Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of a crystalline two-dimensional [c2]daisy chain honeycomb network

Abstract

Molecular daisy chains are mechanically bonded materials with unique properties and compelling structures. Despite the exploration of numerous daisy chain structures, the synthesis of a crystalline mechanically interlocked polymer comprising daisy chain units remains elusive because flexible linkers typically yield amorphous gels, while rigid structures lack processability. Here we combine supramolecular crystallization preorganization with post-insertion of mechanical bonds to address this limitation. We use a C3-symmetric tritopic monomer with ammonium moieties and oligoether arms to generate a preorganized supramolecular honeycomb-like crystalline network via complementary non-covalent interactions, in an aqueous environment. Subsequently, single-crystal-to-single-crystal transformation-directed thiol–ene click chemistry crosslinks terminal alkenes at the end of the oligoether arms using 1,2-ethanedithiol, covalently locking [c2]daisy chain linkages while preserving long-range order. This two-dimensional mechanically interlocked polymer can be exfoliated from its crystals to generate a multilayer counterpart exhibiting a 47-fold stiffness enhancement relative to its bulk parent. Moreover, the trilayer nanosheets preserve the structural integrity with the same hexagonal symmetry as the bulk parent. Our method enables the synthesis of a single-crystalline two-dimensional mechanically interlocked polymer from flexible monomers with precise synthetic control and unlocks the potential of developing mechanically interlocked materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the formation of a 2D mechanically interlocked honeycomb network.
Fig. 2: The morphology and assembly process diagram of D1.
Fig. 3: Single-crystal X-ray (super)structures of D1.
Fig. 4: Synthesis and single-crystal X-ray (super)structures of D2.
Fig. 5: Mechanical property studies of exfoliated D2.
Fig. 6: Morphological studies for the exfoliated nanosheets of D2.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the Article and Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2300835 for D1 and CCDC 2300836 for D2. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Gee, G. & Rideal, E. K. Reaction in monolayers of drying oils I-The oxidation of the maleic anhydride compound of β-elaeostearin. Proc. R. Soc. Lond. A 153, 116–128 (1935).

    Article  CAS  Google Scholar 

  2. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    Article  CAS  Google Scholar 

  3. Bauer, T. et al. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem. Int. Ed. 50, 7879–7884 (2011).

    Article  CAS  Google Scholar 

  4. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Bae, S.-H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Takata, T., Kihara, N. & Furusho, Y. Polyrotaxanes and polycatenanes: recent advances in syntheses and applications of polymers comprising of interlocked structures. Adv. Polym. Sci. 171, 1–75 (2004).

    Article  CAS  Google Scholar 

  9. Mena-Hernando, S. & Pérez, E. M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem. Soc. Rev. 48, 5016–5032 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Hart, L. F. et al. Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mater. 6, 508–530 (2021).

    Article  CAS  Google Scholar 

  11. Okumura, Y. & Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001).

    Article  CAS  Google Scholar 

  12. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  CAS  Google Scholar 

  13. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  14. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  CAS  Google Scholar 

  15. Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  16. Harada, A., Li, J. & Kamachi, M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992).

    Article  CAS  Google Scholar 

  17. Huang, F. & Gibson, H. W. Polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 30, 982–1018 (2005).

    Article  CAS  Google Scholar 

  18. Harada, A., Hashidzume, A., Yamaguchi, H. & Takashima, Y. Polymeric rotaxanes. Chem. Rev. 109, 5974–6023 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Arunachalam, M. & Gibson, H. W. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 39, 1043–1073 (2014).

    Article  CAS  Google Scholar 

  20. Guidry, E. N., Li, J., Stoddart, J. F. & Grubbs, R. H. Bifunctional [c2]daisy-chains and their incorporation into mechanically interlocked polymers. J. Am. Chem. Soc. 129, 8944–8945 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Clark, P. G., Day, M. W. & Grubbs, R. H. Switching and extension of a [c2]daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631–13633 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Rotzler, J. & Mayor, M. Molecular daisy chains. Chem. Soc. Rev. 42, 44–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Van Raden, J. M., Jarenwattananon, N. N., Zakharov, L. N. & Jasti, R. Active metal template synthesis and characterization of a nanohoop [c2]daisy chain rotaxane. Chem. Eur. J. 26, 10205–10209 (2020).

    Article  PubMed  Google Scholar 

  24. Niu, Z. & Gibson, H. W. Polycatenanes. Chem. Rev. 109, 6024–6046 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Gil-Ramírez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015).

    Article  Google Scholar 

  26. Liu, J. et al. Infinite twisted polycatenanes. Angew. Chem. Int. Ed. 62, e202314481 (2023).

    Article  CAS  Google Scholar 

  27. Noda, Y., Hayashi, Y. & Ito, K. From topological gels to slide-ring materials. J. Appl. Polym. Sci. 131, 40509 (2014).

    Article  Google Scholar 

  28. Liu, C. et al. Tough hydrogels with rapid self-reinforcement. Science 372, 1078–1081 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Hubin, T. J. & Busch, D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 200–202, 5–52 (2000).

    Article  Google Scholar 

  31. Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).

    Article  CAS  Google Scholar 

  32. Sluysmans, D. & Stoddart, J. F. The burgeoning of mechanically interlocked molecules in chemistry. Trends Chem. 1, 185–197 (2019).

    Article  CAS  Google Scholar 

  33. Weidmann, J.-L. et al. Poly[2]catenanes and cyclic oligo[2]catenanes containing alternating topological and covalent bonds: synthesis and characterization. Chem. Eur. J. 5, 1841–1851 (1999).

    Article  CAS  Google Scholar 

  34. Wu, Q. et al. Poly[n]catenanes: synthesis of molecular interlocked chains. Science 358, 1434–1439 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Du, R. et al. A highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv. Funct. Mater. 30, 1907139 (2020).

    Article  CAS  Google Scholar 

  36. Ikejiri, S., Takashima, Y., Osaki, M., Yamaguchi, H. & Harada, A. Solvent-free photoresponsive artificial muscles rapidly driven by molecular machines. J. Am. Chem. Soc. 140, 17308–17315 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Nakahata, M., Mori, S., Takashima, Y., Yamaguchi, H. & Harada, A. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem 1, 766–775 (2016).

    Article  CAS  Google Scholar 

  38. Choi, S., Kwon, T.-w, Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Li, J. et al. Cationic supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery. Adv. Mater. 18, 2969–2974 (2006).

    Article  CAS  Google Scholar 

  40. Cotí, K. K. et al. Mechanised nanoparticles for drug delivery. Nanoscale 1, 16–39 (2009).

    Article  PubMed  Google Scholar 

  41. Choi, J. W. et al. Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices. Chem. Eur. J. 12, 261–279 (2006).

    Article  CAS  Google Scholar 

  42. Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439–443 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Ma, T. et al. Catenated covalent organic frameworks constructed from polyhedra. Nat. Synth. 2, 286–295 (2023).

    Article  CAS  Google Scholar 

  45. Prakasam, T. et al. 2D covalent organic framework via catenation. Chem 11, 102307 (2025).

    Article  CAS  Google Scholar 

  46. Fang, L. et al. Mechanically bonded macromolecules. Chem. Soc. Rev. 39, 17–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Ashton, P. R. et al. Supramolecular daisy chains. Angew. Chem. Int. Ed. 37, 1294–1297 (1998).

    Article  CAS  Google Scholar 

  48. Fang, L. et al. Acid–base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131, 7126–7134 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Bruns, C. J. et al. Redox switchable daisy chain rotaxanes driven by radical–radical interactions. J. Am. Chem. Soc. 136, 4714–4723 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Jiménez, M. C., Dietrich-Buchecker, C. & Sauvage, J.-P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000).

    Article  Google Scholar 

  51. Cai, K. et al. Radical cyclic [3]daisy chains. Chem 7, 174–189 (2021).

    Article  CAS  Google Scholar 

  52. Iwaso, K., Takashima, Y. & Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat. Chem. 8, 625–632 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Goujon, A. et al. Bistable [c2] daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J. Am. Chem. Soc. 139, 14825–14828 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, M. et al. Preparation of a daisy chain via threading-followed-by-polymerization. Macromolecules 44, 9629–9634 (2011).

    Article  CAS  Google Scholar 

  55. Wang, Y. et al. Mechanically interlocked [an]daisy chain networks. Chem 9, 2206–2221 (2023).

    Article  CAS  Google Scholar 

  56. Zhang, Q. et al. Muscle-like artificial molecular actuators for nanoparticles. Chem 4, 2670–2684 (2018).

    Article  CAS  Google Scholar 

  57. Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).

    Article  CAS  Google Scholar 

  58. Amirsakis, D. G. et al. Diastereospecific photochemical dimerization of a stilbene-containing daisy chain monomer in solution as well as in the solid state. Angew. Chem. Int. Ed. 42, 1126–1132 (2003).

    Article  CAS  Google Scholar 

  59. Bruns, C. J. & Stoddart, J. F. Molecular machines muscle up. Nat. Nanotechnol. 8, 9–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Gao, L., Zhang, Z., Zheng, B. & Huang, F. Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based [c2]daisy chain. Polym. Chem. 5, 5734–5739 (2014).

    Article  CAS  Google Scholar 

  61. Goujon, A. et al. Controlled sol–gel transitions by actuating molecular machine based supramolecular polymers. J. Am. Chem. Soc. 139, 4923–4928 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Chang, J.-C. et al. Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles. Nat. Chem. 9, 128–134 (2017).

    Article  CAS  Google Scholar 

  63. Samanta, J. et al. An ultra-dynamic anion-cluster-based organic framework. Chem 8, 253–267 (2022).

    Article  CAS  Google Scholar 

  64. Kade, M. J., Burke, D. J. & Hawker, C. J. The power of thiol-ene chemistry. J. Polym. Sci. A Polym. Chem. 48, 743–750 (2010).

    Article  CAS  Google Scholar 

  65. Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Guo, Q.-H. et al. Single-crystal polycationic polymers obtained by single-crystal-to-single-crystal photopolymerization. J. Am. Chem. Soc. 142, 6180–6187 (2020).

    Article  PubMed  Google Scholar 

  68. Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 4, 287–291 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Bunck, D. N. & Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 135, 14952–14955 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Gallego, A. et al. Solvent-induced delamination of a multifunctional two dimensional coordination polymer. Adv. Mater. 25, 2141–2146 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, K.-D. et al. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc. 135, 17913–17918 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Li, Y.-L. et al. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. J. Am. Chem. Soc. 142, 7218–7224 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (22171232 and 21971211), the ‘Spearhead’ and ‘Leading Goose’ Research and Development Program of Zhejiang Province (2024SDXHDX0008), the Natural Science Foundation of Anhui Province (2108085MB31), the University Synergy Innovation Program of Anhui Province (GXXT-2021-064), the Excellent Research and Innovation Team Project of Anhui Province (2022AH010001) and Zhejiang Provincial Key Laboratory Construction Project. We extend our gratitude to Z. Chen and Z. Yang from the Instrumentation and Service Centers for Molecular Science and Physical Sciences, respectively at Westlake University for assistance with Raman and nanoindentation measurement as well as the data interpretation. The research was supported by Westlake University HPC Center. We also thank the staff at the SSRF BL17B1 beamline of the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, CAS, for providing technical support with X-ray diffraction data collection and analysis.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. conceived the idea. L.B., Z.-B.T. and Z.L. conducted experiments, analysed the results and prepared the Supplementary Information. X.M. and Z.-B.T. provided insightful discussions on X-ray diffraction measurement. Z.-B.T. and Z.L. wrote the manuscript. H.G. and L.X. carried out the HRESI-MS measurements. Z.-B.T. and H.G. performed the nanoindentation and Raman measurements. L.L. and X.Z. provided assistance with AFM measurements. Q.J. offered support with HRTEM measurement. D.S. and A.C.-H.S. discussed and revised the manuscript.

Corresponding author

Correspondence to Zhichang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Scheme 1, Figs. 1–34, Tables 1 and 2, Refs. 1–8, Experimental details and X-ray crystallographic details.

Supplementary Data 1

Crystal data for D1, CCDC 2300835.

Supplementary Data 2

Crystal data for D2, CCDC 2300836.

Source data

Source Data Fig. 5

Height profiles and Young’s modulus of exfoliated D2 films.

Source Data Fig. 6

Height profiles of the exfoliated nanosheets of D2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, ZB., Bian, L., Miao, X. et al. Synthesis of a crystalline two-dimensional [c2]daisy chain honeycomb network. Nat. Synth 4, 922–930 (2025). https://doi.org/10.1038/s44160-025-00791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00791-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing