Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

O-to-O acyl transfer for epimerization-free peptide C-terminal salicylaldehyde ester synthesis

Abstract

Peptide salicylaldehyde esters are the requisite coupling partner in Ser/Thr ligation reactions towards chemical protein synthesis. In general, it would be cost-effective and efficient to use side-chain-protected peptide acids, after Fmoc solid-phase peptide synthesis, for direct C-terminal derivatization; however, this has yet to be achieved, due to an intrinsic epimerization pathway. Here we report the development of 2-(dichloromethyl)phenol as a reagent that can directly form peptide salicylaldehyde esters in an epimerization-free manner. Mechanistic studies reveal that the 2-(dichloromethyl)phenol reagent serves as a source of highly reactive quinone methide species that can be trapped by the peptide C-terminal carboxylate to give α-chloroesters, followed by an Obenzylic-to-Ophenolic acyl transfer and chloride extrusion process. The peptide salicylaldehyde ester reaction products have been applied in the convergent total chemical synthesis of linker histone H1.2 using sequential Ser/Thr ligation reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of intramolecular acyl transfer processes and design of the DCP-facilitated salicylaldehyde ester formation.
Fig. 2: Synthesis of the DCP reagent and the condition optimization of the SAL ester formation in the model system.
Fig. 3: Evaluation of the effect of C-terminal residues on the peptide SAL ester formation using DCP reagent.
Fig. 4: Substrate scope of the peptide SAL ester formation using DCP reagent.
Fig. 5: Mechanism study of the SAL ester formation using DCP reagent.
Fig. 6: Computational study of the mechanism of DCP reagent mediated SAL ester formation.
Fig. 7: Convergent synthesis of histone H1.2 via Ser/Thr ligations.
Fig. 8: Characterizations of synthetic histone H1.2 protein.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the main text and Supplementary Information. Source data are provided with this paper.

References

  1. Kürti, L. & Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms (Elsevier Academic, 2005).

  2. McClelland, R. A. & Santry, L. Reactivity of tetrahedral intermediates. Acc. Chem. Res. 16, 394–399 (1983).

    CAS  Google Scholar 

  3. Tailhades, J., Patil, N. A., Hossian, M. A. & Wade, J. D. Intramolecular acyl transfer in peptide and protein ligation and synthesis. J. Pept. Sci. 21, 139–147 (2015).

    CAS  PubMed  Google Scholar 

  4. Burke, H. M., McSweeney, L. & Scanlan, E. M. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nat. Commun. 8, 15655 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Dawson, P. E., Muir, T. M., Clark-Lewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    CAS  PubMed  Google Scholar 

  6. Agouridas, V. et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 119, 7328–7443 (2019).

    CAS  PubMed  Google Scholar 

  7. Quadere, R., Sewing, A. & Hilvert, D. Selenocysteine-mediated native chemical ligation. Helv. Chim. Acta 84, 1197–1206 (2001).

    Google Scholar 

  8. Hondal, R. J., Nilsson, B. L. & Raines, R. T. Selenocysteine in native chemical ligation and expressed protein ligation. J. Am. Chem. Soc. 123, 5140–5141 (2001).

    CAS  PubMed  Google Scholar 

  9. Gieselman, M. D., Xie, L. & van der Donk, W. A. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org. Lett. 3, 1331–1334 (2001).

    CAS  PubMed  Google Scholar 

  10. Quaderer, R. & Hilvert, D. Selenocysteine-mediated backbone cyclization of unprotected peptides followed by alkylation, oxidative elimination or reduction of the selenol. Chem. Commun. https://doi.org/10.1039/B208288H (2002).

  11. Roelfes, G. & Hilvert, D. Incorporation of selenomethionine into proteins through selenohomocysteine-mediated ligation. Angew. Chem. Int. Ed. 42, 2275–2277 (2003).

    CAS  Google Scholar 

  12. Sohma, Y., Sasaki, M., Hayashi, Y., Kimura, T. & Kiso, Y. Novel and efficient synthesis of difficult sequence-containing peptides through ON intramolecular acyl migration reaction of O-acyl isopeptides. Chem. Commun. https://doi.org/10.1039/B312129A (2004).

  13. Sohma, Y. et al. Development of O-acyl isopeptide method. Pept. Sci. 88, 253–262 (2007).

    CAS  Google Scholar 

  14. Popov, V., Panda, S. S. & Katritzky, A. R. Ligations from tyrosine isopeptides via 12- to 19-membered cyclic transition states. J. Org. Chem. 78, 7455–7461 (2013).

    CAS  PubMed  Google Scholar 

  15. Liu, C.-F. & Tam, J. P. Chemical ligation approach to form a peptide bond between unprotected peptide segments. Concept and model study. J. Am. Chem. Soc. 116, 4149–4153 (1994).

    CAS  Google Scholar 

  16. Tam, J. P. & Miao, Z. Stereospecific pseudoproline ligation of N-terminal serine, threonine, or cysteine-containing unprotected peptides. J. Am. Chem. Soc. 121, 9013–9022 (1999).

    CAS  Google Scholar 

  17. Zhang, Y., Xu, C., Lam, H. Y., Lee, C. L. & Li, X. Protein chemical synthesis by serine and threonine ligation. Proc. Natl Acad. Sci. USA 110, 6657–6662 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, H. & Li, X. Serine/threonine ligation: origin, mechanistic aspects, and applications. Acc. Chem. Res. 51, 1643–1655 (2018).

    CAS  PubMed  Google Scholar 

  19. Tan, Y. et al. Cysteine/penicillamine ligation independent of terminal steric demands for chemical protein synthesis. Angew. Chem. Int. Ed. 59, 12741–12745 (2020).

    CAS  Google Scholar 

  20. Bode, J. W., Fox, R. M. & Baucom, K. D. Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angew. Chem. Int. Ed. 45, 1248–1252 (2006).

    CAS  Google Scholar 

  21. Bode, J. W. Chemical protein synthesis with the α-ketoacid-hydroxylamine ligation. Acc. Chem. Res. 50, 2104–2115 (2017).

    CAS  PubMed  Google Scholar 

  22. Panda, S. S., Hall, C. D., Oliferenko, A. A. & Katritzky, A. R. Traceless chemical ligation from S-, O-, and N-acyl isopeptides. Acc. Chem. Res. 47, 1076–1087 (2014).

    CAS  PubMed  Google Scholar 

  23. Mhidia, R. et al. Exploration of an imide capture/N,N-acyl shift for asparagine native peptide bond formation. Bioorg. Med. Chem. 21, 3479–3485 (2013).

    CAS  PubMed  Google Scholar 

  24. Kawakami, T. & Aimoto, S. Sequential peptide ligation by using a controlled cysteinyl prolyl ester (CPE) autoactivating unit. Tetrahedron Lett. 48, 1903–1905 (2007).

    CAS  Google Scholar 

  25. Tsuda, S., Shigenaga, A., Bando, K. & Otaka, A. NS acyl-transfer-mediated synthesis of peptide thioesters using anilide derivatives. Org. Lett. 11, 823–826 (2009).

  26. Ollivier, N., Dheur, J., Mhidia, R., Blanpain, A. & Melnyk, O. Bis(2-sulfanylethyl)amino native peptide ligation. Org. Lett. 12, 5238–5241 (2010).

    CAS  PubMed  Google Scholar 

  27. Kang, J. & Macmillan, D. Peptide and protein thioester synthesis via NS acyl transfer. Org. Biomol. Chem. 8, 1993–2002 (2010).

  28. Raibaut, L. et al. Accelerating chemoselective peptide bond formation using bis(2-selenylethyl)amido peptide selenoester surrogates. Chem. Sci. 7, 2657–2665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, G. et al. Studies related to the relative thermodynamic stability of C-terminal peptidyl esters of o-hydroxy thiophenol: emergence of a doable strategy for non-cysteine ligation applicable to the chemical synthesis of glycopeptides. J. Am. Chem. Soc. 128, 7460–7462 (2006).

    CAS  PubMed  Google Scholar 

  30. Botti, P., Villain, M., Manganiello, S. & Gaertner, H. Native chemical ligation through in situ O to S acyl shift. Org. Lett. 6, 4861–4864 (2004).

    CAS  PubMed  Google Scholar 

  31. Nagano, M., Huang, Y., Obexer, R. & Suga, H. Chemical peptide macrolactonization via intramolecular S-to-S-to-O acyl transfer. Pept. Sci. 114, e24259 (2022).

  32. Roslund, M. U. et al. Acyl group migration and cleavage in selectively protected β-D-galactopyranosides as studied by NMR spectroscopy and kinetic calculations. J. Am. Chem. Soc. 130, 8769–8772 (2008).

    CAS  PubMed  Google Scholar 

  33. Lassfolk, R. et al. Acetyl group migration across the saccharide units in oligosaccharide model compound. J. Am. Chem. Soc. 141, 1646–1654 (2019).

    CAS  PubMed  Google Scholar 

  34. Wang, Z. et al. Synthetic zwitterionic Streptococcus pneumoniae type 1 oligosaccharides carrying labile O-acetyl esters. Angew. Chem. Int. Ed. 62, e202211940 (2023).

  35. Liang, X. et al. Syntheses, biological evaluation and SAR of ingenol mebutate analogues for treatment of actinic keratosis and non-melanoma skin cancer. Bioorg. Med. Chem. Lett. 23, 5624–5629 (2013).

    CAS  PubMed  Google Scholar 

  36. Filice, M. et al. Chemo-biocatalytic regioselective one-pot synthesis of different deprotected monosaccharides. Catal. Today 140, 11–18 (2009).

    CAS  Google Scholar 

  37. Graziani, A., Passacantilli, P., Piancatelli, P. & Tani, S. A mild and efficient approach for the regioselective silyl-mediated protection-deprotection of C-4 hydroxyl group on carbohydrates. Tetrahedron Lett. 42, 3857–3860 (2001).

    CAS  Google Scholar 

  38. Deng, S. & Chang, C.-W. T. Cesium trifluoroacetate or silver oxide mediated acyl migration for the construction of disaccharide building blocks. Synlett https://doi.org/10.1055/s-2006-933105 (2006).

  39. An, Y.-H. & Chang, Y.-T. Molecular evolution on chiro-inositol dibenzoate using intramolecular acyl migration and selection by phenyl boronic acid. J. Comb. Chem. 6, 293–296 (2004).

    Google Scholar 

  40. An, Y.-H. & Chang, Y.-T. Molecular evolution using intramolecular acyl migration on myo-inositol benzoates with thermodynamic and kinetic selectors. Chem. Eur. J. 10, 3543–3547 (2004).

    Google Scholar 

  41. Lee, C. L., Liu, H., Wong, C. T. T., Chow, H. Y. & Li, X. Enabling N-to-C Ser/Thr ligation for convergent protein synthesis via combining chemical ligation approaches. J. Am. Chem. Soc. 138, 10477–10484 (2016).

    CAS  PubMed  Google Scholar 

  42. Li, T., Liu, H. & Li, X. Chemical synthesis of HMGA1a proteins with post-translational modifications via Ser/Thr ligation. Org. Lett. 18, 5944–5947 (2016).

    CAS  PubMed  Google Scholar 

  43. Wu, H. et al. Chemical synthesis and biological evaluations of adiponectin collagenous domain glycoforms. J. Am. Chem. Soc. 143, 7808–7818 (2021).

    CAS  PubMed  Google Scholar 

  44. Wu, H., Wei, T., Ngai, W. L., Zhou, H. & Li, X. Ligation embedding aggregation disruptor strategy enables the chemical synthesis of PD-1 immunoglobulin and extracellular domains. J. Am. Chem. Soc. 144, 14748–14757 (2022).

    CAS  PubMed  Google Scholar 

  45. Wu, H., Tan, Y., Ngai, W. L. & Li, X. Total synthesis of interleukin-2 via a tunable backbone modification strategy. Chem. Sci. 14, 1582–1589 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma, W. et al. Chemical synthesis of proteins with base-labile posttranslational modifications enabled by a Boc-SPPS based general strategy towards peptide C-terminal salicylaldehyde esters. Angew. Chem. Int. Ed. 62, e202214053 (2023).

    CAS  Google Scholar 

  47. Lam, H. Y. et al. Total synthesis of daptomycin by cyclization via a chemoselective serine ligation. J. Am. Chem. Soc. 135, 6272–6279 (2013).

    CAS  PubMed  Google Scholar 

  48. Wong, C. T. T., Lam, H. Y., Song, T., Chen, G. & Li, X. Synthesis of constrained head-to-tail cyclic tetrapeptides by an imine-induced ring-closing/contraction strategy. Angew. Chem. Int. Ed. 52, 10212–10215 (2013).

    CAS  Google Scholar 

  49. Jin, K. et al. Total synthesis of teixobactin. Nat. Commun. 7, 12394 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, Z. et al. Total synthesis of malacidin A by β-hydroxyaspartic acid ligation-mediated cyclization and absolute structure establishment. Angew. Chem. Int. Ed. 59, 19868–19872 (2020).

    CAS  Google Scholar 

  51. Wang, J. et al. Total synthesis of mannopeptimycin β via β-hydroxyenduracididine ligation. J. Am. Chem. Soc. 143, 12784–12790 (2021).

    CAS  PubMed  Google Scholar 

  52. Dolci, S., Marchetti, F., Pampaloni, G. & Zacchini, S. A crystallographic and spectroscopic study on the reactions of WCl6 with carbonyl compounds. Dalton Trans. 42, 5635–5648 (2013).

  53. Aghapour, G. & Afzali, A. Facile conversion of aldehydes and ketones to gem-dichlorides using chlorodiphenylphosphine/N-chlorosuccinimide as a new and neutral system. Synth. Commun. 38, 4023–4035 (2008).

    CAS  Google Scholar 

  54. Barlos, K. et al. Darstellung geschützter peptid-fragmente unter einsatz substituierter triphenylmethyl-harze. Tetrahedron Lett. 30, 3943–3946 (1989).

    CAS  Google Scholar 

  55. Barlos, K. et al. Veresterung von partiell geschützten peptid-fragmenten mit harzen. Einsatz von 2-chlortritylchlorid zur synthese von Leu15-gastrin I. Tetrahedron Lett. 30, 3947–3950 (1989).

    CAS  Google Scholar 

  56. Wong, C. T. T., Li, T., Lam, H. Y., Zhang, Y. & Li, X. Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof. Front. Chem. 2, 28 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Carpino, L. A. & El-Faham, A. Efficiency in peptide coupling: 1-hydroxy-7-azabenzotriazole vs 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine. J. Org. Chem. 60, 3561–3564 (1995).

    CAS  Google Scholar 

  58. Li, H. et al. 3-(Diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT): a new coupling reagent with remarkable resistance to racemization. Org. Lett. 1, 91–93 (1999).

    CAS  PubMed  Google Scholar 

  59. Ye, Y., Li, H. & Jiang, X. DEPBT as an efficient coupling reagent for amide bond formation with remarkable resistance to racemization. Biopolymers 80, 172–178 (2005).

    CAS  PubMed  Google Scholar 

  60. Hu, L. et al. Ynamides as racemization-free coupling reagents for amide and peptide synthesis. J. Am. Chem. Soc. 138, 13135–13138 (2016).

    CAS  PubMed  Google Scholar 

  61. Yang, Y., Hansen, L. & Baldi, A. Suppression of simultaneous Fmoc-His(Trt)-OH racemization and Nα-DIC-endcapping in solid-phase peptide synthesis through design of experiments and its implication for an amino acid activation strategy in peptide synthesis. Org. Process Res. Dev. 26, 2464–2474 (2022).

    CAS  Google Scholar 

  62. Zhou, Y. et al. Suppression of alpha-carbon racemization in peptide synthesis based on a thiol-labile amino protecting group. Nat. Commun. 14, 53204 (2023).

    Google Scholar 

  63. Snella, B., Diemer, V., Drobeca, H., Agouridas, V. & Melnyk, O. Native chemical ligation at serine revisited. Org. Lett. 20, 7616–7619 (2018).

    CAS  PubMed  Google Scholar 

  64. Malins, L. R., Cergol, K. M. & Payne, R. J. Chemoselective sulfenylation and peptide ligation at tryptophan. Chem. Sci. 5, 260–266 (2014).

    CAS  Google Scholar 

  65. Toteva, M. M. & Richard, J. P. The generation and reactions of quinone methides. Adv. Phys. Org. Chem. 45, 39–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Singh, M. S., Nagaraju, A., Anand, N. & Chowdhury, S. ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis. RSC Adv. 4, 55924–55959 (2014).

    CAS  Google Scholar 

  67. Huang, Z. et al. Bioorthogonal photocatalytic decaging-enabled mitochondrial proteomics. J. Am. Chem. Soc. 143, 18714–18720 (2021).

    CAS  PubMed  Google Scholar 

  68. Diao, L., Yang, C. & Wan, P. Quinone methide intermediates from the photolysis of hydroxybenzyl alcohols in aqueous solution. J. Am. Chem. Soc. 117, 5369–5370 (1995).

    CAS  Google Scholar 

  69. Khan, P. R., Charan, P. H. K. & Rao, M. B. FeCl3 catalyzed Prins cyclization for the synthesis of angularly fused polycyclic scaffolds. Synth. Commun. 50, 432–437 (2020).

    Google Scholar 

  70. Mardirossian, N. & Head-Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017).

    CAS  Google Scholar 

  71. Tiwary, A. S. & Mukherjee, A. K. Performance of the M06 family of functionals in prediction of the charge transfer transition energies of the naphthalene-TCNE and pyrene-TCNE molecular complexes. Chem. Phys. Lett. 610, 19–22 (2014).

    Google Scholar 

  72. Lee, W., Benton, T. R., Sengupta, A. & Houk, K. N. Molecular dynamics of the norbornyl cation in solution and its generation in Winstein-Trifan solvolysis: the timing of sigma bridging. J. Org. Chem. 89, 1140–1146 (2024).

    CAS  PubMed  Google Scholar 

  73. Zhou, Y. & Yu, Z. 1,5‐X insertions of free alkylidene carbenes: a theoretical study. Asian J. Org. Chem. 12, e202300440 (2023).

    CAS  Google Scholar 

  74. Harshman, S. W., Young, N. L., Parthun, M. R. & Freitas, M. A. H1 histones: current perspectives and challenges. Nucleic Acids Res. 41, 9593–9609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hergeth, S. P. & Schneider, R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep. 16, 1439–1453 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Flanagan, T. W. & Brown, D. T. Molecular dynamics of histone H1. Biochim. Biophys. Acta 1859, 468–475 (2016).

    CAS  PubMed  Google Scholar 

  77. Izzo, A. & Schneider, R. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamic. Biochim. Biophys. Acta 1859, 486–495 (2016).

    PubMed  Google Scholar 

  78. Lai, S., Jia, J., Cao, X., Zhou, P.-K. & Gao, S. Molecular and cellular functions of the linker histone H1.2. Front. Cell Dev. Biol. 9, 773195 (2022).

    PubMed  PubMed Central  Google Scholar 

  79. Fyodorov, D. V., Zhou, B. R., Skoultchi, A. I. & Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19, 192–206 (2018).

    CAS  PubMed  Google Scholar 

  80. Kamo, N. et al. Organoruthenium-catalyzed chemical protein synthesis to elucidate the functions of epigenetic modifications on heterochromatin factors. Chem. Sci. 12, 5926–5937 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong, Z. Z. et al. Development of convergent hybrid phase ligation for efficient and convenient total synthesis of proteins. Pept. Sci. 115, e24332 (2023).

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Grants Research Council of University Grants Committee of Hong Kong (C7017-18G, 17302621, 17306521 and AoE/P-706/16) and the National Natural Science Foundation of China (22177097).

Author information

Authors and Affiliations

Authors

Contributions

X.L. conceived and supervised the study. X.L. and W.X. designed experiments. W.X., Z.Z. and J.L. performed experiments. B.-W.L. and Z.-X.Y. performed the computational study. X.L., H.L., W.X. and B.-W.L. analysed the data. X.L. and H.L. wrote the paper.

Corresponding authors

Correspondence to Zhi-Xiang Yu or Xuechen Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Robert Pollice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–76, Table 1, additional experimental procedures, computational calculation details and characterization data.

Reporting Summary

Supplementary Data 1

Cartesian coordinates of intermediates and transition states.

Source data

Source Data Fig. 8b

Scanned SDS–PAGE of synthetic and expressed histone H1.2. The three lanes on the right side are not related to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, W., Li, BW., Zhong, Z. et al. O-to-O acyl transfer for epimerization-free peptide C-terminal salicylaldehyde ester synthesis. Nat. Synth 3, 1049–1060 (2024). https://doi.org/10.1038/s44160-024-00570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00570-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing