Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A compact catenane with tuneable mechanical chirality

Abstract

Catenanes are formed by the mechanical interlocking of two or more rings. Enantiomers of a catenane can exist even if the rings themselves are achiral. Here we demonstrate that two achiral rings, each featuring a polarized cavity and two mirror planes, in addition to a two-fold axis of symmetry, can form a catenane with mechanical chirality. The catenane has been designed using an isostructural desymmetrization strategy, enabling the catenane to adopt a compact co-conformation similar to that of its achiral isostructural counterpart. Mechanical chirality in the catenane occurs when its two rings become interlocked in the compact co-conformation, leading to the loss of the two planes of symmetry present in its individual rings. The resulting enantiomers, which both have two-fold axes of symmetry, exist as a racemic modification in the solid state. Dynamic 1H NMR spectroscopy carried out in acetonitrile-d3 reveals a barrier of 16.4 kcal mol−1 to racemization between the two enantiomeric catenanes, the equilibrium of which can be influenced by the addition of chiral disulfonate anions, which support induced chirality and exhibit optical activity. One of the salts crystallizes to give only one diastereoisomer in the solid state. This research highlights the potential of using the isostructural desymmetrization strategy to create and study mechanical chirality along with its properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular design and symmetry analyses.
Fig. 2: Synthesis and mass spectrometric characterization.
Fig. 3: Single-crystal X-ray diffraction analysis.
Fig. 4: 1H NMR spectroscopic characterization.
Fig. 5: Dynamic NMR spectroscopy.
Fig. 6: Chiral induction in solution and in the solid state.

Similar content being viewed by others

Data availability

Data supporting the findings of this investigation are available in the Article and its Supplementary Information. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2367987 (BPBox·2TFA), 2367986 (BPHC·4TFA), 2367990 (ExBPBox·4PF6) and 2367988 (BPHC·K·2BINSA). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Sauvage, J.-P. & Dietrich-Buchecker, C. Molecular Catenanes, Rotaxanes and Knots: a Journey through the World of Molecular Topology (Wiley, 2008).

  2. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: from Molecules to Machines (Wiley, 2016).

  3. Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725–2828 (1995).

    Article  CAS  Google Scholar 

  4. Champin, B., Mobian, P. & Sauvage, J.-P. Transition metal complexes as molecular machine prototypes. Chem. Soc. Rev. 36, 358–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 47, 5266–5311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans, N. H. Chiral catenanes and rotaxanes: fundamentals and emerging applications. Chem. Eur. J. 24, 3101–3112 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Goldup, S. M. The end of the beginning of mechanical stereochemistry. Acc. Chem. Res. 57, 1696–1708 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cakmak, Y., Erbas-Cakmak, S. & Leigh, D. A. Asymmetric catalysis with a mechanically point-chiral rotaxane. J. Am. Chem. Soc. 138, 1749–1751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maynard, J. R. J. & Goldup, S. M. Strategies for the synthesis of enantiopure mechanically chiral molecules. Chem 6, 1914–1932 (2020).

    Article  CAS  Google Scholar 

  10. de Juan, A. et al. A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat. Chem. 14, 179–187 (2022).

    Article  PubMed  Google Scholar 

  11. Corra, S. et al. Chemical on/off switching of mechanically planar chirality and chiral anion recognition in a [2]rotaxane molecular shuttle. J. Am. Chem. Soc. 141, 9129–9133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frisch, H. L. & Wasserman, E. Chemical topology. J. Am. Chem. Soc. 83, 3789–3795 (1961).

    Article  CAS  Google Scholar 

  13. Stoddart, J. F. The master of chemical topology. Chem. Soc. Rev. 38, 1521–1529 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Forgan, R. S., Sauvage, J.-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Stoddart, J. F. Dawning of the age of molecular nanotopology. Nano Lett. 20, 5597–5600 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Rodríguez-Rubio, A., Savoini, A., Modicom, F., Butler, P. & Goldup, S. M. A co-conformationally ‘topologically’ chiral catenane. J. Am. Chem. Soc. 144, 11927–11932 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ashton, P. R. et al. Molecular mosaics formed by a square cyclophane and its inclusion complex with ferrocene. Angew. Chem. Int. Ed. 34, 1862–1865 (1995).

    Article  CAS  Google Scholar 

  18. Stoddart, J. F. et al. Molecular meccano. 3. Constitutional and translational isomerism in [2]catenanes and [n]pseudorotaxanes. J. Am. Chem. Soc. 117, 11142–11170 (1995).

    Article  CAS  Google Scholar 

  19. Zhu, K., Baggi, G. & Loeb, S. J. Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat. Chem. 10, 625–630 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Iwaso, K., Takashima, Y. & Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat. Chem. 8, 625–632 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Meng, W. et al. An elastic metal–organic crystal with a densely catenated backbone. Nature 598, 298–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, Z. et al. Highly compressible glass-like supramolecular polymer networks. Nat. Mater. 21, 103–109 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Ma, T. et al. Catenated covalent organic frameworks constructed from polyhedra. Nat. Synth. 2, 286–295 (2023).

    Article  CAS  Google Scholar 

  26. Schalley, C. A., Beizai, K. & Vögtle, F. On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Jamieson, E. M. G. & Goldup, S. M. Chirality makes a move. Nat. Chem. 11, 765–767 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Ren, Y., Jamagne, R., Tetlow, D. J. & Leigh, D. A. A tape-reading molecular ratchet. Nature 612, 78–82 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y. et al. Multistate circularly polarized luminescence switching through stimuli-induced co-conformation regulations of pyrene-functionalized topologically chiral [2]catenane. Angew. Chem. Int. Ed. 61, e202210542 (2022).

    Article  CAS  Google Scholar 

  34. Vignon, S. A., Wong, J., Tseng, H.-R. & Stoddart, J. F. Helical chirality in donor-acceptor catenanes. Org. Lett. 6, 1095–1098 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, K., Vukotic, V. N. & Loeb, S. J. Molecular shuttling of a compact and rigid H-shaped [2]rotaxane. Angew. Chem. Int. Ed. 51, 2168–2172 (2012).

    Article  CAS  Google Scholar 

  36. Hasell, T. et al. Triply interlocked covalent organic cages. Nat. Chem. 2, 750–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Power, M. J., Morris, D. T. J., Vitorica-Yrezabal, I. J. & Leigh, D. A. Compact rotaxane superbases. J. Am. Chem. Soc. 145, 8593–8599 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barnes, J. C. et al. A radically configurable six-state compound. Science 339, 429–433 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Barnes, J. C. et al. Solid-state characterization and photoinduced intramolecular electron transfer in a nanoconfined octacationic homo[2]catenane. J. Am. Chem. Soc. 136, 10569–10572 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Lahlali, H., Jobe, K., Watkinson, M. & Goldup, S. M. Macrocycle size matters: ‘small’ functionalized rotaxanes in excellent yield using the CuAAC active template approach. Angew. Chem. Int. Ed. 50, 4151–4155 (2011).

    Article  CAS  Google Scholar 

  41. Lewis, J. E. M., Modicom, F. & Goldup, S. M. Efficient multicomponent active template synthesis of catenanes. J. Am. Chem. Soc. 140, 4787–4791 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  43. Caprice, K. et al. Diastereoselective amplification of a mechanically chiral [2]catenane. J. Am. Chem. Soc. 143, 11957–11962 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, G. et al. Controllable self-assembly of macrocycles in water for isolating aromatic hydrocarbon isomers. J. Am. Chem. Soc. 140, 5955–5961 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Cui, Z. & Jin, G.-X. Construction of a molecular prime link by interlocking two trefoil knots. Nat. Synth. 1, 635–640 (2022).

    Article  CAS  Google Scholar 

  46. Miljanić, O. Š. & Stoddart, J. F. Dynamic donor acceptor [2]catenanes. Proc. Natl Acad. Sci. USA 104, 12966–12970 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fujita, M., Ibukuro, F., Hagihara, H. & Ogura, K. Quantitative self-assembly of a [2]catenane from two preformed molecular rings. Nature 367, 720–723 (1994).

    Article  CAS  Google Scholar 

  48. Garci, A. et al. Mechanical-bond-induced exciplex fluorescence in an anthracene-based homo[2]catenane. J. Am. Chem. Soc. 142, 7956–7967 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Kruve, A. et al. Ion-mobility mass spectrometry for the rapid determination of the topology of interlocked and knotted molecules. Angew. Chem. Int. Ed. 58, 11324–11328 (2019).

    Article  CAS  Google Scholar 

  50. Ashton, P. R. et al. Self-assembling cyclophanes and catenanes possessing elements of planar chirality. Chem. Eur. J. 4, 299–310 (1998).

    Article  CAS  Google Scholar 

  51. Dietrich-Buchecker, C. O., Edel, A., Kintzinger, J. P. & Sauvage, J. P. Synthese et etude d’un catenate de cuivre chiral comportant deux anneaux coordinant a 27 atomes. Tetrahedron 43, 333–344 (1987).

    Article  CAS  Google Scholar 

  52. Juríček, M. et al. Induced-fit catalysis of corannulene bowl-to-bowl inversion. Nat. Chem. 6, 222–228 (2014).

    Article  PubMed  Google Scholar 

  53. Garci, A. et al. Mechanically interlocked pyrene-based photocatalysts. Nat. Catal. 5, 524–533 (2022).

    Article  CAS  Google Scholar 

  54. Lu, T. & Chen, Q. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge W. Liu from the University of South Florida and Y. Xu from Henan University for their helpful discussion of NMR spectroscopy line-shape simulations. Financial support from the University of Hong Kong, Northwestern University and the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (grant no. SN-ZJU-SIAS-006) is gratefully acknowledged. C.T. has received support from the University Research Committee of the University of Hong Kong. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-FG02-99ER14999 (M.R.W.). This work made use of the IMSERC Crystallography facility at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633), and Northwestern University. J.F.S. passed away on 30 December 2024 and was a corresponding author when the Article was first submitted.

Author information

Authors and Affiliations

Authors

Contributions

C.T., R.Z. and J.F.S. conceived the idea for this project. C.T. synthesized and characterized all the compounds. R.M.Y. and P.J.B. acquired the time-resolved spectroscopy and analysed the data. P.J.D. and S.A. designed and performed the cell viability and confocal microscopy experiments. C.T., R.Z. and J.F.S. wrote the draft of the paper with input from G.W., H.H., X.Z., A.H.G.D., H.W., B.S., A.A., Y.W., Y.Y., Y.F., A.X.-Y.C., C.L.S., Z.L., E.A.S. and M.R.W. All the authors participated in evaluating the results and commented on the manuscript.

Corresponding author

Correspondence to Ruihua Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s note The editorial team of Nature Synthesis declare that Alison Stoddart has had no involvement in the editorial handling of this article.

Supplementary information

Supplementary Information

Experimental details, Supplementary Figs. 1–70, Supplementary Discussion, Supplementary Schemes 1–5 and Supplementary Tables 1–4.

Reporting Summary

Supplementary Data 1

X-ray crystallographic data for BPBox·2TFA, CCDC 2367987.

Supplementary Data 2

X-ray crystallographic data for BPHC·4TFA, CCDC 2367986.

Supplementary Data 3

X-ray crystallographic data for ExBPBox·4PF6, CCDC 2367990.

Supplementary Data 4

X-ray crystallographic data for BPHC·K·2BINSA, CCDC 2367988.

Source data

Source Data Fig. 2

Including ultraviolet–visible spectra, fluorescent spectra and TA data.

Source Data Fig. 5

Including Eyring equation analysis and fitting.

Source Data Fig. 6

Including CD spectra and titration analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Zhang, R., Almunif, S. et al. A compact catenane with tuneable mechanical chirality. Nat. Synth 4, 956–964 (2025). https://doi.org/10.1038/s44160-025-00781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00781-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing