carbene ligand. Angew. Chem. Int. Ed. 57, 1376–1380 (2018).

    Article  CAS  Google Scholar 

  36. de Jesús Cruz, P., Cassels, W. R., Chen, C. & Johnson, J. S. Doubly stereoconvergent crystallization enabled by asymmetric catalysis. Science 376, 1224–1230 (2022).

    Article  PubMed  Google Scholar 

  37. Shi, S.-L., Wong, Z. & Buchwald, S. L. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature 532, 353–356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, C., Xie, J.-H., Li, Y.-L., Chen, J.-Q. & Zhou, Q.-L. Asymmetric hydrogenation of α,α‘-disubstituted cycloketones via dynamic kinetic resolution: an efficient construction of chiral diols with three contiguous stereocenters. Angew. Chem. Int. Ed. 52, 593–596 (2013).

    Article  CAS  Google Scholar 

  39. Jiang, B. & Shi, S.-L. Pd-catalyzed cross-coupling of alkylzirconocenes and aryl chlorides. Chin. J. Chem. 40, 1813–1820 (2022).

    Article  CAS  Google Scholar 

  40. Li, T. et al. Asymmetric trapping of zwitterionic intermediates by sulphur ylides in a palladium-catalysed decarboxylation-cycloaddition sequence. Nat. Commun. 5, 5500 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Z. et al. Balancing skeleton and functional groups in total syntheses of complex natural products: a case study of tigliane, daphnane and ingenane diterpenoids. Nat. Prod. Rep. 38, 1589–1617 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Hasuoka, A. & Yamamoto, S. Cyclic amine compound. WO 2008/066117 A1 (2008).

  43. Evans, D. A., Siska, S. J. & Cee, V. J. Resurrecting the Cornforth model for carbonyl addition: studies on the origin of 1,2-asymmetric induction in enolate additions to heteroatom-substituted aldehydes. Angew. Chem. Int. Ed. 42, 1761–1765 (2003).

    Article  CAS  Google Scholar 

  44. Cherest, M., Felkin, H. & Prudent, N. Torsional strain involving partial bonds. The stereochemistry of the lithium aluminium hydride reduction of some simple open-chain ketones. Tetrahedron Lett. 9, 2199–2204 (1968).

    Article  Google Scholar 

  45. Anh, N. T. & Eisenstein, O. Induction asymetrique 1–2: comparaison ab initio des modeles de cram, de cornforth, de karabatsos et de felkin. Tetrahedron Lett. 17, 155–158 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Key R&D Program of China (2022YFA1503702, 2021YFF0701600), the National Natural Science Foundation of China (22325110, 92256303, 21821002, 22171280), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0610000), the Program of Shanghai Academic Research Leader (22XD1424900), the CAS Youth Interdisciplinary Team (JCTD-2021-11), the Ningbo Natural Science Foundation (2022J017) (S.-L.S.), the Natural Science Foundation of Shandong Province (ZR2019BB011) and the Scientific Research Foundation of Qingdao University of Science & Technology (12030430010799) (B.S.).

Author information

Authors and Affiliations

Authors

Contributions

B.S. developed the catalytic methods, investigated the substrate scope and conducted mechanistic studies. L.-X.R., R.Z., J.Z., R.N., Q.L., Y.Z. and L.G. synthesized substrates and performed partial substrate scope studies. B.S. and S.-L.S. wrote the manuscript. S.-L.S. conceived the project and directed the investigations.

Corresponding authors

Correspondence to Bo Sun or Shi-Liang Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jeffrey Johnson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Figs. 1–6, synthetic procedures, scale-up experiments, synthetic transformations and application of the reaction products, control experiments, compound characterization, X-ray crystallography, HPLC analysis and NMR spectra.

Supplementary Data 1

Crystallographic data for compound 4k, CCDC 2266504.

Supplementary Data 2

Crystallographic data for compound 7n, CCDC 2266507.

Supplementary Data 3

Crystallographic data for compound 10c, CCDC 2266505.

Supplementary Data 4

Crystallographic data for compound 11c, CCDC 2266506.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Ruan, LX., Zhao, R. et al. Dynamic kinetic asymmetric allylation, propargylation and crotylation of ketones using copper catalysis. Nat. Synth 3, 1091–1103 (2024). https://doi.org/10.1038/s44160-024-00567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00567-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing