Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chirality retention in Friedel–Crafts spiroannulation for iterative synthesis of spiro-bridged conjugated carbocycles

Abstract

The formation of chiral organic molecules from Friedel–Crafts reactions of chiral alcohols has been deemed impractical due to racemization via carbocation formation. Here we demonstrate the preservation of stereochemistry in intramolecular Friedel–Crafts alkylation reactions, expanding the boundaries of accessible chiral chemistry. Mechanistic investigations show that the retention of stereochemistry stems from the chirality memory of transient, axially chiral carbocation intermediates. This finding allows the synthesis of axially chiral spirocarbon-bridged conjugated carbocycles. Leveraging a rhodium-catalysed regioselective C–H activation–annulation approach, the reaction of thiobenzamide with phenylethynyl tertiary alcohol is a crucial step in expanding the spiro-bridged skeleton. We used this approach to develop an iterative synthetic sequence to construct enantiopure spirocarbon-bridged pure-hydrocarbon oligo(trans-stilbene) compounds. Notably, in the concluding step of the iterative synthesis, all chiral tertiary alcohol units undergo a stereospecific one-shot conversion to form multiple spirocyclic structures, resembling a ‘zipping up’ process. This synthetic strategy facilitates both the longitudinal and lateral extension of spiro-bridged conjugated structures, with promising applications in circularly polarized lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic challenges towards optically active, multiple spirocarbon-bridged conjugated pure-hydrocarbon carbocycles and our solution.
Fig. 2: Rhodium-catalysed C–H annulation and iterative synthetic routes to spirocarbon-bridged conjugated carbocycles ((n+1)SpiroCnTS).
Fig. 3: Discovery and verification of the retention of stereochemistry in Friedel–Crafts spiroannulation.
Fig. 4: Free-energy profiles for intramolecular Friedel–Crafts alkylation in reactions of (S)-32 and (S,S)-34.
Fig. 5: Stereoselective iterative synthesis of spirocarbon-bridged conjugated pure-hydrocarbon carbocycles.
Fig. 6: Longitudinal and lateral extensions of spiro-bridged conjugated structures and their applications.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. Data are also available from the corresponding authors upon reasonable request. The X-ray crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2291836 (5), 2289728 (9), 2294270 (11), 2294275 (rac-13), 2303144 ((R,R)-14 and (S,S)-14), 2294277 (rac-15), 2294278 ((R)-15), 2294279 ((R,S)-17 and (S,R)-17), 2294280 ((R,S)-19), 2294281 ((R,S,R)-21 and (S,R,S)-21), 2294282 ((R,S,R)-21), 2291829 (27), 2291826 (30) and 2294290 ((S,S)-34). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Saragi, T. P. I., Spehr, T., Siebert, A., Fuhrmann-Lieker, T. & Salbeck, J. Spiro compounds for organic optoelectronics. Chem. Rev. 107, 1011–1065 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Poriel, C. & Rault-Berthelot, J. Dihydroindenofluorenes as building units in organic semiconductors for organic electronics. Chem. Soc. Rev. 52, 6754–6805 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Urieta-Mora, J., Garcia-Benito, I., Molina-Ontoria, A. & Martín, N. Hole transporting materials for perovskite solar cells: a chemical approach. Chem. Soc. Rev. 47, 8541–8571 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, Y. et al. Organic solid-state lasers: a materials view and future development. Chem. Soc. Rev. 49, 5885–5944 (2020).

    Article  CAS  Google Scholar 

  5. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Xie, J.-H. & Zhou, Q.-L. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions. Acc. Chem. Res. 41, 581–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Oniki, J., Moriuchi, T., Kamochi, K., Tobisu, M. & Amaya, T. Linear [3]spirobifluorenylene: an S‑shaped molecular geometry of p‑oligophenyls. J. Am. Chem. Soc. 141, 18238–18245 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Hamada, H., Itabashi, Y., Shang, R. & Nakamura, E. Axially chiral spiro-conjugated carbon-bridged p-phenylenevinylene congeners: synthetic design and materials properties. J. Am. Chem. Soc. 142, 2059–2067 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, X., Zhang, Q., Xie, J.-H., Wang, L.-X. & Zhou, Q.-L. Highly rigid diphosphane ligands with a large dihedral angle based on a chiral spirobifluorene backbone. Angew. Chem. Int. Ed. 44, 1118–1121 (2005).

    Article  CAS  Google Scholar 

  10. Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh, V. K. et al. Taming secondary benzylic cations in catalytic asymmetric SN1 reactions. Science 382, 325–329 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Pronin, S. V., Reiher, C. A. & Shenvi, R. A. Stereoinversion of tertiary alcohols to tertiary-alkyl isonitriles and amines. Nature 501, 195–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Tan, X. et al. Enantioselective synthesis of tetraarylmethanes through meta-hydroxyl-directed benzylic substitution. Nat. Synth. 2, 275–285 (2023).

    Article  CAS  Google Scholar 

  14. Zhao, C., Toste, F. D., Raymond, K. N. & Bergman, R. G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J. Am. Chem. Soc. 136, 14409–14412 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, R., Ge, S. & Sun, J. SPHENOL, a new chiral framework for asymmetric synthesis. J. Am. Chem. Soc. 143, 12445–12449 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Li, S., Zhang, J.-W., Li, X.-L., Cheng, D.-J. & Tan, B. Phosphoric acid-catalyzed asymmetric synthesis of SPINOL derivatives. J. Am. Chem. Soc. 138, 16561–16566 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, X., Hou, G.-H., Xie, J.-H. & Zhou, Q.-L. Synthesis and optical resolution of 9,9′-spirobifluorene-1,1′-diol. Org. Lett. 6, 2381–2383 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Peluso, P. & Chankvetadze, B. Recognition in the domain of molecular chirality: from noncovalent interactions to separation of enantiomers. Chem. Rev. 122, 13235–13400 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Pirkle, W. H. & Pochapsky, T. C. Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem. Rev. 89, 347–362 (1989).

    Article  CAS  Google Scholar 

  20. Yang, Y. et al. Discovery of organic optoelectronic materials powered by oxidative Ar–H/Ar–H coupling. J. Am. Chem. Soc. 146, 1224–1243 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, C.-X. et al. Rhodium-catalyzed asymmetric C–H functionalization reactions. Chem. Rev. 123, 10079–10134 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Dalton, T., Faber, T. & Glorius, F. C−H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Yin, J. et al. Programmable zigzag π-extension toward graphene-like molecules by the stacking of naphthalene blocks. Nat. Synth. 2, 838–847 (2023).

    Article  CAS  Google Scholar 

  25. Lu, Q. et al. Redox-neutral manganese(I)-catalyzed C–H activation: traceless directing group enabled regioselective annulation. Angew. Chem. Int. Ed. 56, 12778–12782 (2017).

    Article  CAS  Google Scholar 

  26. Yin, J. et al. Synthesis of phenalenyl-fused pyrylium cations: divergent C–H activation/annulation reaction sequence of naphthalene aldehydes with alkynes. Angew. Chem. Int. Ed. 56, 13094–13098 (2017).

    Article  CAS  Google Scholar 

  27. Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, S. et al. Urea group-directed organocatalytic asymmetric versatile dihalogenation of alkenes and alkynes. Nat. Catal. 4, 692–702 (2021).

    Article  CAS  Google Scholar 

  29. Kawabata, T., Yahiro, K. & Fuji, K. Memory of chirality: enantioselective alkylation reactions at an asymmetric carbon adjacent to a carbonyl group. J. Am. Chem. Soc. 113, 9694–9696 (1991).

    Article  CAS  Google Scholar 

  30. Takase, K., Noguchi, K. & Nakano, K. Circularly polarized luminescence from chiral spiro molecules: synthesis and optical properties of 10,10′-spirobi(indeno[1,2-b][1]benzothiophene) derivatives. Org. Lett. 19, 5082–5085 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Morales-Vidal, M. et al. Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers. Nat. Commun. 6, 8458 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Okada, D. et al. π‑Electronic co-crystal microcavities with selective vibronic-mode light amplification: toward Förster resonance energy transfer lasing. Nano Lett. 18, 4396–4402 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Jiang, Y. et al. Frequency-upconverted stimulated emission by up to six-photon excitation from highly extended spiro-fused ladder-type oligo(p-phenylene)s. Angew. Chem. Int. Ed. 60, 10007–10015 (2021).

    Article  CAS  Google Scholar 

  34. Ren, S. et al. Circularly polarized lasing from helical superstructures of chiral organic molecules. Angew. Chem. Int. Ed. 63, e202415092 (2024).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National NSF of China (22031007, 22371196, 22171130 and 22071162), the Natural Science Foundation of Sichuan, China (2022NSFSC0029), Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), the New Cornerstone Science Foundation through the XPLORER PRIZE and Fundamental Research Funds for the Central Universities. Computational work was supported by the Center for Computational Science and Engineering and the CHEM High-Performance Supercomputer Cluster (CHEM-HPC) of the Department of Chemistry, Southern University of Science and Technology. We also thank P. Deng and D. Luo from the Analytical and Testing Center of Sichuan University for high-temperature NMR spectroscopy and crystal-structure analysis, respectively.

Author information

Authors and Affiliations

Authors

Contributions

X.P. performed the experiments and analysed the data. Y.L. performed the DFT calculations. Z.Z. performed the optically pumped lasing measurements under the guidance of Y.S.Z. J.Y. and J.L. designed and directed the project. P.Y. directed the DFT calculations and analysed the computational data. X.P., J.L., Y.Y., P.Y., C.Z. and J.Y. wrote the paper. All authors contributed to discussions.

Corresponding authors

Correspondence to Peiyuan Yu, Yong Sheng Zhao, Jingbo Lan or Jingsong You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Koki Ikemoto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–16, Tables 1–72, Figs. 1–104 and experimental details.

Supplementary Data 1

Crystallographic data for compound 5, CCDC 2291836.

Supplementary Data 2

Structure factors for compound 5, CCDC 2291836.

Supplementary Data 3

Crystallographic data for compound 9, CCDC 2289728.

Supplementary Data 4

Structure factors for compound 9, CCDC 2289728.

Supplementary Data 5

Crystallographic data for compound 11, CCDC 2294270.

Supplementary Data 6

Structure factors for compound 11, CCDC 2294270.

Supplementary Data 7

Crystallographic data for compound 13, CCDC 2294275.

Supplementary Data 8

Structure factors for compound 13, CCDC 2294275.

Supplementary Data 9

Crystallographic data for compound 14, CCDC 2303144.

Supplementary Data 10

Structure factors for compound 14, CCDC 2303144.

Supplementary Data 11

Crystallographic data for compound (R)-15, CCDC 2294278.

Supplementary Data 12

Structure factors for compound (R)-15, CCDC 2294278.

Supplementary Data 13

Crystallographic data for compound rac-15, CCDC 2294277.

Supplementary Data 14

Structure factors for compound rac-15, CCDC 2294277.

Supplementary Data 15

Crystallographic data for compound 17, CCDC 2294279.

Supplementary Data 16

Structure factors for compound 17, CCDC 2294279.

Supplementary Data 17

Crystallographic data for compound 19, CCDC 2294280.

Supplementary Data 18

Structure factors for compound 19, CCDC 2294280.

Supplementary Data 19

Crystallographic data for compound rac-21, CCDC 2294281.

Supplementary Data 20

Structure factors for compound rac-21, CCDC 2294281.

Supplementary Data 21

Crystallographic data for compound (R,S,R)-21, CCDC 2294282.

Supplementary Data 22

Structure factors for compound (R,S,R)-21, CCDC 2294282.

Supplementary Data 23

Crystallographic data for compound 27, CCDC 2291829.

Supplementary Data 24

Structure factors for compound 27, CCDC 2291829.

Supplementary Data 25

Crystallographic data for compound 30, CCDC 2291826.

Supplementary Data 26

Structure factors for compound 30, CCDC 2291826.

Supplementary Data 27

Crystallographic data for compound 34, CCDC 2294290.

Supplementary Data 28

Structure factors for compound 34, CCDC 2294290.

Supplementary Data 29

Statistical source data for supplementary figures.

Source data

Source Data Fig. 6

Source data for Fig. 6c–e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, X., Lu, Y., Zhou, Z. et al. Chirality retention in Friedel–Crafts spiroannulation for iterative synthesis of spiro-bridged conjugated carbocycles. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00817-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing