Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isotopological entanglement of a metal–organic framework and a hydrogen-bonded organic framework for proton conduction

Abstract

Framework structures such as metal–organic frameworks (MOFs) and hydrogen-bonded organic frameworks (HOFs) can facilitate proton conduction through various proton-carrying sites within the pores or along the backbones, demonstrating their viability as proton-conducting materials for fuel cells. However, the lack of inherent proton-carrying sites on typical MOF backbones and the architectural instability of HOFs pose a challenge for further applications. Here we report the synthesis of a framework that complementarily entangles a MOF and HOF through meticulous control of the deprotonation equilibrium of the linker. The hybrid entangled framework shows higher architectural stability than the MOF net alone through the mutual support of the two isotopological nets. Furthermore, the HOF architecture and plentiful H2O molecules in the well-sized channels provide a proton conductivity of 1.1 × 10−2 S cm−1 at 95 °C and 100% relative humidity. The crossover of different porous frameworks provides a method to integrate various materials seamlessly into a cohesive and functional system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and structures of FDM-150 and FDM-151.
Fig. 2: Design principle for the synthesis of FDM-150 and FDM-151.
Fig. 3: Proton carriers in FDM-151.
Fig. 4: Proton conductivity of the MOFs.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the paper and its Supplementary Information. X-ray crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2384370 (FDM-150), 2384371 (FDM-150-hydrated), 2384372 (FDM-151-36H2O) and 2384373 (FDM-151-hydrated). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Fuel Cell Technologies Office Multi-year Research, Development, and Demonstration Plan Section 1.0 (US DOE, 2024).

  2. Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

    Article  Google Scholar 

  3. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    Article  CAS  Google Scholar 

  4. Qu, E. et al. Proton exchange membranes for high temperature proton exchange membrane fuel cells: challenges and perspectives. J. Power Sources 533, 231386 (2022).

    Article  CAS  Google Scholar 

  5. Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Scofield, M. E., Liu, H. & Wong, S. S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836–5860 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Haider, R. et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem. Soc. Rev. 50, 1138–1187 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Miyatake, K., Chikashige, Y., Higuchi, E. & Watanabe, M. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. J. Am. Chem. Soc. 129, 3879–3887 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Miyake, J. et al. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Sci. Adv. 3, eaao0476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sone, Y., Ekdunge, P. & Simonsson, D. Proton conductivity of Nafion 117 as measured by a four‐electrode AC impedance method. J. Electrochem. Soc. 143, 1254–1259 (1996).

    Article  CAS  Google Scholar 

  12. Vichi, F. M., Tejedor-Tejedor, M. I. & Anderson, M. A. Effect of pore-wall chemistry on proton conductivity in mesoporous titanium dioxide. Chem. Mater. 12, 1762–1770 (2000).

    Article  CAS  Google Scholar 

  13. Karim, M. R. et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 135, 8097–8100 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Chalkova, E., Fedkin, M. V., Wesolowski, D. J. & Lvov, S. N. Effect of TiO2 surface properties on performance of Nafion-based composite membranes in high temperature and low relative humidity PEM fuel cells. J. Electrochem. Soc. 152, A1742–A1747 (2005).

    Article  CAS  Google Scholar 

  15. Di Vona, M. L. et al. SPEEK/PPSU-based organic–inorganic membranes: proton conducting electrolytes in anhydrous and wet environments. J. Membr. Sci. 279, 186–191 (2006).

    Article  Google Scholar 

  16. Yang, J. et al. Oxygen- and proton-transporting open framework ionomer for medium-temperature fuel cells. Science 385, 1115–1120 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X. et al. Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes. Energy Environ. Sci. 13, 297–309 (2020).

    Article  CAS  Google Scholar 

  18. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  19. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  20. Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 112, 1001–1033 (2011).

    Article  PubMed  Google Scholar 

  21. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  22. Li, B. et al. Emerging multifunctional metal–organic framework materials. Adv. Mater. 28, 8819–8860 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Yuan, S. et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018).

    Article  Google Scholar 

  24. Xu, W. et al. Anisotropic reticular chemistry. Nat. Rev. Mater. 5, 764–779 (2020).

    Article  CAS  Google Scholar 

  25. Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466–487 (2021).

    Article  CAS  Google Scholar 

  26. Simard, M., Su, D. & Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696–4698 (1991).

    Article  CAS  Google Scholar 

  27. Brunet, P., Simard, M. & Wuest, J. D. Molecular tectonics. Porous hydrogen-bonded networks with unprecedented structural integrity. J. Am. Chem. Soc. 119, 2737–2738 (1997).

    Article  CAS  Google Scholar 

  28. Yang, W. et al. Exceptional thermal stability in a supramolecular organic framework: porosity and gas storage. J. Am. Chem. Soc. 132, 14457–14469 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. He, Y., Xiang, S. & Chen, B. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570–14573 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).

    Article  CAS  Google Scholar 

  31. Lin, R.-B. & Chen, B. Hydrogen-bonded organic frameworks: chemistry and functions. Chem 8, 2114–2135 (2022).

    Article  CAS  Google Scholar 

  32. Song, X. et al. Design rules of hydrogen-bonded organic frameworks with high chemical and thermal stabilities. J. Am. Chem. Soc. 144, 10663–10687 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, B.-T. et al. A solution processible single-crystal porous organic polymer. Nat. Synth. 2, 873–879 (2023).

    Article  CAS  Google Scholar 

  34. Yoon, M. et al. High and highly anisotropic proton conductivity in organic molecular porous materials. Angew. Chem. Int. Ed. 50, 7870–7873 (2011).

    Article  CAS  Google Scholar 

  35. Bazaga-García, M. et al. Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity. J. Am. Chem. Soc. 136, 5731–5739 (2014).

    Article  PubMed  Google Scholar 

  36. Nguyen, N. T. T. et al. Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity. J. Am. Chem. Soc. 137, 15394–15397 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Karmakar, A. et al. Hydrogen‐bonded organic frameworks (HOFs): a new class of porous crystalline proton‐conducting materials. Angew. Chem. Int. Ed. 55, 10667–10671 (2016).

    Article  CAS  Google Scholar 

  38. Wang, S. et al. A robust zirconium amino acid metal–organic framework for proton conduction. Nat. Commun. 9, 4937 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xing, G. et al. Synthesis of crystalline porous organic salts with high proton conductivity. Angew. Chem. Int. Ed. 57, 5345–5349 (2018).

    Article  CAS  Google Scholar 

  40. Lim, D.-W. & Kitagawa, H. Proton transport in metal–organic frameworks. Chem. Rev. 120, 8416–8467 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Lim, D.-W. & Kitagawa, H. Rational strategies for proton-conductive metal–organic frameworks. Chem. Soc. Rev. 50, 6349–6368 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Pal, S. C. et al. Proton-conducting hydrogen-bonded organic frameworks. ACS Energy Lett. 6, 4431–4453 (2021).

    Article  CAS  Google Scholar 

  43. Sharma, A. et al. Superprotonic conductivity of MOF‐808 achieved by controlling the binding mode of grafted sulfamate. Angew. Chem. Int. Ed. 60, 14334–14338 (2021).

    Article  CAS  Google Scholar 

  44. Sun, Y. et al. Bio‐inspired synthetic hydrogen‐bonded organic frameworks for efficient proton conduction. Adv. Mater. 35, 2208625 (2022).

    Article  Google Scholar 

  45. Chen, X. et al. A proton conductive porous framework of an 18‐crown‐6‐ether derivative networked by rigid hydrogen bonding modules. Angew. Chem. Int. Ed. 61, e202211686 (2022).

    Article  CAS  Google Scholar 

  46. Chen, S. et al. Photo responsive electron and proton conductivity within a hydrogen‐bonded organic framework. Angew. Chem. Int. Ed. 62, e202308418 (2023).

    Article  CAS  Google Scholar 

  47. Dong, X.-Y. et al. Highly selective Fe3+ sensing and proton conduction in a water-stable sulfonate–carboxylate Tb–organic-framework. J. Mater. Chem. A 3, 641–647 (2015).

    Article  CAS  Google Scholar 

  48. Phang, W. J. et al. Superprotonic conductivity of a UiO‐66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. 54, 5142–5146 (2015).

    Article  CAS  Google Scholar 

  49. Taylor, J. M. et al. The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal–organic framework. J. Am. Chem. Soc. 137, 11498–11506 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, F. et al. A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2, 877–883 (2017).

    Article  CAS  Google Scholar 

  51. Li, X.-M. et al. Superprotonic conductivity of a functionalized metal–organic framework at ambient conditions. ACS Appl. Mater. Interfaces 14, 9264–9271 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Ramaswamy, P., Wong, N. E., Gelfand, B. S. & Shimizu, G. K. H. A water stable magnesium MOF that conducts protons over 10−2 S cm−1. J. Am. Chem. Soc. 137, 7640–7643 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Shigematsu, A., Yamada, T. & Kitagawa, H. Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Ponomareva, V. G. et al. Imparting high proton conductivity to a metal–organic framework material by controlled acid impregnation. J. Am. Chem. Soc. 134, 15640–15643 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Ye, Y. et al. Straightforward loading of imidazole molecules into metal–organic framework for high proton conduction. J. Am. Chem. Soc. 139, 15604–15607 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Nagarkar, S. S. et al. Two‐in‐one: inherent anhydrous and water‐assisted high proton conduction in a 3D metal–organic framework. Angew. Chem. Int. Ed. 53, 2638–2642 (2013).

    Article  Google Scholar 

  57. Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Lin, R.-B. et al. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 48, 1362–1389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, F.-F. et al. Vitrification-enabled enhancement of proton conductivity in hydrogen-bonded organic frameworks. Nat. Commun. 15, 3930 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yahiaoui, O. et al. 3D anionic silicate covalent organic framework with srs topology. J. Am. Chem. Soc. 140, 5330–5333 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Zhao, Z.-H., Huang, J.-R., Liao, P.-Q. & Chen, X.-M. Isolated tin(IV) active sites for highly efficient electroreduction of CO2 to CH4 in neutral aqueous solution. Angew. Chem. Int. Ed. 62, e202301767 (2023).

    Article  CAS  Google Scholar 

  62. Perl, D., Lee, S. J., Ferguson, A., Jameson, G. B. & Telfer, S. G. Hetero-interpenetrated metal–organic frameworks. Nat. Chem. 15, 1358–1364 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. O’Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    Article  PubMed  Google Scholar 

  64. Bonneau, C. & O’Keeffe, M. High-symmetry embeddings of interpenetrating periodic nets. Essential rings and patterns of catenation. Acta Crystallogr. A 71, 82–91 (2015).

    Article  CAS  Google Scholar 

  65. Barthram, A. M., Cleary, R. L., Kowallick, R. & Ward, M. D. A new redox-tunable near-IR dye based on a trinuclear ruthenium(II) complex of hexahydroxytriphenylene. Chem. Commun. 1998, 2695–2696 (1998).

    Article  Google Scholar 

  66. Yang, L., He, X. & Dincă, M. Triphenylene-bridged trinuclear complexes of Cu: models for spin interactions in two-dimensional electrically conductive metal–organic frameworks. J. Am. Chem. Soc. 141, 10475–10480 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Leubner, S. et al. Hexahydroxytriphenylene for the synthesis of group 13 MOFs—a new inorganic building unit in a β-cristobalite type structure. Dalton Trans. 49, 3088–3092 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, L. & Dincă, M. Redox ladder of Ni3 complexes with closed‐shell, mono‐, and diradical triphenylene units: molecular models for conductive 2D MOFs. Angew. Chem. Int. Ed. 60, 23784–23789 (2021).

    Article  CAS  Google Scholar 

  69. Willems, T. F. et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2012).

    Article  CAS  Google Scholar 

  70. Liu, X., Wang, X. & Kapteijn, F. Water and metal–organic frameworks: from interaction toward utilization. Chem. Rev. 120, 8303–8377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, X., Mao, C., Bu, X. & Feng, P. Direct observation of two types of proton conduction tunnels coexisting in a new porous indium–organic framework. Chem. Mater. 26, 2492–2495 (2014).

    Article  CAS  Google Scholar 

  72. Kim, S. et al. Achieving superprotonic conduction in metal–organic frameworks through iterative design advances. J. Am. Chem. Soc. 140, 1077–1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Sadakiyo, M. et al. Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal–organic frameworks. J. Am. Chem. Soc. 134, 5472–5475 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project of China (grant no. 2018YFA0209401, Q.L.) and the National Natural Science Foundation of China (grant nos. 22088101, 21922103 and 21961132003, Q.L.). We thank X. Kong and J. Zhu for the NMR measurements and data analysis, M. Li for the structure topology analysis and Z. Zhang for assistance with the structure refinement.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. conceived and supervised the project. Z.J. and Q.L. designed the experiments. Z.J. and Y.S. performed the syntheses, structural characterizations and proton conductivity studies. Y.R., L.Y. and H.X. also performed structural characterizations. Z.J. and Q.L. wrote the paper. All authors contributed to the data analysis, discussion and revision of the paper.

Corresponding author

Correspondence to Qiaowei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Banglin Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–29 and Tables 1–12.

Supplementary Data 1

Crystallographic data for FDM-150, CCDC 2384370.

Supplementary Data 2

Crystallographic data for FDM-150-hydrated, CCDC 2384371.

Supplementary Data 3

Crystallographic data for FDM-151-36H2O, CCDC 2384372.

Supplementary Data 4

Crystallographic data for FDM-151-hydrated, CCDC 2384373.

Source data

Source Data Fig. 2

Source data for the PXRD patterns in Fig. 2a,c.

Source Data Fig. 3

Source data for the histogram in Fig. 3c and the water adsorption isotherm in Fig. 3d.

Source Data Fig. 4

Source data for the PXRD patterns in Fig. 4a, the Nyquist plots in Fig. 4b,c, the proton conductivity in Fig.4d,e and the activation energy fitting in Fig. 4f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Sun, Y., Rao, Y. et al. Isotopological entanglement of a metal–organic framework and a hydrogen-bonded organic framework for proton conduction. Nat. Synth 4, 622–631 (2025). https://doi.org/10.1038/s44160-025-00738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00738-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing