Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocatalytic site-selective radical C(sp3)–H aminoalkylation, alkylation and arylation of silanes

Abstract

Organosilicon compounds are of great value in chemistry and material science. However, site-selective C–H bond functionalization of simple silanes to prepare more complex organosilicon compounds is challenging because of the presence of multiple C–H bonds in the same molecule. Here we report a broadly applicable photocatalytic site-selective radical functionalization of organosilicon compounds enabled by the β-silicon effect, wherein a silyl group selectively activates β-C(sp3)–H bonds, leading to lower bond dissociation energy than that of α-C(sp3)–H bonds and γ-C(sp3)–H bonds. Various β-C(sp3)–H bond aminoalkylation, alkylation and arylation reactions have been achieved and applied in complex molecule synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and our strategy of selective β-C(sp3)–H functionalization of silanes.
Fig. 2: β-C(sp3)–H alkylation of silanes with imines and electron-deficient alkenes.
Fig. 3: β-C(sp3)–H alkylation and arylation of silanes.
Fig. 4: Late-stage functionalization, intermolecular competition experiments, downstream transformations and the importance of silicon for high site selectivity.
Fig. 5: Proposed mechanism.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Crystallographic data for the structure reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition no. CCDC 2257454 (58). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Lee, V. Y. Organosilicon Compounds (Elsevier, 2017).

  2. Hiyama, T. & Oestreich, M. Organosilicon Chemistry: Novel Approaches and Reactions (Wiley, 2020).

  3. Fan, X. et al. Stepwise on-demand functionalization of multihydrosilanes enabled by a hydrogen-atom-transfer photocatalyst based on eosin Y. Nat. Chem. 15, 666–676 (2023).

    CAS  PubMed  Google Scholar 

  4. Rogge, T. et al. C–H activation. Nat. Rev. Methods Primers 1, 43–73 (2021).

    CAS  Google Scholar 

  5. Yang, Y., Liu, J., Ouyang, K. & Xi, Z. Transition-metal-catalyzed cleavage of silyl C(sp3)–H bonds. Sci. Sin. Chim. 51, 97–109 (2021).

    Google Scholar 

  6. Liang, Y., Geng, W., Wei, J., Ouyang, K. & Xi, Z. Palladium-catalyzed silyl C(sp3)–H bond activation. Org. Biomol. Chem. 10, 1537–1542 (2012).

    CAS  PubMed  Google Scholar 

  7. Han, J., Qin, Y., Ju, C. & Zhao, D. Divergent synthesis of vinyl-, benzyl-, and borylsilanes: aryl to alkyl 1,5-palladium migration/coupling sequences. Angew. Chem. Int. Ed. 59, 6555–6560 (2020).

    CAS  Google Scholar 

  8. Ohmura, T., Torigoe, T. & Suginome, M. Catalytic functionalization of methyl group on silicon: iridium-catalyzed C(sp3)–H borylation of methylchlorosilanes. J. Am. Chem. Soc. 134, 17416–17419 (2012).

    CAS  PubMed  Google Scholar 

  9. Fang, H., Hou, W., Liu, G. & Huang, Z. Ruthenium-catalyzed site-selective intramolecular silylation of primary C–H bonds for synthesis of sila-heterocycles. J. Am. Chem. Soc. 139, 11601–11609 (2017).

    CAS  PubMed  Google Scholar 

  10. Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Seyferth, D., Washburne, S. S., Attridge, C. J. & Yamamoto, K. Halomethylmetal compounds. XXXIV. Insertion of phenyl(bromodichloromethyl)mercury-derived dichlorocarbene into carbon–hydrogen bonds. Tetraalkylsilicon and tetraalkyltin compounds. J. Am. Chem. Soc. 92, 4405–4417 (1970).

    CAS  Google Scholar 

  12. Hatanaka, Y., Watanabe, M., Onozawa, S., Tanaka, M. & Sakurai, H. Rhodium-catalyzed insertion of carbenoids into β-C–H bonds of silacycloalkanes: a facile and general approach to functionalized silacycloalkanes. J. Org. Chem. 63, 422–423 (1998).

    CAS  PubMed  Google Scholar 

  13. Garlets, Z. J. & Davies, H. M. L. Harnessing the β-silicon effect for regioselective and stereoselective rhodium(II)-catalyzed C–H functionalization by donor/acceptor carbenes derived from 1-sulfonyl-1,2,3-triazoles. Org. Lett. 20, 2168–2171 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ninomiya, R. et al. β-Silicon-effect-promoted intermolecular site-selective C(sp3)–H amination with dirhodium nitrenes. Chem. Commun. 56, 5759–5762 (2020).

    CAS  Google Scholar 

  15. Golden, D. L., Suh, S.-E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarkar, S., Cheung, K. P. S. & Gevorgyan, V. C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem. Sci. 11, 12974–12993 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yi, H. et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

    CAS  PubMed  Google Scholar 

  18. Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    CAS  PubMed  Google Scholar 

  19. Ye, Z., Lin, Y. & Gong, L. The merger of photocatalyzed hydrogen atom transfer with transition metal catalysis for C–H functionalization of alkanes and cycloalkanes. Eur. J. Org. Chem. 2021, 5545–5556 (2021).

    CAS  Google Scholar 

  20. Ravelli, D., Protti, S. & Fagnoni, M. Decatungstate anion for photocatalyzed “Window Ledge” reactions. Acc. Chem. Res. 49, 2232–2242 (2016).

    CAS  PubMed  Google Scholar 

  21. Stateman, L., Nakafuku, K. & Nagib, D. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem. Catal. 1, 523–598 (2021).

    CAS  Google Scholar 

  23. Jeffrey, J. L., Terrett, J. A. & MacMillan, D. W. C. O–H hydrogen bonding promotes H-atom transfer from α-C–H bonds for C-alkylation of alcohols. Science 349, 1532–1536 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhong, P.-F. et al. Photoelectrochemical oxidative C(sp3)–H borylation of unactivated hydrocarbons. Nat. Commun. 14, 6530 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shu, C., Noble, A. & Aggarwal, V. K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020).

    CAS  PubMed  Google Scholar 

  28. van Staden, L. F., Gravestock, D. & Agerc, D. J. New developments in the Peterson olefination reaction. Chem. Soc. Rev. 31, 195–200 (2002).

    PubMed  Google Scholar 

  29. Roberts, D. D. & McLaughlin, M. G. Strategic applications of the β-silicon effect. Adv. Synth. Catal. 364, 2307–2332 (2022).

    CAS  Google Scholar 

  30. Wilt, J. W. & Aznavoorian, P. M. Favored reduction of α-chlorosilanes vs α-chloroalkanes with tri-n-butyltin hydride. J. Org. Chem. 43, 1285–1286 (1978).

    CAS  Google Scholar 

  31. Kawamura, T. & Kochi, J. K. Hyperconjugative and pd homoconjugative effects of silicon, germanium, and tin on alkyl radicals from electron spin resonance studies. J. Am. Chem. Soc. 94, 648–650 (1972).

    CAS  Google Scholar 

  32. Landais, Y. Stereocontrol in reactions of cyclic and acyclic β-silyl radicals. C. R. Chim. 8, 823–832 (2005).

    CAS  Google Scholar 

  33. Rubinsztajn, S. & Cella, J. A. A new polycondensation process for the preparation of polysiloxane copolymers. Macromolecules 38, 1061–1063 (2005).

    CAS  Google Scholar 

  34. Mu, Q.-C., Chen, J., Xia, C.-G. & Xu, L.-W. Synthesis of silacyclobutanes and their catalytic transformations enabled by transition-metal complexes. Coord. Chem. Rev. 374, 93–113 (2018).

    CAS  Google Scholar 

  35. Huang, J., Liu, F., Wu, X., Chen, J.-Q. & Wu, J. Recent advances in the reactions of silacyclobutanes and their applications. Org. Chem. Front. 9, 2840–2855 (2022).

    CAS  Google Scholar 

  36. Fotie, J., Matherne, C. M. & Wroblewski, J. E. Silicon switch: carbon–silicon bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and drug like properties in anticancer pharmacophores. Chem. Bio. Drug Des. 102, 235–254 (2023).

    CAS  Google Scholar 

  37. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Google Scholar 

  38. Collins, K. D., Rühling, A. & Glorius, F. Application of a robustness screen for the evaluation of synthetic organic methodology. Nat. Protoc. 9, 1348–1353 (2014).

    CAS  PubMed  Google Scholar 

  39. Dai, Z.-Y., Nong, Z.-S. & Wang, P.-S. Light-mediated asymmetric aliphatic C–H alkylation with hydrogen atom transfer catalyst and chiral phosphoric acid. ACS Catal. 10, 4786–4790 (2020).

    CAS  Google Scholar 

  40. Capaldo, L., Fagnoni, M. & Ravelli, D. Vinylpyridines as building blocks for the photocatalyzed synthesis of alkylpyridines. Chem. Eur. J. 23, 6527–6530 (2017).

    CAS  PubMed  Google Scholar 

  41. Fan, P. et al. Photocatalytic hydroacylation of trifluoromethyl alkenes. Chem. Commun. 55, 12691–12694 (2019).

    CAS  Google Scholar 

  42. Li, Y., Guo, S., Li, Q.-H. & Zheng, K. Metal-free photoinduced C(sp3)–H/C(sp3)–H cross-coupling to access α-tertiary amino acid derivatives. Nat. Commun. 14, 6225 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Niu, L., Liu, J., Liang, X.-A., Wang, S. & Lei, A. Visible light-induced direct α C–H functionalization of alcohols. Nat. Commun. 10, 467 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. He, T., Li, B., Liu, L., Ma, W. & He, W. Rhodium-catalyzed intermolecular silylation of Csp–H by silacyclobutanes. Chem. Eur. J. 27, 5648–5652 (2021).

    CAS  PubMed  Google Scholar 

  45. Chen, H. et al. Rhodium-catalyzed reaction of silacyclobutanes with unactivated alkynes to afford silacyclohexenes. Angew. Chem. Int. Ed. 58, 4695–4699 (2019).

    CAS  Google Scholar 

  46. Tang, X. et al. Ring expansion of silacyclobutanes with allenoates to selectively construct 2- or 3-(E)-enoate-substituted silacyclohexenes. ACS Catal. 12, 5185–5196 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to National Key R&D Program of China (2022YFA1506100, X.S.), National Natural Science Foundation of China (22471201, X.S.; 21901191, X.S.) and Fundamental Research Funds for the Central Universities (2042023kf0202, X.S.) for financial support. We thank T. Ritter (Max-Planck-Institut für Kohlenforschung) for helpful discussions. We thank R. Zhang from Core Facility of Wuhan University for the assistance with X-ray structure analysis. The theoretical calculations were performed on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

X.S. conceived the idea, guided the project and wrote the paper with revisions by all the other authors; X.H. developed the catalytic methods and performed the mechanistic studies and synthetic applications. X.H., W.Z., Z.L. and Y. Zhao prepared the substrates and studied the scope. Y. Zhang performed the calculations of the BDEs. S.L. co-guided the project and analysed the spectra data. All the authors were involved in the discussion and analysis of the data.

Corresponding author

Correspondence to Xiao Shen.

Ethics declarations

Competing interests

X.S., S.L. and X.H. may benefit from a patent based on the method disclosed in this paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Mark McLaughlin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Details, Discussion, Sections 1–10, Figs. 1–5 and Tables 1–6.

Supplementary Data 1

Crystallographic data for compound 58, CCDC 2257454.

Supplementary Data 2

Structure factors for compound 58, CCDC 2257454.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, Y., Liu, S. et al. Photocatalytic site-selective radical C(sp3)–H aminoalkylation, alkylation and arylation of silanes. Nat. Synth 4, 188–195 (2025). https://doi.org/10.1038/s44160-024-00664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00664-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing