Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechano-photoexcitation for organic synthesis using mechanoluminescent materials as photon sources

Abstract

Implementing photochemical reactions through mechanochemical methods can reduce waste generation by eliminating the need for bulk solvents. The absence of solvent results in exceptionally high concentrations of catalysts and reactants in reactions, substantially improving reaction rates and efficiency in terms of both time and energy utilization. However, the integration of mechano- and photochemical approaches is often hindered by the limited transparency of mechanochemical reaction vessels. Here we present a mechano-photoexcitation strategy that utilizes mechanoluminescent materials, in particular SrAl2O4:Eu2+/Dy3+, as internal photon sources activated by mechanical energy. We demonstrate the efficacy of this strategy in two photochemical processes: the Hofmann–Löffler–Freytag reaction and the activation of electron donor–acceptor complexes in sulfonylation reactions. Mechanistic studies confirm the radical nature of these transformations, and control experiments validate the critical role of mechano-photoactivation. By utilizing mechanical energy alone, this method eliminates the need for external light sources and enables gramme-scale photochemical transformations. Our approach represents a valuable application of mechanical energy in synthetic chemistry, providing a complementary means for integrating photochemistry with mechanochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Achieving or simulating photochemical transformations in mechanochemistry.
Fig. 2: Mechanoluminescence spectra.
Fig. 3: Mechanochemical HLF reaction.
Fig. 4: Mechanochemical sulfonylation reaction.
Fig. 5: Mechanistic studies, gramme-scale synthesis and ML material recycling.
Fig. 6: Control experiments.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008).

    CAS  PubMed  Google Scholar 

  2. Kärkäs, M. D., Porco, J. A. Jr. & Stephenson, C. R. J. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 116, 9683–9747 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Stephenson C., Yoon T., MacMillan D. W. C., Visible Light Photocatalysis in Organic Chemistry (Wiley, 2018).

  4. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Crisenza, G. E. M. & Melchiorre, P. Chemistry glows green with photoredox catalysis. Nat. Commun. 11, 803 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Martinez, V., Stolar, T., Karadeniz, B., Brekalo, I. & Užarević, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem. 7, 51–65 (2023).

    CAS  PubMed  Google Scholar 

  7. Do, J. L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Central Sci. 3, 13–19 (2017).

    CAS  Google Scholar 

  8. Boulatov, R. (ed.) Polymer Mechanochemistry, Vol. 369, 209–238 (Springer, 2015).

  9. Garay, A. L., Pichon, A. & James, S. L. Solvent-free synthesis of metal complexes. Chem. Soc. Rev. 36, 846–855 (2007).

    CAS  PubMed  Google Scholar 

  10. Friščić, T. New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem. 20, 7599–7605 (2010).

    Google Scholar 

  11. James, S. L. et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).

    CAS  PubMed  Google Scholar 

  12. Patel, C. et al. Fluorochemicals from fluorspar via a phosphate-enabled mechanochemical process that bypasses HF. Science 381, 302–306 (2023).

    CAS  PubMed  Google Scholar 

  13. Tan, D. & García, F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev. 48, 2274–2292 (2019).

    CAS  PubMed  Google Scholar 

  14. Hernández, J. G. & Bolm, C. Altering product selectivity by mechanochemistry. J. Org. Chem. 82, 4007–4019 (2017).

    PubMed  Google Scholar 

  15. Friščić, T., Mottillo, C. & Titi, H. M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 132, 1030–1041 (2020). (2017).

    Google Scholar 

  16. Howard, J. L., Cao, Q. & Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. 9, 3080–3094 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersen, J. & Mack, J. Mechanochemistry and organic synthesis: from mystical to practical. Green Chem. 20, 1435–1443 (2018).

    CAS  Google Scholar 

  18. Jones, A. C., Leitch, J. A., Raby-Buck, S. E. & Browne, D. L. Mechanochemical techniques for the activation and use of zero-valent metals in synthesis. Nat. Syn. 1, 763–775 (2022).

    CAS  Google Scholar 

  19. Sokolov, A. N., Bučar, D. K., Baltrusaitis, J., Gu, S. X. & MacGillivray, L. R. Supramolecular catalysis in the organic solid state through dry grinding. Angew. Chem. Int. Ed. 25, 4273–4277 (2010).

    Google Scholar 

  20. Stojaković, J., Farris, B. S. & MacGillivray, L. R. Liquid-assisted vortex grinding supports the single-step solid-state construction of a [2.2]paracyclophane. Faraday Discuss. 170, 35–40 (2014).

    PubMed  Google Scholar 

  21. Elacqua, E., Kummer, K. A., Groeneman, R. H., Reinheimer, E. W. & MacGillivray, L. R. Post-application of dry vortex grinding improves the yield of a [2 + 2] photodimerization: addressing static disorder in a cocrystal. J. Photoch. Photobio. A. 331, 42–47 (2016).

    CAS  Google Scholar 

  22. Liu, L. et al. Photo-thermo-mechanochemical approach to synthesize quinolines via addition/cyclization of sulfoxonium ylides with 2-vinylanilines catalyzed by iron (II) phthalocyanine. Org. Lett. 24, 1146–1151 (2022).

    CAS  PubMed  Google Scholar 

  23. Toda, F., Tanaka, K. & Sekikawa, A. Host–guest complex formation by a solid–solid reaction. Chem. Commun. 4, 279–280 (1987).

    Google Scholar 

  24. Hernández, J. G. Mechanochemical borylation of aryldiazonium salts; merging light and ball milling. Beilstein J. Org. Chem. 13, 1463–1469 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Obst, M. & König, B. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst. Beilstein J. Org. Chem. 12, 2358–2363 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Obst, M., Shaikh, R. S. & König, B. Solvent-free coupling of aryl halides with pyrroles applying visible-light photocatalysis. React. Chem. Eng. 2, 472–478 (2017).

    CAS  Google Scholar 

  27. Štrukil, V. & Sajko, I. Mechanochemically-assisted solid-state photocatalysis (MASSPC). Chem. Commun. 53, 9101–9104 (2017).

    Google Scholar 

  28. Biswas, S. et al. Photomechanochemical control over stereoselectivity in the [2 + 2] photodimerization of acenaphthylene. Faraday Discuss. 241, 266–277 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Baier, D. M., Spula, C., Fanenstich, S., Grätz, S. & Borchardt, L. The regioselective solid‐state photo‐mechanochemical synthesis of nanographenes with UV light. Angew. Chem. Int. Ed. 62, e202218719 (2023).

    CAS  Google Scholar 

  30. Millward, F. & Zysman-Colman, E. Mechanophotocatalysis: a generalizable approach to solvent-minimized photocatalytic reactions for organic synthesis. Angew. Chem. Int. Ed. 63, e202316169 (2024).

    CAS  Google Scholar 

  31. Kubota, K., Pang, Y., Miura, A. & Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 366, 1500–1504 (2019).

    CAS  PubMed  Google Scholar 

  32. Pang, Y., Lee, J. W., Kubota, K. & Ito, H. Solid‐state radical C–H trifluoromethylation reactions using ball milling and piezoelectric materials. Angew. Chem. Int. Ed. 59, 22570–22576 (2020).

    CAS  Google Scholar 

  33. Amer, M. M., Hommelsheim, R., Schumacher, C., Kong, D. & Bolm, C. Electro-mechanochemical approach towards the chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Faraday Discuss. 241, 79–90 (2023).

    CAS  PubMed  Google Scholar 

  34. Schumacher, C., Hernández, J. G. & Bolm, C. Electro‐mechanochemical atom transfer radical cyclizations using piezoelectric BaTiO3. Angew. Chem. Int. Ed. 59, 16357–16360 (2020).

    CAS  Google Scholar 

  35. Xie, Y. & Li, Z. Triboluminescence: recalling interest and new aspects. Chem 4, 943–971 (2018).

    CAS  Google Scholar 

  36. Zhuang, Y. & Xie, R.-J. Mechanoluminescence rebrightening the prospects of stress sensing: a review. Adv. Mater. 33, 2005925 (2021).

    CAS  Google Scholar 

  37. Feng, A. & Smet, P. F. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications. Materials 11, 484 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Zhang, J.-C., Wang, X., Marriott, G. & Xu, C.-N. Trap-controlled mechanoluminescent materials. Prog. Mater Sci. 103, 678–742 (2019).

    CAS  Google Scholar 

  39. Zhang, H., Wei, Y., Huang, X. & Huang, W. Recent development of elastico-mechanoluminescent phosphors. J. Lumin. 207, 137–148 (2019).

    CAS  Google Scholar 

  40. Jha, P. & Chandra, B. P. Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 29, 977–993 (2014).

    CAS  PubMed  Google Scholar 

  41. Chandra, B. P. Development of mechanoluminescence technique for impact studies. J. Lumin. 131, 1203–1210 (2011).

    CAS  Google Scholar 

  42. Terasaki, N., Zhang, H., Imai, Y., Yamada, H. & Xu, C.-N. Hybrid material consisting of mechanoluminescent material and TiO2 photocatalyst. Thin Solid Films 518, 473–476 (2009).

    CAS  Google Scholar 

  43. Terasaki, N., Yamada, H. & Xu, C.-N. Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source. Catal. Today 201, 203–208 (2013).

    CAS  Google Scholar 

  44. Terasaki, N., Zhang, H., Yamada, H. & Xu, C.-N. Mechanoluminescent light source for a fluorescent probe molecule. Chem. Commun. 47, 8034–8036 (2011).

    CAS  Google Scholar 

  45. Protti, S., Ravelli, D. & Fagnoni, M. Designing radical chemistry by visible light-promoted homolysis. Trends Chem. 4, 305–317 (2022).

    CAS  Google Scholar 

  46. Lang, Y., Li, C. J. & Zeng, H. Photo-induced transition-metal and external photosensitizer-free organic reactions. Org. Chem. Front. 8, 3594–3613 (2021).

    CAS  Google Scholar 

  47. Sumida, Y. & Ohmiya, H. Direct excitation strategy for radical generation in organic synthesis. Chem. Soc. Rev. 50, 6320–6332 (2021).

    CAS  PubMed  Google Scholar 

  48. Wolff, M. E. Cyclization of N-halogenated amines (the Hofmann–Löffler reaction). Chem. Rev. 63, 55–64 (1963).

    CAS  Google Scholar 

  49. Dorta, R. L., Francisco, C. G. & Suárez, E. Hypervalent organoiodine reagents in the transannular functionalisation of medium-sized lactams: synthesis of 1-azabicyclo compounds. Chem. Commun. 1168–1169 (1989).

  50. Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Martínez, C. & Muñiz, K. An iodine-catalyzed Hofmann–Löffler reaction. Angew. Chem. Int. Ed. 54, 8287–8291 (2015).

    Google Scholar 

  52. Wappes, E. A., Fosu, S. C., Chopko, T. C. & Nagib, D. A. Triiodide-mediated δ-amination of secondary C–H bonds. Angew. Chem. Int. Ed. 55, 9974–9978 (2016).

    CAS  Google Scholar 

  53. Dean, J. A. & Lange, N. A. Lange’s Handbook of Chemistry, 15th edn (McGraw-Hill, 1999).

    Google Scholar 

  54. Sakai, K., Koga, T., Imai, Y., Maehara, S. & Xu, C.-N. Observation of mechanically induced luminescence from microparticles. Phys. Chem. Chem. Phys. 8, 2819–2822 (2006).

    CAS  PubMed  Google Scholar 

  55. Crisenza, G. E., Mazzarella, D. & Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor–acceptor complexes. J. Am. Chem. Soc. 142, 5461–5476 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wortman, A. K. & Stephenson, C. R. EDA photochemistry: mechanistic investigations and future opportunities. Chem. 9, 2390–2415 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lasso, J. D. et al. A general platform for visible light sulfonylation reactions enabled by catalytic triarylamine EDA complexes. J. Am. Chem. Soc. 146, 2583–2592 (2024).

    CAS  PubMed  Google Scholar 

  58. Kong, D., Amer, M. M. & Bolm, C. Stainless steel-initiated chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Green Chem. 24, 3125–3129 (2022).

    CAS  Google Scholar 

  59. Matsuzawa, T., Aoki, Y., Takeuchi, N. & Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670 (1996).

    CAS  Google Scholar 

  60. Srivastava, V., Singh, P. K. & Singh, P. P. Recent advances of visible-light photocatalysis in the functionalization of organic compounds. J. Photochem. Photobiol., C 50, 100488 (2022).

    CAS  Google Scholar 

  61. Srivastava, V. & Singh, P. P. Retracted article: Eosin Y catalysed photoredox synthesis: a review. RSC Adv. 7, 31377–31392 (2017).

    CAS  Google Scholar 

  62. Jang, Y. J. et al. Green-light-driven Fe(III)(btz)3 photocatalysis in the radical cationic [4 + 2] cycloaddition reaction. Org. Lett. 24, 4479–4484 (2022).

    CAS  PubMed  Google Scholar 

  63. Zhang, Z. et al. Titanocenes as photoredox catalysts using green‐light irradiation. Angew. Chem. Int. Ed. 59, 9355–9359 (2020).

    CAS  Google Scholar 

  64. Gisbertz, S. & Pieber, B. Heterogeneous photocatalysis in organic synthesis. ChemPhotoChem 4, 456–475 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bolm for proofreading and providing helpful suggestions on preparing the paper. This work is supported by the National Natural Science Foundation of China (22201230, Han Wang) and the Science and Technology Base and Talent Special Project of Guangxi (AD21220087, D.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Han Wang conceived the concept. X.X. and Han Wang developed the mechanical HLF reactions. J.G., D.Z. and Han Wang developed the mechanical sulfonylation reactions. D.Z., J.W., H.T.A., R.W.T., Hui Wang, Y.L. and Y.C. designed the mechanistic investigations. X.X., J.G. and H.T.A. performed the control experiments. H.T.A., R.W.T., J.W. and Han Wang wrote the paper.

Corresponding authors

Correspondence to Jie Wu or Han Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Eli Zysman-Colman, Sven Grätz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Figs. 1–11 and Tables 1–15.

Source data

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Geng, J., Zhang, D. et al. Mechano-photoexcitation for organic synthesis using mechanoluminescent materials as photon sources. Nat. Synth 4, 177–187 (2025). https://doi.org/10.1038/s44160-024-00681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00681-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing