Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Late-stage deuteration and tritiation through bioinspired cooperative hydrogenolysis

Abstract

Hydrogenolysis, a fundamental chemical process with broad applications, has traditionally been performed using heterogeneous catalysis at high temperatures and pressures with limited selectivity. Recent advancements highlight the potential of homogeneous catalysis as a promising alternative, offering improved selectivity under milder conditions. However, the development of a general homogeneous catalysis approach capable of hydrogenolysing carbon–halogen bonds—one of the most fundamental, versatile and extensively studied functional groups—remains an unresolved challenge. Here we present a comprehensive rationale for the fundamental mechanistic prerequisites crucial to achieving general homogeneous carbon–halogen bond hydrogenolysis, with a particular focus on the tritiation of challenging yet abundant alkyl chlorides. We demonstrate how cooperative interplay of bioinspired carbon–halogen activation and hydrogenation can efficiently catalyse the selective hydrogenolysis of unactivated organohalides. The utility of this approach is demonstrated through its capability to enable deuteration and tritiation of pharmaceutically relevant organohalides with simultaneous control over reactivity and selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomimetic carbon–halide hydrogenolysis via cooperative catalysis.
Fig. 2: Reaction development.
Fig. 3: Substrate scope for reductive deuteration.
Fig. 4: Site-selective isotopic labelling enabled by cooperative catalysis.

Similar content being viewed by others

Data availability

All relevant data generated and analysed during this study, which include experimental and spectroscopic data, are included in this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Nakano, M. M. & Zuber, P. In Strict and Facultative Anaerobes Medical and Environmental Aspects 303–317 (CRC, 2004).

  3. Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    Article  CAS  Google Scholar 

  4. Shen, X., Zhang, C., Han, B. & Wang, F. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chem. Soc. Rev. 51, 1608–1628 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, Y. & McCarty, P. L. Biomass, oleate, and other possible substrates for chloroethene reductive dehalogenation. Bioremediat. J. 4, 125–133 (2000).

    Article  CAS  Google Scholar 

  6. Kumar, A., Daw, P. & Milstein, D. Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics. Chem. Rev. 122, 385–441 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Cabrero-Antonino, J. R., Adam, R., Papa, V. & Beller, M. Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nat. Commun. 11, 3893–3910 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iwasaki, T., Tsuge, K., Naito, N. & Nozaki, K. Chemoselectivity change in catalytic hydrogenolysis enabling urea-reduction to formamide/amine over more reactive carbonyl compounds. Nat. Commun. 14, 3279 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishimura, S. In Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis 572–663 (John Wiley & Sons, 2001).

  10. Ghosh B. & Maleczka, R. E., Jr. In Science of Synthesis: Catalytic Reduction in Organic Synthesis 355–373 (Thieme, 2017).

  11. Alonso, F., Beletskaya, I. P. & Yus, M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 102, 4009–4091 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Sergeev, A. G. & Hartwig, J. F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332, 439–443 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Bart, S. C. & Chirik, P. J. Selective, catalytic carbon–carbon bond activation and functionalization promoted by late transition metal catalysts. J. Am. Chem. Soc. 125, 886–887 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).

    Article  CAS  Google Scholar 

  15. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. C–H Functionalisation for hydrogen isotope exchange. Angew. Chem. Int. Ed. 57, 3022–3047 (2018).

    Article  CAS  Google Scholar 

  16. Yu, R. P., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    Article  PubMed  Google Scholar 

  17. Zarate, C., Yang, H., Bezdek, M. J., Hesk, D. & Chirik, P. J. Ni(I)–X complexes bearing a bulky α‑diimine ligand: synthesis, structure, and superior catalytic performance in the hydrogen isotope exchange in pharmaceuticals. J. Am. Chem. Soc. 141, 5034–5044 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, H., Dormer, P. G., Rivera, N. R. & Hoover, A. J. Palladium(II)-mediated C–H tritiation of complex pharmaceuticals. Angew. Chem. Int. Ed. 57, 1883–1887 (2018).

    Article  CAS  Google Scholar 

  19. Daniel-Bertrand, M. et al. Multiple site hydrogen isotope labelling of pharmaceuticals. Angew. Chem. Int. Ed. 59, 21114–21120 (2020).

    Article  CAS  Google Scholar 

  20. Stork, C. M. et al. Hydrogen isotope exchange by homogeneous iridium catalysis in aqueous buffers with deuterium or tritium gas. Angew. Chem. Int. Ed. 62, e202301512 (2023).

    Article  CAS  Google Scholar 

  21. Levernier, E. et al. Easy-to-implement hydrogen isotope exchange for the labeling of N‑heterocycles, alkylkamines, benzylic scaffolds, and pharmaceuticals. J. Am. Chem. Soc. Au 2, 801–808 (2022).

    CAS  Google Scholar 

  22. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, H. et al. Efficient aliphatic hydrogen-isotope exchange with tritium gas through the merger of photoredox and hydrogenation catalysts. J. Am. Chem. Soc. 144, 5010–5022 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Kramp, H. et al. In situ generated iridium nanoparticles as hydride donors in photoredox-catalyzed hydrogen isotope exchange reactions with deuterium and tritium gas. Angew. Chem. Int. Ed. 62, e202308983 (2023).

    Article  CAS  Google Scholar 

  25. Kopf, S. et al. Recent developments for the deuterium and tritium labeling of organic molecules. Chem. Rev. 122, 6634–6718 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, D., Petzold, R., Yan, J., Muri, D. & Ritter, T. Tritiation of aryl thianthrenium salts with a molecular palladium catalyst. Nature 600, 444–449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilkinson, D. J., Hickey, M. J., Kingston, L. P. & Mather, A. N. In Synthesis and Applications of Isotopically Labeled Compounds (eds. Dean, D. C., Filer, C. N. & McCarthy, K. E.) Vol. 8, 47–50 (John Wiley & Sons, 2004).

  28. Marek, A., Patil, M. R. & Elbert, T. The labeling of brassinosteroids by tritium. RSC Adv. 5, 65214–65220 (2015).

    Article  CAS  Google Scholar 

  29. Elbert, T., Patil, M. R. & Marek, A. Enantiospecific tritium labeling of 28-homocastasterone. J. Labelled Compd. Radiopharm. 60, 176–182 (2017).

    Article  CAS  Google Scholar 

  30. Kriegelstein, M., Nováková, G. & Marek, A. Synthesis of [3H]Org24598 using in-house prepared [3H]MeI. J. Labelled Compd. Radiopharm. 67, 91–103 (2024).

    Article  CAS  Google Scholar 

  31. Saljoughian, M., Morimoto, H., Dorsky, A. M., Rapoport, H. & Andres, H. A new and efficient synthesis of monotritiomethyl iodide. J. Labelled Compd. Radiopharm. 27, 767–776 (1989).

    Article  CAS  Google Scholar 

  32. Saljoughian, M., Morimoto, H. & Rapoport, H. Synthesis of monotritiomethyl iodide from thioethers. Hydrogenolysis in the presence of thioethers. J. Org. Chem. 54, 4689–4691 (1989).

    Article  CAS  Google Scholar 

  33. Marek, A., Klepetářová, B. & Elbert, T. A facile method for steroid labeling by heavy isotopes of hydrogen. Tetrahedron 71, 4874–4882 (2015).

    Article  CAS  Google Scholar 

  34. Kubas, G. J. Activation of dihydrogen and coordination of molecular H2 on transition metals. J. Organomet. Chem. 751, 33–49 (2014).

    Article  CAS  Google Scholar 

  35. Fan, L., Parkin, S. & Ozerov, O. V. Halobenzenes and Ir(I): kinetic C–H oxidative addition and thermodynamic C–Hal oxidative addition. J. Am. Chem. Soc. 127, 16772–16773 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Crabtree, R. H. Dihydrogen complexation. Chem. Rev. 116, 8750–8769 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. van Santen, R. A. In Modern Heterogeneous Catalysis: An Introduction 293–344 (John Wiley, 2017).

  38. Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fincker, M. & Spormann, A. M. Biochemistry of catabolic reductive dehalogenation. Annu. Rev. Biochem. 86, 357–386 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Voges, R., Heys, J. R. & Moenius, T. In Preparation of Compounds Labeled with Tritium and Carbon-14 109–209 (John Wiley & Sons, 2009).

  41. Giedyk, M., Goliszewska, K. & Gryko, D. Vitamin B12 catalysed reactions. Chem. Soc. Rev. 44, 3391–3404 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Hidalgo, N., Moreno, J. J., García-Rubio, I. & Campos, J. Enhanced dihydrogen activation by mononuclear iridium(II) compounds: a mechanistic study. Angew. Chem. Int. Ed. 61, e202206831 (2022).

    Article  CAS  Google Scholar 

  43. Ravetz, B. D., Wang, J. Y., Ruhl, K. E. & Rovis, T. Photoinduced ligand-to-metal charge transfer enables photocatalyst-independent light-gated activation of Co(II). ACS Catal. 9, 200–204 (2019).

    Article  CAS  Google Scholar 

  44. Shafizadeh, N., Poisson, L. & Soep, B. Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase. Chem. Phys. 350, 2–6 (2008).

    Article  CAS  Google Scholar 

  45. Lockley, W. J. S., Venanzi, N. A. E. & Crane, G. J. Studies of hydrogen isotope scrambling during the dehalogenation of aromatic chloro-compounds with deuterium gas over palladium catalysts. J. Labelled Compd. Radiopharm. 63, 531–552 (2020).

    Article  CAS  Google Scholar 

  46. Smith, D. M., Pulling, M. E. & Norton, J. R. Tin-free and catalytic radical cyclizations. J. Am. Chem. Soc. 129, 770–771 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Gansäuer, A., Fan, C.-A. & Piestert, F. Sustainable radical reduction through catalytic hydrogen atom transfer. J. Am. Chem. Soc. 130, 6916–6917 (2008).

    Article  PubMed  Google Scholar 

  48. Yao, C., Dahmen, T., Gansäuer, A. & Norton, J. R. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science 364, 764–767 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Park, Y. et al. Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. Nat. Chem. 13, 969–976 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Shimakoshi, H., Li, L., Nishi, M. & Hisaeda, Y. Photosensitizing catalysis of the B12 complex without an additional photosensitizer. Chem. Commun. 47, 10921–10923 (2011).

    Article  CAS  Google Scholar 

  51. Shimakoshi, H., Sakumori, E., Kaneko, K. & Hisaeda, Y. B12–TiO2 hybrid catalyst for dehalogenation of organic halides. Chem. Lett. 38, 468–469 (2009).

    Article  CAS  Google Scholar 

  52. Hu, Y. & Norton, J. R. Kinetics and thermodynamics of H/H/H+ transfer from a rhodium(III) hydride. J. Am. Chem. Soc. 136, 5938–5948 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Chuentragool, P., Kurandina, D. & Gevorgyan, V. Catalysis with palladium complexes photoexcited by visible light. Angew. Chem. Int. Ed. 58, 11586–11598 (2019).

    Article  CAS  Google Scholar 

  54. Sarkar, S., Cheung, K. P. S. & Gevorgyan, V. Recent advances in visible light induced palladium catalysis. Angew. Chem. Int. Ed. 63, e202311972 (2024).

    Article  CAS  Google Scholar 

  55. Brož, B. & Marek, A. Tritiodefluorination of alkyl C–F groups. J. Labelled Compd. Radiopharm. 62, 743–750 (2019).

    Article  Google Scholar 

  56. Xu, J. et al. Unveiling extreme photoreduction potentials of donor–acceptor cyanoarenes to access aryl radicals from aryl chlorides. J. Am. Chem. Soc. 143, 13266–13273 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Di Martino, R. M. C., Maxwell, B. D. & Pirali, T. Deuterium in drug discovery: progress, opportunities and challenges. Nat. Rev. Drug Discov. 22, 562–584 (2023).

    Article  PubMed  Google Scholar 

  59. Derdau, V. et al. The future of (radio)-labeled compounds in research and development within the life science industry. Angew. Chem. Int. Ed. 62, e202306019 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Derdau and C. Loewe (Sanofi-Aventis Deutschland GmbH) for NMR spectroscopy analysis. We thank T. Ritter (Max-Planck-Institut für Kohlenforschung) and D. Muri (Roche Innovation Center Basel) for insightful discussions and suggestions. This project was supported by the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (grant no. 22101278 to D.Z.), the Chinese Academy of Sciences, the Special Educating Project of the Talent for Carbon Peak and Carbon Neutrality of University of Chinese of Academy of Sciences, University of Chinese Academy of Sciences and the Project of Talent Cultivation for Carbon Peak and Carbon Neutrality of the University of Chinese of Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

D.Z. conceived the project. B.B.Z. optimized the hydrogenolysis reaction and explored the substrate scope. B.B.Z. and Z.Y.Z. investigated the mechanism. D.Z. wrote the manuscript with input from all authors. Y.W. and D.Z. supervised the project.

Corresponding author

Correspondence to Da Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Aleš Marek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Details, Supplementary Discussion, Figs. 1–108, Schemes 1–3 and Tables 1–14.

Source data

Source Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhang, Z., Wang, Y. et al. Late-stage deuteration and tritiation through bioinspired cooperative hydrogenolysis. Nat. Synth 4, 444–452 (2025). https://doi.org/10.1038/s44160-024-00716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00716-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing