Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chain-growth synthesis of extensively cross-conjugated polyenes

Abstract

Polyenes with an extensively cross-conjugated backbone, namely poly(1,1-vinylene)s or dendralenes, have fascinated chemists owing to their unique opto-electronic properties and reactivities. Existing synthetic strategies rely on coupling vinylic building blocks. Here we report a chain-growth approach that streamlines the synthesis of dendralene skeletons. An in-situ-generated strained [3]cumulene can interact with an organocopper species via its central in-plane π-bond, unlocking a previously unknown 2,3-polymerization pathway. This process rapidly generates cross-conjugated polyenes containing up to ~80–100 consecutive vinylene units on average with well-defined end groups. These π-electron-rich molecules adopt coiled, helical conformations as suggested by spectroscopic analysis, computational modelling and analogy to known foldamer systems, which induces two-photon absorption without compromising visible transparency. Their application in visible-range two-photon lithography with subdiffraction-limit resolution is demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges in accessing cross-conjugated scaffolds and an overview of this work.
Fig. 2: Cu(I)-mediated 2,3-polymerization of strained [3]cumulenes.
Fig. 3: Structure elucidation of PCHT.
Fig. 4: Computational studies, kinetic profiling and oligomer synthesis.
Fig. 5: Optical and photochemical properties of PCHT-1 and application in TPL.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Nielsen, M. B. & Diederich, F. Conjugated oligoenynes based on the diethynylethene unit. Chem. Rev. 105, 1837–1868 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Gholami, M. & Tykwinski, R. R. Oligomeric and polymeric systems with a cross-conjugated π-framework. Chem. Rev. 106, 4997–5027 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Limacher, P. A. & Lüthi, H. P. Cross conjugation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 477–647 (2011).

    Article  CAS  Google Scholar 

  4. Mackay, E. G. & Sherburn, M. S. Demystifying the dendralenes. Pure Appl. Chem. 85, 1227–1239 (2013).

    Article  CAS  Google Scholar 

  5. Wilson, J. N., Windscheif, P. M., Evans, U., Myrick, M. L. & Bunz, U. H. F. Band gap engineering of poly(p-phenyleneethynylene)s: cross-conjugated PPE-PPV hybrids. Macromolecules 35, 8681–8683 (2002).

    Article  CAS  Google Scholar 

  6. Voortman, T. P., Bartesaghi, D., Koster, L. J. A. & Chiech, R. C. Cross-conjugated n-dopable aromatic polyketone. Macromolecules 48, 7007–7014 (2015).

    Article  CAS  Google Scholar 

  7. Solomon, G. C. et al. Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J. Am. Chem. Soc. 130, 17301–17308 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Guédon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 7, 305–309 (2012).

    Article  PubMed  Google Scholar 

  9. Gu, J. et al. Cross conjugation in polyenes and related hydrocarbons: what can be learned from valence bond theory about single-molecule conductance? J. Am. Chem. Soc. 141, 6030–6047 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Y. & Tykwinski, R. R. Iterative synthesis and properties of cross-conjugated iso-polydiacetylene oligomers. J. Am. Chem. Soc. 121, 458–459 (1999).

    Article  CAS  Google Scholar 

  11. Zhao, Y., McDonald, R. & Tykwinski, R. R. Synthesis and characterization of cross-conjugated polyenynes. Chem. Commun. 77–78 (2000).

  12. Tykwinski, R. R. & Zhao, Y. Cross-conjugated oligo(enynes). Synlett 12, 1939–1953 (2002).

    Article  Google Scholar 

  13. Zhao, Y. et al. Synthesis, structure, and nonlinear optical properties of cross-conjugated perphenylated iso-polydiacetylenes. Chem. Eur. J. 11, 321–329 (2005).

    Article  Google Scholar 

  14. Swager, T. M. & Grubbs, R. H. Synthesis and properties of a novel cross-conjugated conductive polymer precursor: poly(3,4-diisopropylidenecyclobutene). J. Am. Chem. Soc. 109, 894–896 (1987).

    Article  CAS  Google Scholar 

  15. Mao, S. S. H. & Tilley, T. D. Cross-conjugated polymers via condensation of a zirconocene alkynyl(benzyne) derivative generated by thermolysis of Cp2ZrMe(C6H4C≡CSiMe3). J. Organomet. Chem. 521, 425–428 (1996).

    Article  CAS  Google Scholar 

  16. Londergan, T. M., You, Y., Thompson, M. E. & Weber, W. P. Ruthenium catalyzed synthesis of cross-conjugated polymers and related hyperbranched materials. copoly(arylene/1,1-vinylene)s. Macromolecules 31, 2784–2788 (1998).

    Article  CAS  Google Scholar 

  17. Itami, K., Ohashi, Y. & Yoshida, J.-i Triarylethene-based extended π-systems: programmable synthesis and photophysical properties. J. Org. Chem. 70, 2778–2792 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Nishioka, N., Hayashi, S. & Koizumi, T. Palladium(0)-catalyzed synthesis of cross-conjugated polymers: transformation into linear-conjugated polymers through the Diels–Alder reaction. Angew. Chem. Int. Ed. 51, 3682–3685 (2012).

    Article  CAS  Google Scholar 

  19. van Pruissen, G. W. P., Brebels, J., Hendriks, K. H., Wienk, M. M. & Janssen, R. A. J. Effects of cross-conjugation on the optical absorption and frontier orbital levels of donor–acceptor polymers. Macromolecules 48, 2435–2443 (2015).

    Article  Google Scholar 

  20. Jiang, K., Zhang, L., Zhao, Y., Lin, J. & Chen, M. Palladium-catalyzed cross-coupling polymerization: a new access to cross-conjugated polymers with modifiable structure and tunable optical/conductive properties. Macromolecules 51, 9662–9668 (2018).

    Article  CAS  Google Scholar 

  21. Zhou, Q. et al. Palladium-catalyzed carbene coupling of N-tosylhydrazones and arylbromides to synthesize cross-conjugated polymers. Polym. Chem. 10, 569–573 (2019).

    Article  CAS  Google Scholar 

  22. Hopf, H. The dendralenes-a neglected group of highly unsaturated hydrocarbons. Angew. Chem. Int. Ed. 23, 948–959 (1984).

    Article  Google Scholar 

  23. Sherburn, M. S. Preparation and synthetic value of π-bond-rich branched hydrocarbons. Acc. Chem. Res. 48, 1961–1970 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Saglam, M. F., Fallon, T., Paddon-Row, M. N. & Sherburn, M. S. Discovery and computational rationalization of diminishing alternation in [n]dendralenes. J. Am. Chem. Soc. 138, 1022–1032 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, M. et al. Stereospecific alkenylidene homologation of organoboronates by SNV reaction. Nature 631, 328–334 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, B. et al. Copper-catalyzed formal dehydration polymerization of propargylic alcohols via cumulene intermediates. J. Am. Chem. Soc. 144, 4315–4320 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Su, H.-Z., Wu, B., Wang, J. & Zhu, R. Copper-catalyzed C(3+1) copolymerization of propargyl carbonates and aryldiazomethanes. Giant 13, 100139 (2023).

    Article  CAS  Google Scholar 

  28. Wang, Z.-L. & Zhu, R. Regioselective condensation polymerization of propargylic electrophiles enabled by catalytic element-cupration. J. Am. Chem. Soc. 146, 19377–19385 (2024).

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, R. P. Strained cyclic cumulenes. Chem. Rev. 89, 1111–1124 (1989).

    Article  CAS  Google Scholar 

  30. Shakespeare, W. C. & Johnson, R. P. 1,2,3-Cyclohexatriene and cyclohexen-3-yne: two new highly strained C6H6 isomers. J. Am. Chem. Soc. 112, 8578–8579 (1990).

    Article  CAS  Google Scholar 

  31. Kelleghan, A. V., Bulger, A. S., Witkowski, D. C. & Garg, N. K. Strain-promoted reactions of 1,2,3-cyclohexatriene and its derivatives. Nature 618, 748–755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakura, M., Ando, S., Hattori, A. & Saito, K. Reaction of cyclohexa-1,2,3-triene with N,α-diphenylnitrone: formation of seven-membered cyclic amines via piradone derivatives. Heterocycles 51, 547–556 (1999).

    Article  CAS  Google Scholar 

  33. Angus, R. O., Janakiraman, M. N., Jacobson, R. A. & Johnson, R. P. Small-ring cyclic cumulenes: synthesis and X-ray crystal structure of bis(triphenylphosphine)chloro(η2-1,2,3-cyclononatriene)rhodium. Organometallics 6, 1909–1912 (1987).

    Article  CAS  Google Scholar 

  34. Mizukoshi, Y., Mikami, K. & Uchiyama, M. Aryne polymerization enabling straightforward synthesis of elusive poly(ortho-arylene)s. J. Am. Chem. Soc. 137, 74–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Saglam, M. F. et al. Synthesis and Diels–Alder reactivity of substituted [4]dendralenes. J. Org. Chem. 81, 1461–1475 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Bürger, M. Phosphine-catalyzed aryne oligomerization: direct access to α,ω‑bisfunctionalized oligo(ortho-arylenes). J. Am. Chem. Soc. 143, 16796–16803 (2021).

    Article  PubMed  Google Scholar 

  37. Jing, Z. et al. Alkali metal ion recognition by 18-crown‑6 in aqueous solutions: evidence from local structures. J. Phys. Chem. B 127, 4858–4869 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Hartley, C. S. Folding of ortho-phenylenes. Acc. Chem. Res. 49, 646–654 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Ando, S. et al. Remarkable effects of terminal groups and solvents on helical folding of o-phenylene oligomers. J. Am. Chem. Soc. 134, 11084–11087 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, S., Feng, X., Zhao, Z., Zhang, J. & Wan, X. Reversible cis-cisoid to cis-transoid helical structure transition in poly(3,5-disubstituted phenylacetylene)s. Macromolecules 49, 8407–8417 (2016).

    Article  CAS  Google Scholar 

  41. Yuan, L. et al. Vitamin C stabilizes n-type organic semiconductors. Nat. Mater. 23, 1268–1275 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed. Opt. Lett. 22, 132–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. O’Halloran, S., Pandit, A., Heise, A. & Kellett, A. Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Adv. Sci. 10, 2204072 (2023).

    Article  Google Scholar 

  44. Pawlicki, M., Collins, H. A., Denning, R. G. & Anderson, H. L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48, 3244–3266 (2009).

    Article  CAS  Google Scholar 

  45. Totzeck, M., Ulrich, W., Göhnermeier, A. & Kaiser, W. Pushing deep ultraviolet lithography to its limits. Nat. Photonics 1, 629–631 (2007).

    Article  CAS  Google Scholar 

  46. Liu, T. et al. Ultrahigh-printing-speed photoresists for additive manufacturing. Nat. Nanotechnol. 19, 51–57 (2024).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Natural Science Foundation of China (grant numbers 223B2102, 22350006, 22222101 and 22171012). We thank Z. Gu, X. Liu, X. Zhou and G. Wang from the State Key Laboratory of Digital Medical Engineering at Southeast University, China, for their help and discussion in TPL. We thank S. Li (Institute of Chemistry, Chinese Academy of Sciences) for assistance with MALDI-TOF mass spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

R.Z. and Z.-Y.W. proposed the transformation. Z.-Y.W., Y.-Z.X., L.Z. and J.-Y.L. performed compound synthesis, polymer preparation and characterizations. Z.C. performed femtosecond laser lithography. R.Z. and Z.-Y.W. wrote the paper. R.Z. and Y.-Q.Z. directed the research.

Corresponding authors

Correspondence to Yu-Qing Zheng or Rong Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and references.

Source data

Source Data Fig. 2

Source data for Fig. 2a.

Source Data Fig. 3

Source data for Fig. 3c.

Source Data Fig. 3

Source data for Fig. 3d.

Source Data Fig. 4

Source data for Fig. 4b.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZY., Xu, YZ., Cui, Z. et al. Chain-growth synthesis of extensively cross-conjugated polyenes. Nat. Synth 4, 702–709 (2025). https://doi.org/10.1038/s44160-025-00760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00760-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing