Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Building spin-1/2 antiferromagnetic Heisenberg chains with diaza-nanographenes

Abstract

Graphene nanostructures with π magnetism offer a chemically tunable platform to explore quantum magnetic interactions. However, the realization of nanographene-based chains bearing controlled spin order is highly challenging due to the limited availability of building blocks and the lack of efficient polymerization strategies for chain growth. Here, we demonstrate the successful on-surface synthesis of spin-1/2 antiferromagnetic Heisenberg chains with parity-dependent magnetization based on antiaromatic diaza-hexa-peri-hexabenzocoronene (diaza-HBC) units. Using distinct synthetic strategies, two types of spin chain with different terminals are synthesized, both exhibiting a robust odd–even effect on the spin coupling along the chain. Combined investigations using scanning tunnelling microscopy, non-contact atomic force microscopy, density functional theory calculations and quantum spin models confirm the structures of the diaza-HBC chains and elucidate their magnetic properties, which have an S = 1/2 spin per unit through electron donation from the diaza-HBC core to the Au(111) substrate. Gapped excitations are observed in even-numbered chains, while enhanced Kondo resonance emerges in odd-numbered units of odd-numbered chains due to the redistribution of the unpaired spin along the chain. Our findings provide an effective strategy to construct inaccessible nanographene-based spin chains and unveil the odd–even effect in their magnetic properties, offering potential applications in nanoscale spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: On-surface synthesis and Kondo resonance on diaza-HBC monomers.
Fig. 2: On-surface synthesis of diaza-HBC chains.
Fig. 3: Spin excitations in even-numbered diaza-HBC chains.
Fig. 4: Spin excitations in odd-numbered diaza-HBC chains.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. The data that support the findings of this study are also available from the corresponding authors upon request.

References

  1. Fernández-Rossier, J. & Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 99, 177204 (2007).

    Article  PubMed  Google Scholar 

  2. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

    Article  CAS  Google Scholar 

  3. Yazyev, O. V. & Katsnelson, M. I. Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008).

    Article  PubMed  Google Scholar 

  4. Wang, H. et al. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3, 791–802 (2021).

    Article  CAS  Google Scholar 

  5. Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Affronte, M. Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11, 2634–2639 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Rocha, A. R. et al. Towards molecular spintronics. Nat. Mater. 4, 335–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, Y. et al. Engineering of magnetic coupling in nanographene. Phys. Rev. Lett. 124, 147206 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, Y. et al. Designer spin order in diradical nanographenes. Nat. Commun. 11, 6076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, J. et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 124, 177201 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Li, J. et al. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 10, 200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotech. 15, 22–28 (2020).

    Article  CAS  Google Scholar 

  13. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Mishra, S. et al. Collective all-carbon magnetism in triangulene dimers. Angew. Chem. Int. Ed. 59, 12041–12047 (2020).

    Article  CAS  Google Scholar 

  15. Mishra, S. et al. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem. 13, 581–586 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotech. 12, 308–311 (2017).

    Article  Google Scholar 

  17. Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Du, Q. et al. Orbital-symmetry effects on magnetic exchange in open-shell nanographenes. Nat. Commun. 14, 4802 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song, S. et al. Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration. Nat. Chem. 16, 938–944 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Chang, X. et al. On-surface synthesis and edge states of NBN-doped zigzag graphene nanoribbons. Nano Res. 16, 10436–10442 (2023).

    Article  CAS  Google Scholar 

  21. Mishra, S. et al. Synthesis and characterization of π-extended triangulene. J. Am. Chem. Soc. 141, 10621–10625 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Sun, Q. et al. Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions. Nano Lett. 20, 6429–6436 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. McCurdy, R. D. et al. Engineering robust metallic zero-mode states in olympicene graphene nanoribbons. J. Am. Chem. Soc. 145, 15162–15170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yazyev, O. V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).

    Article  Google Scholar 

  25. Wang, W. L., Yazyev, O. V., Meng, S. & Kaxiras, E. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys. Rev. Lett. 102, 157201 (2009).

    Article  PubMed  Google Scholar 

  26. Ortiz, R. et al. Exchange rules for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional Easy-Axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).

    Article  Google Scholar 

  28. Haldane, F. D. M. Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model. Phys. Lett. A 93, 464–468 (1983).

    Article  Google Scholar 

  29. Hagiwara, M., Katsumata, K., Affleck, I., Halperin, B. I. & Renard, J. P. Observation of S = 1/2 degrees of freedom in an S = 1 linear-chain Heisenberg antiferromagnet. Phys. Rev. Lett. 65, 3181–3184 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Miyashita, S. & Yamamoto, S. Effects of edges in S = 1 Heisenberg antiferromagnetic chains. Phys. Rev. B 48, 913–919 (1993).

    Article  CAS  Google Scholar 

  31. Lounis, S., Dederichs, P. H. & Blügel, S. Magnetism of nanowires driven by novel even-odd effects. Phys. Rev. Lett. 101, 107204 (2008).

    Article  PubMed  Google Scholar 

  32. Machens, A., Konstantinidis, N. P., Waldmann, O., Schneider, I. & Eggert, S. Even-odd effect in short antiferromagnetic Heisenberg chains. Phys. Rev. B 87, 144409 (2013).

    Article  Google Scholar 

  33. Politi, P. & Pini, M. G. Even-odd effects in finite Heisenberg spin chains. Phys. Rev. B 79, 012405 (2009).

    Article  Google Scholar 

  34. Mishra, S. et al. Observation of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Y. et al. Quantum nanomagnets in on-surface metal-free porphyrin chains. Nat. Chem. 15, 53–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757–761 (2008).

    Article  CAS  Google Scholar 

  37. Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Sun K. et al. Heisenberg spin-1/2 antiferromagnetic molecular chains. Preprint at https://arxiv.org/abs/2407.02142 (2024).

  39. Su X. et al. Fabrication of spin-1/2 Heisenberg antiferromagnetic chains via combined on-surface synthesis and reduction for spinon detection. Preprint at https://arxiv.org/abs/2408.08801 (2024).

  40. Yuan Z. et al. Fractional spinon quasiparticles in open-shell triangulene spin-1/2 chains. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c14712 (2025).

  41. Zhao C. et al. Gapless spin excitations in nanographene-based antiferromagnetic spin-½ Heisenberg chains. Preprint at https://arxiv.org/abs/2408.10045 (2024).

  42. Wang, X. Y. et al. Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling. Nat. Commun. 8, 1948 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kawai, S. et al. Multiple heteroatom substitution to graphene nanoribbon. Sci. Adv. 4, eaar7181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mohn, F., Gross, L., Moll, N. & Meyer, G. Imaging the charge distribution within a single molecule. Nat. Nanotech. 7, 227–231 (2012).

    Article  CAS  Google Scholar 

  45. Gross, L. et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Fernández-Rossier, J. Theory of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).

    Article  PubMed  Google Scholar 

  47. Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Ternes, M. Spin excitations and correlations in scanning tunneling spectroscopy. New J. Phys. 17, 063016 (2015).

    Article  Google Scholar 

  49. Lieb, E., Schultz, T. & Mattis, D. Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961).

    Article  Google Scholar 

  50. Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90, 011101 (2019).

    Article  PubMed  Google Scholar 

  51. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Bartels, L., Meyer, G. & Rieder, K.-H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  54. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  56. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009).

    Article  PubMed  Google Scholar 

  58. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Wang (Boston College) and F. Liu (University of Utah) for the helpful discussions. L.H. and J.M. acknowledge the financial support from the National Natural Science Foundation of China (grant no. 92463307); H.-J.G. acknowledges the financial support from the National Natural Science Foundation of China (grant no. 62488201); H.-J.G., L.H. and H.C. acknowledge the Innovation Program of Quantum Science and Technology (grant no. 2021ZD0302700); S.D. acknowledges the National Key Research and Development Program of China (grant no. 2022YFA1204100); X. Feng and J.M. acknowledge the EU Graphene Flagship (Graphene Core 3, grant no. 881603), the Center for Advancing Electronics Dresden (cfaed), H2020-EU.1.2.2.—FET Proactive grant (LIGHT-CAP, grant no. 101017821) and EIC-2022-Pathfinder Open (ATYPIQUAL, grant no. 101099098); J.F.-R. and J.C.G.H. acknowledge the Portuguese Foundation for Science and Technology (FCT) (grant no. PTDC/FIS-MAC/2045/2021), SNF Sinergia (Grant Pimag) and the HE grant no. FUNLAYERS-101079184; J.F.-R. acknowledges funding from Generalitat Valenciana funding Prometeo2021/017 and grant no. MFA/2022/045, and funding from MICIIN-Spain (grant no. PID2019-109539GB-C41); X.L., L.H. and H.C. acknowledge the Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research (grant nos. YSBR-003 and YSBR-053); Y.G. acknowledges the financial support from the National Natural Science Foundation of China (grant no. 52350322).

Author information

Authors and Affiliations

Authors

Contributions

H.-J.G. and X. Feng supervised the project. L.H., J.M. and. C.-A.P. conceived the experiment. X. Fu, L.H., X.H., H.C., Y.W., Z.C. and X.L. performed STM/AFM experiments with the guidance of H.-J.G. K.L. synthesized and characterized the precursor molecules under the supervision of J.M. and X. Feng. J.C.G.H. performed theoretical calculations supervised by J.F.-R. Y.G. carried out DFT calculations with the guidance of S.D. L.H., J.M., J.F-.R., X. Feng and H.-J.G. wrote the manuscript with inputs from all authors. X. Fu, L.H. and K.L. contributed equally to this work.

Corresponding authors

Correspondence to Li Huang, Ji Ma or Joaquín Fernández-Rossier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jiong Lu, Shiyong Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Details, Figs. 1–18 and Schemes 1 and 2.

Supplementary Data 1

The source data for Supplementary Fig. 7.

Supplementary Data 2

The source data for Supplementary Fig. 8.

Supplementary Data 3

The source data for Supplementary Fig. 9.

Supplementary Data 4

The source data for Supplementary Fig. 10.

Supplementary Data 5

The source data for Supplementary Fig. 11.

Supplementary Data 6

The source data for Supplementary Fig. 12.

Supplementary Data 7

The source data for Supplementary Fig. 13.

Supplementary Data 8

The source data for Supplementary Fig. 14.

Supplementary Data 9

The source data for Supplementary Fig. 15.

Supplementary Data 10

The source data for Supplementary Fig. 16.

Supplementary Data 11

The source data for Supplementary Fig. 17.

Supplementary Data 12

The source data for Supplementary Fig. 18.

Source data

Source Data Fig. 1

Statistical source data, dI/dV spectra, PODOS, charge transfer source data and the images.

Source Data Fig. 2

Source images in the figure.

Source Data Fig. 3

dI/dV spectra, theoretical calculations source data and the images.

Source Data Fig. 4

dI/dV spectra, theoretical calculations source data and the images.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Huang, L., Liu, K. et al. Building spin-1/2 antiferromagnetic Heisenberg chains with diaza-nanographenes. Nat. Synth 4, 684–693 (2025). https://doi.org/10.1038/s44160-025-00743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00743-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing