Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase engineering of polyoxometalate assembled superstructures

Abstract

Superstructures of cluster assemblies have extraordinary properties compared with individual clusters, however, their precise synthesis and phase engineering remain challenging. Here the modular synthesis of a library of clusters based on anisotropic polyoxometalate clusters (CTA)2(TBA)2[PW11MO39] (PW11M) is reported. Different phases of superstructures including nanoribbons, spiral nanosheets, tetragonal nanosheets, polyhedral frameworks and nanotubes are prepared by the tuning of interactions between and inside the polyoxometalate building blocks. This synthetic strategy can be applied to six kinds of PW11M cluster building block. A phase diagram based on these results, which can be used to adjustably assemble polyoxometalate clusters, is presented. The direct bonding of clusters and electron delocalization among nanoribbons results in improved conductivity and reduced energy barrier for redox reactions. The nanoribbons exhibit enhanced activity for photoresponse and catalytic olefin epoxidation compared with unassembled clusters. The phase engineering of cluster-assembled superstructures with atomic precision models may help understand the structure–property relationship at the sub-nanometre scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic models of different phases of PW11M superstructures.
Fig. 2: The PW11Nd nanoribbons and spiral nanosheets.
Fig. 3: The PW11Nd tetragonal nanosheets and polyhedral framework.
Fig. 4: Constructions of PW11M superstructures.
Fig. 5: Electronic structure, photoresponse and catalytic performance of PW11Nd superstructures.

Similar content being viewed by others

Data availability

All data that support this work are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Khanna, S. N. & Jena, P. Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51, 13705–13716 (1995).

    Article  CAS  Google Scholar 

  2. Ritchie, C. et al. Spontaneous assembly and real-time growth of micrometre-scale tubular structures from polyoxometalate-based inorganic solids. Nat. Chem. 1, 47–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Fernández, J. A. et al. Polyoxometalates with internal cavities: Redox activity, basicity, and cation encapsulation in [Xn+P5W30O110](15-n)− preyssler complexes, with X = Na+, Ca2+, Y3+, La3+, Ce3+, and Th4+. J. Am. Chem. Soc. 129, 12244–12253 (2007).

    Article  PubMed  Google Scholar 

  4. Misra, A., Kozma, K., Streb, C. & Nyman, M. Beyond charge balance: counter-cations in polyoxometalate chemistry. Angew. Chem. Int. Ed. 59, 596–612 (2020).

    Article  CAS  Google Scholar 

  5. Franco-Castillo, I. et al. Polyoxometalate-ionic liquids (POM-ILs) as anticorrosion and antibacterial coatings for natural stones. Angew. Chem. Int. Ed. 57, 14926–14931 (2021).

    Google Scholar 

  6. Lin, C. G., Hu, J. & Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage, and sensor systems. Adv. Inorg. Chem. 69, 181–212 (2017).

    Article  CAS  Google Scholar 

  7. Moussawi, M. A. et al. Polyoxometalate, cationic cluster, and γ-cyclodextrin: from primary interactions to supramolecular hybrid materials. J. Am. Chem. Soc. 139, 12793–12803 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. et al. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature 594, 380–384 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, B. et al. Single-crystal superstructures via hierarchical assemblies of giant rubik’s cubes as tertiary building units. Angew. Chem. Int. Ed. 62, e202219025 (2023).

    Article  CAS  Google Scholar 

  10. Hou, L. et al. Synthesis of a monolayer fullerene network. Nature 606, 507–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Li, W. & Sun, M. Electronic band structure and anisotropic optical properties of bulk and monolayer fullerene networks. Spectrochim Acta A. 298, 122756 (2023).

    Article  CAS  Google Scholar 

  12. Peng, B. Monolayer fullerene networks as photocatalysts for overall water splitting. J. Am. Chem. Soc. 144, 19921–19931 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yao, Q. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. 15, 230–239 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Higaki, T. et al. Atomically tailored gold nanoclusters for catalytic application. Angew. Chem. Int. Ed. 58, 8291–8302 (2019).

    Article  CAS  Google Scholar 

  15. Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2, 343–362 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Q. & Wang, X. Fabricating sub-nanometer materials through cluster assembly. Chem. Sci. 13, 12280–12289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Z., Liu, Q. & Wang, X. Two-dimensional cluster-assembled materials with properties beyond their individualities and bulks. Matter 6, 3747–3762 (2023).

    Article  CAS  Google Scholar 

  18. Nyman, M., Rahman, T. & Colliard, I. Decaniobate: the fruit fly of niobium polyoxometalate chemistry. Acc. Chem. Res. 56, 3616–3625 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Maksimchuk, N. V. et al. Relevance of protons in heterolytic activation of H2O2 over Nb(V): insights from model studies on Nb-substituted polyoxometalates. ACS Catal. 8, 9722–9737 (2018).

    Article  CAS  Google Scholar 

  20. Liu, R. & Streb, C. Polyoxometalate-single atom catalysts (POM-SACs) in energy research and catalysis. Adv. Energy Mater. 11, 2101120 (2021).

    Article  CAS  Google Scholar 

  21. Long, D. L., Burkholder, E. & Cronin, L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem. Soc. Rev. 36, 105–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Li, X. et al. A polymeric co-assembly of subunit vaccine with polyoxometalates induces enhanced immune responses. Nano Res. 15, 4175–4180 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Putaj, P. & Lefebvre, F. Polyoxometalates containing late transition and noble metal atoms. Coord. Chem. Rev. 255, 1642–1685 (2011).

    Article  CAS  Google Scholar 

  24. Anyushin, A. V., Kondinski, A. & Parac-Vogt, T. N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 49, 382–432 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Li, H., Zheng, L., Lu, Q., Li, Z. & Wang, X. A monolayer crystalline covalent network of polyoxometalate clusters. Sci. Adv. 9, eadi6595 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, Q. et al. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 14, 433–440 (2022).

    Article  PubMed  Google Scholar 

  27. Li, Z., Zhang, Z., Hu, H., Liu, Q. & Wang, X. Synthesis of two-dimensional polyoxoniobate-based clusterphenes with in-plane electron delocalization. Nat. Synth. 2, 989–997 (2023).

    Article  CAS  Google Scholar 

  28. Li, Z. et al. Single-walled cluster nanotubes for single-atom catalysts with precise structures. J. Am. Chem. Soc. 146, 450–459 (2024).

    Article  CAS  PubMed  Google Scholar 

  29. He, P., Xu, B., Wang, P., Liu, H. & Wang, X. A monolayer polyoxometalate superlattice. Adv. Mater. 26, 4339–4344 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Nie, S., Wu, L. & Wang, X. Electron-delocalization-stabilized photoelectrocatalytic coupling of methane by NiO-polyoxometalate sub-1 nm heterostructures. J. Am. Chem. Soc. 145, 23681–23690 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, J. et al. Incorporation of clusters within inorganic materials through their addition during nucleation steps. Nat. Chem. 11, 839–845 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Shearer, M. J. et al. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 139, 3496–3504 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, L. M. et al. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14, 6418–6423 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Sarma, P. V., Patil, P. D., Barman, P. K., Kini, R. N. & Shaijumon, M. M. Controllable growth of few-layer spiral WS2. RSC Adv. 6, 376–382 (2016).

    Article  CAS  Google Scholar 

  35. Ly, T. H. et al. Vertically conductive MoS2 spiral pyramid. Adv. Mater. 28, 7723–7728 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Zhuang, A. et al. Screw‐dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates. Angew. Chem. Int. Ed. 53, 6425–6429 (2014).

    Article  CAS  Google Scholar 

  37. Forticaux, A., Dang, L. N., Liang, H. F. & Jin, S. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations. Nano Lett. 15, 3403–3409 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Hu, H. et al. Spiral square nanosheets assembled from Ru clusters. J. Am. Chem. Soc. 145, 12148–12154 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. López, X., Carbó, J. J., Bo, C. & Poblet, J. M. Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem. Soc. Rev. 41, 7537–7571 (2012).

    Article  PubMed  Google Scholar 

  40. Gumerova, N. I. & Rompel, A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat. Rev. Chem. 2, 0112 (2018).

    Article  CAS  Google Scholar 

  41. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Article  CAS  Google Scholar 

  42. Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994).

    Article  CAS  Google Scholar 

  43. Liu, L., Li, P., Yuan, L. F., Cheng, L. & Yang, J. From isosuperatoms to isosupermolecules: new concepts in cluster science. Nanoscale 8, 12787–12792 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Q. & Wang, X. Sub-nanometric materials: electron transfer, delocalization, and beyond. Chem. Catal. 2, 1257–1266 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant no. 2023YFB3507700 to X.W.), NSFC (grant nos. 22241502, 22035004, 22250710677, 22305137) (to X.W.) and the China Postdoctoral Science Foundation (grant nos. 2023M731918 to F.Z. and 2022M721798 to Z.L.).

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and X.W. contributed the idea and provided the guidance. F.Z. performed most of the experiments. Z.L. provided theoretical analysis and supervision. H.L. provided the guidance on ELF and photodetection properties, respectively. X.W. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Zhong Li, Qingda Liu or Xun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Xun Hong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–43 and Tables 1–5.

Source data

Source Data Fig. 2

Data of height profile.

Source Data Fig. 3

Data of small-angle XRD.

Source Data Fig. 5

Data of electronic structure, photoresponse and catalytic performance.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, H., Li, Z. et al. Phase engineering of polyoxometalate assembled superstructures. Nat. Synth 3, 1039–1048 (2024). https://doi.org/10.1038/s44160-024-00569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00569-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing