Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of monocrystalline lithium for high-critical-current-density solid-state batteries

Subjects

Abstract

Lithium metal is the Holy Grail anode material for high-energy-density batteries. Unfortunately, applications of Li metal anodes are restricted by their inherent propensity to form dendrites at practical current densities. Here we present an approach that directly converts commercial polycrystalline Li (poly-Li) into various monocrystalline Li metal anodes with single facets via a recrystallization technique. By elucidating the diffusive kinetic and mechanical characteristics of different Li facets, we reveal that monocrystalline Li(110) exhibits the lowest diffusion barrier of 0.02 eV, an order of magnitude lower than poly-Li’s 0.2 eV, and a 71% reduction in Young’s modulus from 9.42 GPa to 2.71 GPa. The critical current density can be raised by an order of magnitude in solid-state batteries using monocrystalline Li(110), and the cycling stability of Li metal batteries is extended fivefold. We envision that the manipulation of the crystal plane will effectively tackle the pivotal challenges in achieving high-energy-density batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Monocrystalline Li with different crystallographic facets.
Fig. 2: Kinetic characterization of monocrystalline Li with different crystallographic facets.
Fig. 3: Electrochemical stability of monocrystalline Li(110) metal anode in liquid electrolytes.
Fig. 4: Mechanical property of monocrystalline Li with different crystallographic facets.
Fig. 5: Electrochemical performance of monocrystalline Li(110) metal anode with solid-state electrolytes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Guo, Y., Li, H. & Zhai, T. Reviving lithium–metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017).

    Article  Google Scholar 

  4. Cheng, X. et al. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Babu, G. & Ajayan, P. M. Good riddance, dendrites. Nat. Energy 4, 631–632 (2019).

    Article  Google Scholar 

  8. Xiao, J. How lithium dendrites form in liquid batteries. Science 366, 426–427 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Kalnaus, S. et al. Solid-state batteries: the critical role of mechanics. Science 381, eabg5998 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Evarts, E. C. To the limits of lithium. Nature 526, S93–S95 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Palacin, M. R. & Guibert, A. Why do batteries fail? Science 351, 1253292 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  13. Zhang, X. et al. Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52, 3223–3232 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Son, S. B. et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Ling, C., Banerjee, D. & Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012).

    Article  CAS  Google Scholar 

  16. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Davidson, R. et al. Formation of magnesium dendrites during electrodeposition. ACS Energy Lett. 4, 375–376 (2018).

    Article  Google Scholar 

  18. Ding, M. S. et al. Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes. J. Electrochem. Soc. 165, A1983–A1990 (2018).

    Article  CAS  Google Scholar 

  19. Davidson, R. et al. Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities. Mater. Horiz. 7, 843–854 (2020).

    Article  CAS  Google Scholar 

  20. Kwak, J. H. et al. Operando visualization of morphological evolution in Mg metal anode: insight into dendrite suppression for stable Mg metal batteries. ACS Energy Lett. 7, 162–170 (2021).

    Article  Google Scholar 

  21. Eaves-Rathert, J. et al. Kinetic versus diffusion-driven three-dimensional growth in magnesium metal battery anodes. Joule 4, 1324–1336 (2020).

    Article  CAS  Google Scholar 

  22. Roe, I. T., Selbach, S. M. & Schnell, S. K. Crystal structure influences migration along Li and Mg surfaces. J. Phys. Chem. Lett. 11, 2891–2895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hagopian, A., Doublet, M. L. & Filhol, J. S. Thermodynamic origin of dendrite growth in metal anode batteries. Energy Environ. Sci. 13, 5186–5197 (2020).

    Article  CAS  Google Scholar 

  24. Vishnugopi, B. S. et al. Surface diffusion manifestation in electrodeposition of metal anodes. Phys. Chem. Chem. Phys. 22, 11286–11295 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Jäckle, M. et al. Self-diffusion barriers: possible descriptors for dendrite growth in batteries? Energy Environ. Sci. 11, 3400–3407 (2018).

    Article  Google Scholar 

  26. Jäckle, M. & Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014).

    Article  PubMed  Google Scholar 

  27. Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, Z. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8, 340–350 (2023).

    CAS  Google Scholar 

  29. Li, Z., Qin, N. & Lu, Z. Making the deposition surface lithiophobic. Nat. Energy 8, 321–322 (2023).

    Article  CAS  Google Scholar 

  30. Famprikis, T. et al. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Park, R. J. Y. et al. Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat. Energy 6, 314–322 (2021).

    Article  CAS  Google Scholar 

  32. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  33. Li, X. et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 13, 1429–1461 (2020).

    Article  CAS  Google Scholar 

  34. Kinzer, B. et al. Operando analysis of the molten Li|LLZO interface: understanding how the physical properties of Li affect the critical current density. Matter 4, 1947–1961 (2021).

    Article  CAS  Google Scholar 

  35. Jin, Y. et al. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat. Energy 3, 732–738 (2018).

    Article  CAS  Google Scholar 

  36. Masias, A. et al. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019).

    Article  CAS  Google Scholar 

  37. Zhao, Q. et al. On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nat. Commun. 12, 6034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, F. et al. Strong texturing of lithium metal in batteries. Proc. Natl Acad. Sci. USA 114, 12138–12143 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuan, X. et al. Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation. Nature 620, 86–91 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Sun, Z. et al. Dendrite-free epitaxial growth of lithium metal during charging in Li-O2 batteries. Angew. Chem. Int. Ed. 57, 13206–13210 (2018).

    Article  Google Scholar 

  41. Bai, P. et al. Interactions between lithium growths and nanoporous ceramic separators. Joule 2, 2434–2449 (2018).

    Article  CAS  Google Scholar 

  42. Zhao, Y. et al. Accelerated growth of electrically isolated lithium metal during battery cycling. ACS Appl. Mater. Interfaces 13, 35750–35758 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Masias, A. et al. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2018).

    Article  Google Scholar 

  44. Ning, Z. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. McConohy, G. et al. Mechanical regulation of lithium intrusion probability in garnet solid electrolytes. Nat. Energy 8, 241–250 (2023).

    Article  CAS  Google Scholar 

  46. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  47. Chang, W. et al. Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface. Nat. Commun. 12, 6369 (2021).

  48. Vikalp, R. et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050–1056 (2022).

    Article  Google Scholar 

  49. Fu, J. et al. In situ formation of a bifunctional iÿnterlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy Environ. Sci. 12, 1404–1412 (2019).

    Article  CAS  Google Scholar 

  50. Lee, S. et al. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Sci. Adv. 8, eabq0153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeng, D. et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat. Commun. 13, 1909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wan, H., Wang, Z., Zhang, W., He, X. & Wang, C. Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Li, Y. et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 381, 50–53 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Z. et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy 9, 251–262 (2024).

    Article  CAS  Google Scholar 

  56. Yin, Y. et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616, 77–83 (2023).

Download references

Acknowledgements

This work was mainly supported by National Key Research and Development Program of China (no. 2021YFB2500100 to J.Luo). This work was also supported by the Clean Vehicles, US–China Clean Energy Research Centre (CERC-CVC2) under US DOE EERE Vehicle Technologies Office. Argonne National Laboratory is operated for DOE Office of Science by UChicago Argonne, LLC, under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

J. Luo conceived the experiments and wrote the original draft. H.C., Y.Z. and X.Z. synthesized and characterized the Li anodes. R.L. and B.W. contributed to the AFM study. H.Z. and K.W. helped with the cell design and testing. L.Z. performed the COMSOL simulation. J. Liu, Q.H., T.L. and K.A. revised the manuscript. All authors contributed to the data analysis. X.Z., A.W., T.L., K.W. and J. Luo supervised the work.

Corresponding authors

Correspondence to Xinyue Zhang, Aoxuan Wang, Tongchao Liu, Kai Wu or Jiayan Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team. Source data are provided with this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Notes 1–4 and Tables 1–6.

Source data

Source Data Fig. 1

Source data for DSC measurement and XRD pattern.

Source Data Fig. 2

Source data for CCD curves.

Source Data Fig. 3

Source data for electronic conductivity, reversible capacity, capacity usage, cycling performance and rate performance.

Source Data Fig. 4

Source data for Young’s modulus.

Source Data Fig. 5

Source data for CCD based on solid-state electrolytes, CCD comparison and cycling performance of solid-state cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhao, Y., Zhang, X. et al. Synthesis of monocrystalline lithium for high-critical-current-density solid-state batteries. Nat. Synth 4, 552–561 (2025). https://doi.org/10.1038/s44160-024-00712-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00712-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing