Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capturing aromatic Cr5 pentagons in large main-group molecular cages

Subjects

Abstract

Chromium chemistry is attractive to researchers due to its interesting structural arrangements and unusual Cr–Cr bonding interactions. However, the exploration of polymeric Crn (n > 3) clusters is challenging because of the difficulty in achieving precise matching between the metal cores and ligands. To the best of our knowledge, planar Crn configurations beyond the Cr3 triangle have not been identified. In this study, we successfully isolated and characterized a Cr5 cluster using the Zintl ion synthesis route. This cluster exists within the ternary anion [Cr5Sn2Sb20]4− and the nanoscale dimer fusion anion [(Cr5)2Sn6Sb30]6−. Furthermore, we elucidated the aromatic properties of the Cr5Sn2 subunits through theoretical computational analysis, this aromaticity substantially enhancing the intrinsic stability of these Cr5 cluster species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of multi-bonded dichromium and chromium cluster-containing species using different synthetic strategies.
Fig. 2: Molecular structures of [Cr5Sn2Sb20]4− and [(Cr5)2Sn6Sb30]6−.
Fig. 3: AdNDP bonding patterns in [Cr5Sn2Sb20]4− and [(Cr5)2Sn6Sb30]6−.
Fig. 4: Calculated ICSSs of [Cr5Sn2Sb20]4− and [(Cr5)2Sn6Sb30]6−.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2212806 (1a), 2212807 (1b) and 2322476 (2) and are freely available via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Cotton, F. A. et al. Mononuclear and polynuclear chemistry of rhenium(III): its pronounced homophilicity. Science 145, 1305–1307 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Cotton, F. A., Murillo, C. A. & Walton, R. A. Multiple Bonds Between Metal Atoms (Springer, 2005).

  3. Liddle, S. T. Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties (Wiley, 2015).

  4. Frenking, G. Building a quintuple bond. Science 310, 796–797 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. McGrady, J. E. in Comprehensive Inorganic Chemistry II 2nd edn (eds Reedijk, J. & Poeppelmeier, K. R.) 321–340 (Elsevier, 2013).

  6. Wagner, F. R., Noor, A. & Kempe, R. Ultrashort metal–metal distances and extreme bond orders. Nat. Chem. 1, 529–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen, T. et al. Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310, 844–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Brynda, M., Gagliardi, L., Widmark, P. O., Power, P. P. & Roos, B. O. A quantum chemical study of the quintuple bond between two chromium centers in [PhCrCrPh]: trans-bent versus linear geometry. Angew. Chem. Int. Ed. 45, 3804–3807 (2006).

    Article  CAS  Google Scholar 

  9. Shiozaki, T. & Vlaisavljevich, B. Computational spectroscopy of the Cr–Cr bond in coordination complexes. Inorg. Chem. 60, 19219–19225 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Kreisel, K. A., Yap, G. P. A., Dmitrenko, O., Landis, C. R. & Theopold, K. H. The shortest metal–metal bond yet: molecular and electronic structure of a dinuclear chromium diazadiene complex. J. Am. Chem. Soc. 129, 14162–14163 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Wolf, R. et al. Substituent effects in formally quintuple-bonded ArCrCrAr compounds (Ar = terphenyl) and related species. Inorg. Chem. 46, 11277–11290 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ashley, A. E., Cooper, R. T., Wildgoose, G. G., Green, J. C. & O’Hare, D. Homoleptic permethylpentalene complexes: ‘double metallocenes’ of the first-row transition metals. J. Am. Chem. Soc. 130, 15662–15677 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Hsu, C. W. et al. Quintuply-bonded dichromium(I) complexes featuring metal–metal bond lengths of 1.74 Å. Angew. Chem. Int. Ed. 47, 9933–9936 (2008).

    Article  CAS  Google Scholar 

  14. Huang, Y.-L. et al. Stepwise construction of the Cr–Cr quintuple bond and its destruction upon axial coordination. Angew. Chem. Int. Ed. 51, 7781–7785 (2012).

    Article  CAS  Google Scholar 

  15. Eisenhart, R. J., Carlson, R. K., Boyle, K. M., Gagliardi, L. & Lu, C. C. Synthesis and redox reactivity of a phosphine-ligated dichromium paddlewheel. Inorganica Chim. Acta 424, 336–344 (2015).

    Article  CAS  Google Scholar 

  16. Cheng, H. & Wang, L.-S. Dimer growth, structural transition, and antiferromagnetic ordering of small chromium clusters. Phys. Rev. Lett. 77, 51–54 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Martínez, J. I. & Alonso, J. A. Theoretical study of the photoabsorption spectrum of small chromium clusters. Phys. Rev. B 76, 205409 (2007).

    Article  Google Scholar 

  18. Ruiz-Díaz, P., Ricardo-Chávez, J. L., Dorantes-Dávila, J. & Pastor, G. M. Magnetism of small Cr clusters: interplay between structure, magnetic order, and electron correlations. Phys. Rev. B 81, 224431 (2010).

    Article  Google Scholar 

  19. Bartholomew, A. K. et al. Ligand‐based control of single‐site vs. multi‐site reactivity by a trichromium cluster. Angew. Chem. Int. Ed. 58, 5687–5691 (2019).

    Article  CAS  Google Scholar 

  20. Bartholomew, A. K. et al. Revealing redox isomerism in trichromium imides by anomalous diffraction. Chem. Sci. 12, 15739–15749 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taro, S. & Hideo, I. Chalcogenide cluster complexes of chromium, molybdenum, tungsten, and rhenium. Bull. Chem. Soc. Jpn 69, 2403–2417 (1996).

    Article  Google Scholar 

  22. Gray, T. Hexanuclear and higher nuclearity clusters of the Groups 4–7 metals with stabilizing π-donor ligands. Coord. Chem. Rev. 243, 213–235 (2003).

    Article  CAS  Google Scholar 

  23. Fan, P.-D., Deglmann, P. & Ahlrichs, R. Electron counts for face-bridged octahedral transition metal clusters. Chem. Eur. J. 8, 1059–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Bügel, P., Krummenacher, I., Weigend, F. & Eichhöfer, A. Experimental and theoretical evidence for low-lying excited states in [Cr6E8(PEt3)6] (E = S, Se, Te) cluster molecules. Dalton Trans. 51, 14568–14580 (2022).

    Article  PubMed  Google Scholar 

  25. Hessen, B., Siegrist, T., Palstra, T., Tanzler, S. M. & Steigerwald, M. L. Hexakis(triethylphosphine)octatelluridohexachromium and a molecule-based synthesis of chromium telluride, Cr3Te4. Inorg. Chem. 32, 5165–5169 (1993).

    Article  CAS  Google Scholar 

  26. Kiyoshi, T., Hideo, I. & Taro, S. Syntheses, structures, and molecular-orbital calculations of chromium Chevrel-type cluster complexes [Cr6E8(PR3)6] (E = S, PR3 = PEt3, PMe3; E = Se, PR3 = PEt3, PMe3, PMe2Ph). Bull. Chem. Soc. Jpn 69, 627–636 (1996).

    Article  Google Scholar 

  27. Kamiguchi, S., Imoto, H., Saito, T. & Chihara, T. Syntheses, structures, FAB mass spectra, and magnetic properties of chromium chalcogenide cluster complexes [Cr6Se8(PEt3)6], [Cr6Se8(H)(PEt3)6], and [Cr6S8(H)(PEt3)6]. Inorg. Chem. 37, 6852–6857 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Chaves, A. S., Piotrowski, M. J. & Da Silva, J. L. F. Evolution of the structural, energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn systems for n = 2–15): a density functional theory investigation. Phys. Chem. Chem. Phys. 19, 15484–15502 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. McGrady, J. E., Weigend, F. & Dehnen, S. Electronic structure and bonding in endohedral Zintl clusters. Chem. Soc. Rev. 51, 628–649 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Wilson, R. J., Lichtenberger, N., Weinert, B. & Dehnen, S. Intermetalloid and heterometallic clusters combining p-block (semi)metals with d- or f-block metals. Chem. Rev. 119, 8506–8554 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Mayer, K., Wessing, J., Fässler, T. F. & Fischer, R. A. Intermetalloid clusters: molecules and solids in a dialogue. Angew. Chem. Int. Ed. 57, 14372–14393 (2018).

    Article  CAS  Google Scholar 

  32. Spiekermann, A., Hoffmann, S. D., Kraus, F. & Fässler, T. F. [Au3Ge18]5–—a gold–germanium cluster with remarkable Au–Au interactions. Angew. Chem. Int. Ed. 46, 1638–1640 (2007).

    Article  Google Scholar 

  33. Pan, F. X. et al. An all-metal aromatic sandwich complex [Sb3Au3Sb3]3−. J. Am. Chem. Soc. 137, 10954–10957 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Lips, F., Clerac, R. & Dehnen, S. [Pd3Sn8Bi6]4−: a 14-vertex Sn/Bi cluster embedding a Pd3 triangle. J. Am. Chem. Soc. 133, 14168–14171 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Perla, L. G., Muñoz-Castro, A. & Sevov, S. C. Eclipsed- and staggered-[Ge18Pd3{EiPr3}6]2− (E = Si, Sn): positional isomerism in deltahedral Zintl clusters. J. Am. Chem. Soc. 139, 15176–15181 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Perla, L. G. & Sevov, S. C. A stannyl-decorated Zintl ion [Ge18Pd3(SniPr3)6]2−: twinned icosahedron with a common Pd3-face or 18-vertex hypho-deltahedron with a Pd3-triangle inside. J. Am. Chem. Soc. 138, 9795–9798 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, W. Q., Li, Z., McGrady, J. E. & Sun, Z. M. Synthesis and characterization of [Fe3(As3)3As4]3−, a binary Fe/As Zintl cluster with an Fe3 core. Angew. Chem. Int. Ed. 62, e202217316 (2023).

    Article  CAS  Google Scholar 

  38. Qiao, L. et al. [Cu4@E18]4− (E = Sn, Pb): fused derivatives of endohedral stannaspherene and plumbaspherene. J. Am. Chem. Soc. 142, 13288–13293 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Eichhorn, B. W., Haushalter, R. C. & Huffman, J. C. Insertion of Cr(CO)3 into As to form [As7Cr(CO)3]3−: an inorganic nortricyclane-to-norbornadiene conversion. Angew. Chem. Int. Ed. 28, 1032–1033 (1989).

    Article  Google Scholar 

  40. Schiemenz, B. & Huttner, G. The first octahedral Zintl ion: Sn as a ligand in [Sn6{Cr(CO)5}6]2−. Angew. Chem. Int. Ed. 32, 297–298 (1993).

    Article  Google Scholar 

  41. Charles, S., Eichhorn, B. W., Rheingold, A. L. & Bott, S. G. Synthesis, structure, and properties of the [E7M(CO)3]3− complexes where E = P, As, Sb and M = Cr, Mo, W. J. Am. Chem. Soc. 116, 8077–8086 (1994).

    Article  CAS  Google Scholar 

  42. Kesanli, B., Fettinger, J. & Eichhorn, B. The closo-[Sn9M(CO)3]4− Zintl ion clusters where M = Cr, Mo, W: two structural isomers and their dynamic behavior. Chem. Eur. J. 7, 5277–5285 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Renner, G., Kircher, P., Huttner, G., Rutsch, P. & Heinze, K. Efficient syntheses of the complete set of compounds [{(OC)5M}6E6]2− (M = Cr, Mo, W; E = Ge, Sn)—structure and redox behaviour of the octahedral clusters [Ge6]2− and [Sn6]2−. Chem. Eur. J. 2001, 973–980 (2001).

    Article  Google Scholar 

  44. Geitner, F. S., Klein, W. & Fässler, T. F. Synthesis and reactivity of multiple phosphine-functionalized nonagermanide clusters. Angew. Chem. Int. Ed. 57, 14509–14513 (2018).

    Article  CAS  Google Scholar 

  45. Huang, Y.-S., Chen, D., Zhu, J. & Sun, Z.-M. [(CrGe9)Cr2(CO)13]4−: a disubstituted case of ten-vertex closo cluster with spherical aromaticity. Chin. Chem. Lett. 33, 2139–2142 (2022).

    Article  CAS  Google Scholar 

  46. Mondal, S., Chen, W.-X., Sun, Z.-M. & McGrady, J. E. Synthesis, structure and bonding in pentagonal bipyramidal cluster compounds containing a cyclo-Sn5 ring, [(CO)3MSn5M(CO)3]4− (M = Cr, Mo). Inorganics 10, 75 (2022).

    Article  CAS  Google Scholar 

  47. Schenk, C. & Schnepf, A. {Ge9R3Cr(CO)5} and {Ge9R3Cr(CO)3}: a metalloid cluster (Ge9R3) as a flexible ligand in coordination chemistry [R = Si(SiMe3)3]. Chem. Commun. 3208–3210 (2009).

  48. Yang, Y.-N. et al. Metal–metal bonds in Zintl clusters: synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chin. Chem. Lett. 35, 109048 (2024).

    Article  CAS  Google Scholar 

  49. Min, X. et al. All-metal antiaromaticity in Sb4-type lanthanocene anions. Angew. Chem. Int. Ed. 55, 5531–5535 (2016).

    Article  CAS  Google Scholar 

  50. Lichtenberger, N. et al. Main group metal-actinide magnetic coupling and structural response upon U4+ inclusion into Bi, Tl/Bi, or Pb/Bi cages. J. Am. Chem. Soc. 138, 9033–9036 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Eulenstein, A. R. et al. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4−. Nat. Chem. 13, 149–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y. et al. Sb@Ni12@Sb20−/+ and Sb@Pd12@Sb20n cluster anions, where n = +1, −1, −3, −4: multi-oxidation-state clusters of interpenetrating platonic solids. J. Am. Chem. Soc. 139, 619–622 (2017).

    Article  PubMed  Google Scholar 

  53. Chen, W.-X. et al. Fe–Fe bonding in the rhombic Fe4 cores of the Zintl clusters [Fe4E18]4− (E = Sn and Pb). Chem. Sci. 15, 4981–4988 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scott, A. G. et al. High-spin and reactive Fe13 cluster with exposed metal sites. Angew. Chem. Int. Ed. 62, e202313880 (2023).

    Article  CAS  Google Scholar 

  55. Beekman, M., Kauzlarich, S. M., Doherty, L. & Nolas, G. S. Zintl phases as reactive precursors for synthesis of novel silicon and germanium-based materials. Materials 12, 1139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Myers, A. G., Sogi, M., Lewis, M. A. & Arvedson, S. P. Synthetic and theoretical studies of cyclobuta[1,2:3,4]dicyclopentene. Organocobalt intermediates in the construction of the unsaturated carbon skeleton and their transformation into novel cobaltacyclic complexes by C–C insertion. J. Org. Chem. 69, 2516–2525 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Eisenmann, B. & Klein, J. Na5SnSb3 und K8SnSb4, zwei neue Zintlphasen mit tetraedrischen SnSb4-Baueinheiten. Z. Naturforsch. B 43, 1156–1160 (1988).

    Article  CAS  Google Scholar 

  58. Spreer, L. O. & Shah, I. Evidence for a novel π-bonded aquoorganochromium(III) ion, (η5-C5H5)Cr(OH2)n2+. Inorg. Chem. 20, 4025–4027 (1981).

    Article  CAS  Google Scholar 

  59. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  Google Scholar 

  60. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  61. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C 71, 9–18 (2015).

    Article  CAS  Google Scholar 

  63. Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian Inc., 2016).

  64. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  67. Mitoraj, M. P., Michalak, A. & Ziegler, T. Combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 5, 962–975 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Velde, G. et al. Chemistry with ADF. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  69. Lenthe, E., Baerends, E. J. J. & Snijders, J. G. Relativistic total energy using regular approximations. Chem. Phys. 101, 9783–9792 (1994).

    Google Scholar 

  70. Chang, C., Pelissier, M. & Durand, P. Regular two-component Pauli-like effective Hamiltonians in Dirac theory. Phys. Scr. 34, 394 (1986).

    Article  CAS  Google Scholar 

  71. Heully, J. L., Lindgren, I., Lindroth, E., Lundqvist, S. & Martensson-Pendrill, A. M. Comment on the relativistic wave equation and negative-energy states. Phys. Rev. A 33, 4426–4429 (1986).

    Article  CAS  Google Scholar 

  72. Zhao, L., Pan, S. & Frenking, G. Energy decomposition analysis of the chemical bond: scope and limitation. Compr. Comput. Chem. 2, 322–361 (2024).

    Article  Google Scholar 

  73. Zhao, L., von Hopffgarten, M., Andrada, D. M. & Frenking, G. Energy decomposition analysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1345 (2018).

    Article  Google Scholar 

  74. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian Inc., 2009).

  75. Klamt, A. & Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 105, 799–805 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 22425107, 92461303, 22371140 and 92161102 to Z.-M.S and grant no. 22402108 to W.-J.T.), the Natural Science Foundation of Tianjin City (grant no. 21JCZXJC00140), the China Postdoctoral Science Foundation under Grant Number 2024M761514 and 111 Project of China (MOE, B18030). A.M.-C. thanks ANID FONDECYT Regular 1221676 for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Z.-M.S. conceived the project and designed the experiments. W.-X.C. conducted the syntheses. W.-J.T., Z.-S.L., J.-J.W., A.M.-C. and G.F. performed the quantum chemical calculations and analysed the data. Z.-M.S., W.-X.C., W.-J.T. and A.M.-C. co-wrote the paper. All authors reviewed the paper.

Corresponding author

Correspondence to Zhong-Ming Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jorge Barroso and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–24 and Tables 1–8.

Supplementary Data 1

Crystallographic data for complex 1a.

Supplementary Data 2

Crystallographic data for complex 1b.

Supplementary Data 3

Crystallographic data for complex 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WX., Tian, WJ., Li, ZS. et al. Capturing aromatic Cr5 pentagons in large main-group molecular cages. Nat. Synth 4, 471–478 (2025). https://doi.org/10.1038/s44160-024-00711-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00711-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing