Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Helical protein nanotubules assembled from sacrificial supramolecular polymers

Abstract

Precise helical supramolecular polymers of proteins can only be achieved in vivo by tuning complex, competing supramolecular interactions. This formation suggests a level of cellular control that defines functional structures with high fidelity. Achieving such a phenomenon through synthetic reactions is a challenge owing to the lack of native competing interactions. Here we report that synthetic self-assembled polymers spontaneously disassemble to trigger helical growth of protein units to form well-defined protein tubules in vitro. Cryogenic electron microscopy reconstruction at near-atomic resolution reveals uniform protein helical arrays rather than polymorphic arrays. These uniform arrays are similar to natural microtubules, and the aggregated structure of the sacrificed supramolecular ligands within the protein nanotubule is pentameric. The formation of the protein nanotubules, rather than supramolecular polymer of ligands, regulates the physical properties of the solution and the morphology of liposomes. It was shown that enthalpy–entropy compensation provided by the dissociation of aggregated ligands modulates the homogeneity of the helical pattern of the protein nanotubules, shedding light on the creation of sophisticated bionic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the sacrificial supramolecular polymer for protein supramolecular polymerization.
Fig. 2: Design and analysis of the LSPs for protein nanotubules.
Fig. 3: PSP induced by PE2Gal and the competition effect among them.
Fig. 4: Extended ligands design and molecular model for nanotubules.
Fig. 5: Kinetic and thermodynamic characterization of PSPs.

Similar content being viewed by others

Data availability

All data required to interpret, verify and extend the results are given in the paper and its Supplementary Information. The maps of nanotubules are deposited in the Electron Microscopy Data Bank under accession codes EMD-60193, EMD-60194 and EMD-60195 for ZE1Gal/SBA, EMD-60192 for BE1Gal/SBA and EMD-60191 for PE2Gal/SBA.

References

  1. Lutz, J.-F., Lehn, J.-M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    Article  CAS  Google Scholar 

  2. Rest, C., Kandanelli, R. & Fernández, G. Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem. Soc. Rev. 44, 2543–2572 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, S. et al. Molecular structure of the intact bacterial flagellar basal body. Nat. Microbiol. 6, 712–721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N. & Agard, D. A. Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466, 879–882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. von der Ecken, J. et al. Structure of the F-actin–tropomyosin complex. Nature 519, 114–117 (2015).

    Article  PubMed  Google Scholar 

  7. Kollman, J. M., Merdes, A., Mourey, L. & Agard, D. A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709–721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gudimchuk, N. B. & McIntosh, J. R. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat. Rev. Mol. Cell Biol. 22, 777–795 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y. & Kirschner, M. W. A protein factor essential for microtubule assembly. Proc. Natl Acad. Sci. USA 72, 1858–1862 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kellogg, E. H. et al. Near-atomic model of microtubule–tau interactions. Science 360, 1242–1246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alonso, A. C., Grundke-Iqbal, I. & Iqbal, K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med. 2, 783–787 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Malay, A. D. et al. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 569, 438–442 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Šimić, G. et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6, 6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Otsuka, C. et al. Supramolecular polymer polymorphism: spontaneous helix–helicoid transition through dislocation of hydrogen-bonded π-Rosettes. J. Am. Chem. Soc. 145, 22563–22576 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Sarkar, A., Dhiman, S., Chalishazar, A. & George, S. J. Visualization of stereoselective supramolecular polymers by chirality-controlled energy transfer. Angew. Chem. Int. Ed. 129, 13955–13959 (2017).

    Article  Google Scholar 

  17. Bi, Y. et al. Controlled hierarchical self-assembly of nanoparticles and chiral molecules into tubular nanocomposites. J. Am. Chem. Soc. 145, 8529–8539 (2023).

    Article  CAS  Google Scholar 

  18. Wang, J. et al. Nucleation-controlled polymerization of nanoparticles into supramolecular structures. J. Am. Chem. Soc. 135, 11417–11420 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Biswas, S. et al. A tubular biocontainer: metal ion-induced 1D assembly of a molecularly engineered chaperonin. J. Am. Chem. Soc. 131, 7556–7557 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Miranda, F. F. et al. A self-assembled protein nanotube with high aspect ratio. Small 5, 2077–2084 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Luo, Q., Hou, C., Bai, Y., Wang, R. & Liu, J. Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem. Rev. 116, 13571–13632 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Vantomme, G. & Meijer, E. W. The construction of supramolecular systems. Science 363, 1396–1397 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Ślęczkowski, M. L., Mabesoone, M. F. J., Ślęczkowski, P., Palmans, A. R. A. & Meijer, E. W. Competition between chiral solvents and chiral monomers in the helical bias of supramolecular polymers. Nat. Chem. 13, 200–207 (2021).

    Article  PubMed  Google Scholar 

  25. Tamaki, K. et al. Photoresponsive supramolecular polymers capable of intrachain folding and interchain aggregation. J. Am. Chem. Soc. 146, 22166–22171 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Su, L. et al. Dilution-induced gel-sol-gel-sol transitions by competitive supramolecular pathways in water. Science 377, 213–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Lehn, J.-M. Perspectives in chemistry—steps towards complex matter. Angew. Chem. Int. Ed. 52, 2836–2850 (2013).

    Article  CAS  Google Scholar 

  28. Li, Z. et al. Chemically controlled helical polymorphism in protein tubes by selective modulation of supramolecular interactions. J. Am. Chem. Soc. 141, 19448–19457 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. de Halleux, V. et al. 1,3,6,8-Tetraphenylpyrene derivatives: towards fluorescent liquid-crystalline columns? Adv. Funct. Mater. 14, 649–659 (2004).

    Article  Google Scholar 

  30. Vybornyi, M. et al. Formation of two-dimensional supramolecular polymers by amphiphilic pyrene oligomers. Angew. Chem. Int. Ed. 52, 11488–11493 (2013).

    Article  CAS  Google Scholar 

  31. Hendrikse, S. I. S. et al. Elucidating the ordering in self-assembled glycocalyx mimicking supramolecular copolymers in water. J. Am. Chem. Soc. 141, 13877–13886 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gupta, D., Cho, M., Cummings, R. D. & Brewer, C. F. Thermodynamics of carbohydrate binding to galectin-1 from Chinese hamster ovary cells and two mutants. A comparison with four galactose-specific plant lectins. Biochemistry 35, 15236–15243 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Concellón, A., Lu, R.-Q., Yoshinaga, K., Hsu, H.-F. & Swager, T. M. Electric-field-induced chirality in columnar liquid crystals. J. Am. Chem. Soc. 143, 9260–9266 (2021).

    Article  PubMed  Google Scholar 

  34. Figueira-Duarte, T. M. & Müllen, K. Pyrene-based materials for organic electronics. Chem. Rev. 111, 7260–7314 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 11, 252–272 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Xia, H. et al. Supramolecular assembly of comb-like macromolecules induced by chemical reactions that modulate the macromolecular interactions in situ. J. Am. Chem. Soc. 139, 11106–11116 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Akhmanova, A. & Kapitein, L. C. Mechanisms of microtubule organization in differentiated animal cells. Nat. Rev. Mol. Cell Biol. 23, 541–558 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Breiten, B. et al. Water networks contribute to enthalpy/entropy compensation in protein–ligand binding. J. Am. Chem. Soc. 135, 15579–15584 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Rekharsky, M. & Inoue, Y. Chiral recognition thermodynamics of β-Cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy−entropy compensation effect. J. Am. Chem. Soc. 122, 4418–4435 (2000).

    Article  CAS  Google Scholar 

  40. Guindani, C., da Silva, L. C., Cao, S., Ivanov, T. & Landfester, K. Synthetic cells: from simple bio-inspired modules to sophisticated integrated systems. Angew. Chem. Int. Ed. 61, e202110855 (2022).

    Article  CAS  Google Scholar 

  41. Gao, N. & Mann, S. Membranized coacervate microdroplets: from versatile protocell models to cytomimetic materials. Acc. Chem. Res. 56, 297–307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zuo, T. et al. The multi-slit very small angle neutron scattering instrument at the China Spallation Neutron Source. J. Appl. Crystallogr. 57, 380–391 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  PubMed  Google Scholar 

  46. Guvench, O. et al. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling. J. Chem. Theory Comput. 7, 3162–3180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jorgensen, W. L. & Madura, J. D. Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water. J. Am. Chem. Soc. 105, 1407–1413 (1983).

    Article  CAS  Google Scholar 

  48. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  49. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Franceschi, N., Barth, R., Meindlhumer, S., Fragasso, A. & Dekker, C. Dynamin A as a one-component division machinery for synthetic cells. Nat. Nanotechnol. 19, 70–76 (2024).

    Article  PubMed  Google Scholar 

  55. De Franceschi, N. et al. Synthetic membrane shaper for controlled liposome deformation. ACS Nano 17, 966–978 (2023).

    Article  Google Scholar 

  56. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.C. and L.L. thank NSFC/China (grant nos. 52125303, 52403179, and 92356305 and 22431002), the National Key Research and Development Program of China (grant no. 2023YFA0915300) and Innovation Program of Shanghai Municipal Education Commission (grant no. 2023ZKZD02) for financial support. M.L. thanks NSFC/China (grant nos. 92156023 and 92356306) for financial support. This research is also supported by the Postdoctoral Fellowship Program of CPSF under grant no. GZC20240273. We thank the Shanghai Synchrotron Radiation Facility (Bio-SAXS: BL19U2) for the SAXS test. We also thank the Spallation Neutron Source Science Center in Dongguan for neutron scattering experiments with the help of H. Cheng, T. Zuo, H. Zhu and X. Liu.

Author information

Authors and Affiliations

Authors

Contributions

L.Y., L.L. and G.C. conceptualized and administered the project and wrote the paper. L.Y. performed the synthesis of all the ligands and studied the self-assembly of ligands and protein by spectroscopy experiments. L.L. performed the molecular dynamics simulations. L.Y. and X.D. performed the cryo-EM experiment. L.L. performed the cryo-EM images processing, model building and refinement. C.W. performed the microfluidics experiment. Y.L. and M.L. analysed and interpreted the results, and involved in revision of the paper.

Corresponding authors

Correspondence to Long Li or Guosong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Huaimin Wang, Shiki Yagai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–53, discussion, and Schemes 1 and 2.

Supplementary Data 1

Validation report of macromolecular structures.

Supplementary Data 2

Validation report of macromolecular structures.

Supplementary Data 3

Validation report of macromolecular structures.

Supplementary Data 4

Validation report of macromolecular structures.

Supplementary Data 5

Validation report of macromolecular structures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Dong, X., Wang, C. et al. Helical protein nanotubules assembled from sacrificial supramolecular polymers. Nat. Synth 4, 562–572 (2025). https://doi.org/10.1038/s44160-024-00726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00726-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing