Abstract
Chromium chemistry is attractive to researchers due to its interesting structural arrangements and unusual Cr–Cr bonding interactions. However, the exploration of polymeric Crn (n > 3) clusters is challenging because of the difficulty in achieving precise matching between the metal cores and ligands. To the best of our knowledge, planar Crn configurations beyond the Cr3 triangle have not been identified. In this study, we successfully isolated and characterized a Cr5 cluster using the Zintl ion synthesis route. This cluster exists within the ternary anion [Cr5Sn2Sb20]4− and the nanoscale dimer fusion anion [(Cr5)2Sn6Sb30]6−. Furthermore, we elucidated the aromatic properties of the Cr5Sn2 subunits through theoretical computational analysis, this aromaticity substantially enhancing the intrinsic stability of these Cr5 cluster species.

This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
Crystallographic data for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2212806 (1a), 2212807 (1b) and 2322476 (2) and are freely available via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the paper and its Supplementary Information.
References
Cotton, F. A. et al. Mononuclear and polynuclear chemistry of rhenium(III): its pronounced homophilicity. Science 145, 1305–1307 (1964).
Cotton, F. A., Murillo, C. A. & Walton, R. A. Multiple Bonds Between Metal Atoms (Springer, 2005).
Liddle, S. T. Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties (Wiley, 2015).
Frenking, G. Building a quintuple bond. Science 310, 796–797 (2005).
McGrady, J. E. in Comprehensive Inorganic Chemistry II 2nd edn (eds Reedijk, J. & Poeppelmeier, K. R.) 321–340 (Elsevier, 2013).
Wagner, F. R., Noor, A. & Kempe, R. Ultrashort metal–metal distances and extreme bond orders. Nat. Chem. 1, 529–536 (2009).
Nguyen, T. et al. Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310, 844–847 (2005).
Brynda, M., Gagliardi, L., Widmark, P. O., Power, P. P. & Roos, B. O. A quantum chemical study of the quintuple bond between two chromium centers in [PhCrCrPh]: trans-bent versus linear geometry. Angew. Chem. Int. Ed. 45, 3804–3807 (2006).
Shiozaki, T. & Vlaisavljevich, B. Computational spectroscopy of the Cr–Cr bond in coordination complexes. Inorg. Chem. 60, 19219–19225 (2021).
Kreisel, K. A., Yap, G. P. A., Dmitrenko, O., Landis, C. R. & Theopold, K. H. The shortest metal–metal bond yet: molecular and electronic structure of a dinuclear chromium diazadiene complex. J. Am. Chem. Soc. 129, 14162–14163 (2007).
Wolf, R. et al. Substituent effects in formally quintuple-bonded ArCrCrAr compounds (Ar = terphenyl) and related species. Inorg. Chem. 46, 11277–11290 (2007).
Ashley, A. E., Cooper, R. T., Wildgoose, G. G., Green, J. C. & O’Hare, D. Homoleptic permethylpentalene complexes: ‘double metallocenes’ of the first-row transition metals. J. Am. Chem. Soc. 130, 15662–15677 (2008).
Hsu, C. W. et al. Quintuply-bonded dichromium(I) complexes featuring metal–metal bond lengths of 1.74 Å. Angew. Chem. Int. Ed. 47, 9933–9936 (2008).
Huang, Y.-L. et al. Stepwise construction of the Cr–Cr quintuple bond and its destruction upon axial coordination. Angew. Chem. Int. Ed. 51, 7781–7785 (2012).
Eisenhart, R. J., Carlson, R. K., Boyle, K. M., Gagliardi, L. & Lu, C. C. Synthesis and redox reactivity of a phosphine-ligated dichromium paddlewheel. Inorganica Chim. Acta 424, 336–344 (2015).
Cheng, H. & Wang, L.-S. Dimer growth, structural transition, and antiferromagnetic ordering of small chromium clusters. Phys. Rev. Lett. 77, 51–54 (1996).
Martínez, J. I. & Alonso, J. A. Theoretical study of the photoabsorption spectrum of small chromium clusters. Phys. Rev. B 76, 205409 (2007).
Ruiz-Díaz, P., Ricardo-Chávez, J. L., Dorantes-Dávila, J. & Pastor, G. M. Magnetism of small Cr clusters: interplay between structure, magnetic order, and electron correlations. Phys. Rev. B 81, 224431 (2010).
Bartholomew, A. K. et al. Ligand‐based control of single‐site vs. multi‐site reactivity by a trichromium cluster. Angew. Chem. Int. Ed. 58, 5687–5691 (2019).
Bartholomew, A. K. et al. Revealing redox isomerism in trichromium imides by anomalous diffraction. Chem. Sci. 12, 15739–15749 (2021).
Taro, S. & Hideo, I. Chalcogenide cluster complexes of chromium, molybdenum, tungsten, and rhenium. Bull. Chem. Soc. Jpn 69, 2403–2417 (1996).
Gray, T. Hexanuclear and higher nuclearity clusters of the Groups 4–7 metals with stabilizing π-donor ligands. Coord. Chem. Rev. 243, 213–235 (2003).
Fan, P.-D., Deglmann, P. & Ahlrichs, R. Electron counts for face-bridged octahedral transition metal clusters. Chem. Eur. J. 8, 1059–1067 (2002).
Bügel, P., Krummenacher, I., Weigend, F. & Eichhöfer, A. Experimental and theoretical evidence for low-lying excited states in [Cr6E8(PEt3)6] (E = S, Se, Te) cluster molecules. Dalton Trans. 51, 14568–14580 (2022).
Hessen, B., Siegrist, T., Palstra, T., Tanzler, S. M. & Steigerwald, M. L. Hexakis(triethylphosphine)octatelluridohexachromium and a molecule-based synthesis of chromium telluride, Cr3Te4. Inorg. Chem. 32, 5165–5169 (1993).
Kiyoshi, T., Hideo, I. & Taro, S. Syntheses, structures, and molecular-orbital calculations of chromium Chevrel-type cluster complexes [Cr6E8(PR3)6] (E = S, PR3 = PEt3, PMe3; E = Se, PR3 = PEt3, PMe3, PMe2Ph). Bull. Chem. Soc. Jpn 69, 627–636 (1996).
Kamiguchi, S., Imoto, H., Saito, T. & Chihara, T. Syntheses, structures, FAB mass spectra, and magnetic properties of chromium chalcogenide cluster complexes [Cr6Se8(PEt3)6], [Cr6Se8(H)(PEt3)6], and [Cr6S8(H)(PEt3)6]. Inorg. Chem. 37, 6852–6857 (1998).
Chaves, A. S., Piotrowski, M. J. & Da Silva, J. L. F. Evolution of the structural, energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn systems for n = 2–15): a density functional theory investigation. Phys. Chem. Chem. Phys. 19, 15484–15502 (2017).
McGrady, J. E., Weigend, F. & Dehnen, S. Electronic structure and bonding in endohedral Zintl clusters. Chem. Soc. Rev. 51, 628–649 (2022).
Wilson, R. J., Lichtenberger, N., Weinert, B. & Dehnen, S. Intermetalloid and heterometallic clusters combining p-block (semi)metals with d- or f-block metals. Chem. Rev. 119, 8506–8554 (2019).
Mayer, K., Wessing, J., Fässler, T. F. & Fischer, R. A. Intermetalloid clusters: molecules and solids in a dialogue. Angew. Chem. Int. Ed. 57, 14372–14393 (2018).
Spiekermann, A., Hoffmann, S. D., Kraus, F. & Fässler, T. F. [Au3Ge18]5–—a gold–germanium cluster with remarkable Au–Au interactions. Angew. Chem. Int. Ed. 46, 1638–1640 (2007).
Pan, F. X. et al. An all-metal aromatic sandwich complex [Sb3Au3Sb3]3−. J. Am. Chem. Soc. 137, 10954–10957 (2015).
Lips, F., Clerac, R. & Dehnen, S. [Pd3Sn8Bi6]4−: a 14-vertex Sn/Bi cluster embedding a Pd3 triangle. J. Am. Chem. Soc. 133, 14168–14171 (2011).
Perla, L. G., Muñoz-Castro, A. & Sevov, S. C. Eclipsed- and staggered-[Ge18Pd3{EiPr3}6]2− (E = Si, Sn): positional isomerism in deltahedral Zintl clusters. J. Am. Chem. Soc. 139, 15176–15181 (2017).
Perla, L. G. & Sevov, S. C. A stannyl-decorated Zintl ion [Ge18Pd3(SniPr3)6]2−: twinned icosahedron with a common Pd3-face or 18-vertex hypho-deltahedron with a Pd3-triangle inside. J. Am. Chem. Soc. 138, 9795–9798 (2016).
Zhang, W. Q., Li, Z., McGrady, J. E. & Sun, Z. M. Synthesis and characterization of [Fe3(As3)3As4]3−, a binary Fe/As Zintl cluster with an Fe3 core. Angew. Chem. Int. Ed. 62, e202217316 (2023).
Qiao, L. et al. [Cu4@E18]4− (E = Sn, Pb): fused derivatives of endohedral stannaspherene and plumbaspherene. J. Am. Chem. Soc. 142, 13288–13293 (2020).
Eichhorn, B. W., Haushalter, R. C. & Huffman, J. C. Insertion of Cr(CO)3 into As to form [As7Cr(CO)3]3−: an inorganic nortricyclane-to-norbornadiene conversion. Angew. Chem. Int. Ed. 28, 1032–1033 (1989).
Schiemenz, B. & Huttner, G. The first octahedral Zintl ion: Sn as a ligand in [Sn6{Cr(CO)5}6]2−. Angew. Chem. Int. Ed. 32, 297–298 (1993).
Charles, S., Eichhorn, B. W., Rheingold, A. L. & Bott, S. G. Synthesis, structure, and properties of the [E7M(CO)3]3− complexes where E = P, As, Sb and M = Cr, Mo, W. J. Am. Chem. Soc. 116, 8077–8086 (1994).
Kesanli, B., Fettinger, J. & Eichhorn, B. The closo-[Sn9M(CO)3]4− Zintl ion clusters where M = Cr, Mo, W: two structural isomers and their dynamic behavior. Chem. Eur. J. 7, 5277–5285 (2001).
Renner, G., Kircher, P., Huttner, G., Rutsch, P. & Heinze, K. Efficient syntheses of the complete set of compounds [{(OC)5M}6E6]2− (M = Cr, Mo, W; E = Ge, Sn)—structure and redox behaviour of the octahedral clusters [Ge6]2− and [Sn6]2−. Chem. Eur. J. 2001, 973–980 (2001).
Geitner, F. S., Klein, W. & Fässler, T. F. Synthesis and reactivity of multiple phosphine-functionalized nonagermanide clusters. Angew. Chem. Int. Ed. 57, 14509–14513 (2018).
Huang, Y.-S., Chen, D., Zhu, J. & Sun, Z.-M. [(CrGe9)Cr2(CO)13]4−: a disubstituted case of ten-vertex closo cluster with spherical aromaticity. Chin. Chem. Lett. 33, 2139–2142 (2022).
Mondal, S., Chen, W.-X., Sun, Z.-M. & McGrady, J. E. Synthesis, structure and bonding in pentagonal bipyramidal cluster compounds containing a cyclo-Sn5 ring, [(CO)3MSn5M(CO)3]4− (M = Cr, Mo). Inorganics 10, 75 (2022).
Schenk, C. & Schnepf, A. {Ge9R3Cr(CO)5}– and {Ge9R3Cr(CO)3}–: a metalloid cluster (Ge9R3–) as a flexible ligand in coordination chemistry [R = Si(SiMe3)3]. Chem. Commun. 3208–3210 (2009).
Yang, Y.-N. et al. Metal–metal bonds in Zintl clusters: synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chin. Chem. Lett. 35, 109048 (2024).
Min, X. et al. All-metal antiaromaticity in Sb4-type lanthanocene anions. Angew. Chem. Int. Ed. 55, 5531–5535 (2016).
Lichtenberger, N. et al. Main group metal-actinide magnetic coupling and structural response upon U4+ inclusion into Bi, Tl/Bi, or Pb/Bi cages. J. Am. Chem. Soc. 138, 9033–9036 (2016).
Eulenstein, A. R. et al. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4−. Nat. Chem. 13, 149–155 (2021).
Wang, Y. et al. Sb@Ni12@Sb20−/+ and Sb@Pd12@Sb20n cluster anions, where n = +1, −1, −3, −4: multi-oxidation-state clusters of interpenetrating platonic solids. J. Am. Chem. Soc. 139, 619–622 (2017).
Chen, W.-X. et al. Fe–Fe bonding in the rhombic Fe4 cores of the Zintl clusters [Fe4E18]4− (E = Sn and Pb). Chem. Sci. 15, 4981–4988 (2024).
Scott, A. G. et al. High-spin and reactive Fe13 cluster with exposed metal sites. Angew. Chem. Int. Ed. 62, e202313880 (2023).
Beekman, M., Kauzlarich, S. M., Doherty, L. & Nolas, G. S. Zintl phases as reactive precursors for synthesis of novel silicon and germanium-based materials. Materials 12, 1139 (2019).
Myers, A. G., Sogi, M., Lewis, M. A. & Arvedson, S. P. Synthetic and theoretical studies of cyclobuta[1,2:3,4]dicyclopentene. Organocobalt intermediates in the construction of the unsaturated carbon skeleton and their transformation into novel cobaltacyclic complexes by C–C insertion. J. Org. Chem. 69, 2516–2525 (2004).
Eisenmann, B. & Klein, J. Na5SnSb3 und K8SnSb4, zwei neue Zintlphasen mit tetraedrischen SnSb4-Baueinheiten. Z. Naturforsch. B 43, 1156–1160 (1988).
Spreer, L. O. & Shah, I. Evidence for a novel π-bonded aquoorganochromium(III) ion, (η5-C5H5)Cr(OH2)n2+. Inorg. Chem. 20, 4025–4027 (1981).
Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009).
Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C 71, 9–18 (2015).
Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian Inc., 2016).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Mitoraj, M. P., Michalak, A. & Ziegler, T. Combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 5, 962–975 (2009).
Velde, G. et al. Chemistry with ADF. Comput. Chem. 22, 931–967 (2001).
Lenthe, E., Baerends, E. J. J. & Snijders, J. G. Relativistic total energy using regular approximations. Chem. Phys. 101, 9783–9792 (1994).
Chang, C., Pelissier, M. & Durand, P. Regular two-component Pauli-like effective Hamiltonians in Dirac theory. Phys. Scr. 34, 394 (1986).
Heully, J. L., Lindgren, I., Lindroth, E., Lundqvist, S. & Martensson-Pendrill, A. M. Comment on the relativistic wave equation and negative-energy states. Phys. Rev. A 33, 4426–4429 (1986).
Zhao, L., Pan, S. & Frenking, G. Energy decomposition analysis of the chemical bond: scope and limitation. Compr. Comput. Chem. 2, 322–361 (2024).
Zhao, L., von Hopffgarten, M., Andrada, D. M. & Frenking, G. Energy decomposition analysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1345 (2018).
Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian Inc., 2009).
Klamt, A. & Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 105, 799–805 (1993).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant nos. 22425107, 92461303, 22371140 and 92161102 to Z.-M.S and grant no. 22402108 to W.-J.T.), the Natural Science Foundation of Tianjin City (grant no. 21JCZXJC00140), the China Postdoctoral Science Foundation under Grant Number 2024M761514 and 111 Project of China (MOE, B18030). A.M.-C. thanks ANID FONDECYT Regular 1221676 for financial support.
Author information
Authors and Affiliations
Contributions
Z.-M.S. conceived the project and designed the experiments. W.-X.C. conducted the syntheses. W.-J.T., Z.-S.L., J.-J.W., A.M.-C. and G.F. performed the quantum chemical calculations and analysed the data. Z.-M.S., W.-X.C., W.-J.T. and A.M.-C. co-wrote the paper. All authors reviewed the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks Jorge Barroso and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary discussion, Figs. 1–24 and Tables 1–8.
Supplementary Data 1
Crystallographic data for complex 1a.
Supplementary Data 2
Crystallographic data for complex 1b.
Supplementary Data 3
Crystallographic data for complex 2.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, WX., Tian, WJ., Li, ZS. et al. Capturing aromatic Cr5 pentagons in large main-group molecular cages. Nat. Synth 4, 471–478 (2025). https://doi.org/10.1038/s44160-024-00711-5
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s44160-024-00711-5